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It is well known [1-4] that the rate constants of different elementary reactions are 
often interdependent. Relationships determined by the principle of detailed balancing exist 
between them [1-5] when microreversibility is valid and by the generalizations of that prin- 
ciple [5-8] when it is not (for example, in magnetic fields, during macroscopic rotations, 
etc.). Nevertheless, in practice the verification of consistency in the kinetic constants 
for complicated transformation schemes involves a certain amount of technical difficulty. 

The problem of consistency in the kinetic constants arises especially sharply in connec- 
tion with the creation of kinetic data banks intended for widespread use [9-11]. Here it 
is impossible to avoid solving that problem or examining each multistage reaction separately, 
without leaving the user with the burden of finding a way to carry out this analysis. Thus, 
the methods for establishing the consistency of these constants, along with the conditions 
under which this consistency may fail, must be analyzed and suitable algorithms and programs 
have to be developed. 

RELATIONSHIPS AMONG THE CONSTANTS 

In order to describe a complex chemical reaction, one must specify a list of substances 
and the mechanism of the reaction, i.e., a list of the constituent elementary reactions. We 
denote the substances by At, ..., A n . An elementary reaction is specified by its stoichio- 
metric equation 

~lA1 + . . . +  ~ A ~  ~ ~,AI + . . .  + ~A~,  (1)  

where r is the number of the elementary reaction and the stoichiometric coefficients ~ri and 
~ri are nonnegative whole numbers. 

We have written Eq. (i) in a form where different numbers correspond to the forward and 
reverse reactions. This is convenient for examining systems in the absence of microreversi- 
bility. In the other form, the forward and reverse reactions are combined under a single 
number s : 

~,IAI + . . . + ~ A ~ = ~ , I A I + . . . +  >,~A~. (2) 

Each elementary reaction is associated with a nonnegative intensive [12] quantity w r (the 
reaction rate). The equations of chemical kinetics in a uniform closed chemical system, for 
example, have the form 

r 

Here ~r is the stoichiometric vector of the r-th reaction (Tri = ~ri - ~ri), V is the volume 
of the system, N is the composition vector, and N i is the amount of A i (mole). 

The elementary reactions (2) are written down in pairs with the aid of the quantity 
w s = Ws + - Ws-, where the superscripts + and - denote quantities that refer to the forward 
and reverse reactions, respectively. The form of the equations is analogous to Eq. (3) with 
the indices r replaced by s. These equations for heterogeneous and nonuniform systems are 
given elsewhere [4-6]. It is important to emphasize that, although the reaction rate is 
most often calculated using equations for closed mixed systems, the quantities w r at every 
point in space are determined by the state of the medium at that point. These functions of 
state do not change when the system is opened, so that the relationships among them should 
also be preserved. 
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w r can be obtained as a function of other intensive variables (the temperature T and 
concentrations c i or chemical potentials ~i ) by two approaches. The results of these two 
approaches are not necessarily different, but the methods for verifying consistency depend 
substantially on which approach is chosen. 

In the approach that proceeds from a kinetic law (most often the law of mass action) 
one starts by writing down formulas for the Wr(C, T), which include a set of parameters, the 
"constants". Then consistency conditions are imposed on these parameters. If, on the other 
hand, one proceeds from thermodynamics, then it is possible at once to write down a wide 
class of consistent formulas which can be made more specific. For the law of mass action 
one sets 

w~ k~ (T) ill c =~ = . ~ ,  ( 4 )  

where c i is the concentration of A i. 

In this case the principle of detailed balancing can be formulated as follows: for any 
T there exists a point c* with positive coordinates ci* > 0 such that at this point each 
forward reaction is balanced by its reverse 

~t (r, c*) = wT(r, c*) (5) 
f o r  a l l  s .  ( H e r e  t h e  fo rm (2 )  w i t h  a p a i r w i s e  c o m b i n a t i o n  o f  r e a c t i o n s  i s  more  c o n v e n i e n t .  
I f  t h e r e  a r e  no r e v e r s e  r e a c t i o n s  in  (1 )  f o r  t h e  t r a n s f o r m a t i o n  t o  Eq. ( 2 ) ,  t h e n  t h e y  can  
be w r i t t e n  down w i t h  c o n s t a n t s  e q u a l  t o  z e r o . )  T h i s  i n v o l v e s  a number  o f  i m p o r t a n t  dynamic  
c o n s e q u e n c e s :  i n  p a r t i c u l a r ,  e v e r y  e q u i l i b r i u m  p o i n t  i s  a p o i n t  a t  which  d e t a i l e d  b a l a n c i n g  
occurs  [3,  4 ] .  

The c o n d i t i o n  t h a t  a p o i n t  c * e x i s t  can  be  w r i t t e n  in  t h e  fo rm o f  a l i n e a r  r e l a t i o n s h i p  
among t h e  l o g a r i t h m s  o f  t h e  c o n s t a n t s .  I t  i s  s u f f i c i e n t  t o  t a k e  t h e  l o g a r i t h m  and w r i t e  
down t h e  c o n d i t i o n  f o r  s o l v a b i l i t y  o f  t h e  r e s u l t i n g  s y s t e m  o f  l i n e a r  e q u a t i o n s  in  in  c ~ [4 ,  
6]. 

In the following discussion we shall use two examples: the simplest reversible cycle 

k I ~2 ks 
A t ~ A 2 ~ - - ~ A s ,  ~A~ (6 )  

h--I ~--2 h--3 

and the most general mechanism for the combustion of an H 2 + 02 mixture: 

i) H2+02=20H, 16) H+HO2=2OH, 
2) OH+H2=H20+H, 17) H+HO2----H20+O, 
3) H+O2----OH+O, 18) H+HO2=H2+O2, 
4) O+H2=OH+H, i9) O+HO2=0H+02, 
5) O+H20=2OH, 20) H+H202=HoO+OH, 
6) 2H+M=H2+M, 2t) O+H202=OH+HO2, 
7) 20+M=02+M, 22) H2+02----H20+O, 
8) H+OH+M=H20+M, 23) H2+02+M=HeO2+M, 
9) 2OH+M=HeO2+M, 24) OH+M--O+H+M, 
10) OH+O+M=HO2+M, 25) HO2+OH=HeO+02, 
ii) H+Oe+M=HO2+M, 26) He+O+M=H~O+M, 
12) HO2+He=HeO2+H, 27) O+HeO+M=H2Oe+M, 
i3) HO2 + H2 = H20 + OH, 28) 0 + H202 = H20 + Oe, 
14) HOe+H20=H202+OH, 29) He+HeO2=2HeO. 
15) 2HO2 = HeO~+02, 30) H+HOe+M=H20:+M, (7) 

where M is a third particle. The cycle (6) has been studied in detail as a model of the 
isomerization of the butenes [13]. The rate constants for reactions (7) have been collected 
by Dimitrov [14-16]. 

The condition for the existence of a detailed balancing point c* for the system (6) 
takes the form 

In kl + in k2 + in ks = In k - l +  ln k - 2 +  In k-3 (8 )  

or klk2k ~ = k-lk_2k_ 3. 
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For the mechanism (7) there are 24 relations analogous to Eq. (8) [24 = 30 reactions -- 
6 independent = 30 reactions -- (8 substances -- 2 linear balance equations)]: 

K m =  KpaKp4, Kv2Kp5 = Kp4, Kp4Kp6 = KpaKpT, K m = =  Kp2Km4, 

KpaK~4Kp9 = Kp2KpnKm4, Kpl, = KpaKpm, Kp13Kpn = Kp2K~aKpT, 

Kp15KpnKp4 = Kp=Km4KpTK,a, Kp,~Kpn = K~aK~7, Kp=4Kp3Kp~ = t, 

Kp21Kp14Kp= = Kp4, Kpl~KpllKp4 = Kp~KpaKp~, KplgKpn = 

Kp20Kp14Kpll 2 = KpaKp~, Kp~sKp~K,~ ---- KpsKp~, Kp~e = Kp~Kpa, 

Kp~3 = K ~ K 9 ~ t K ~  ]/'-~7, K~2~K~nKv~=K,eKpaK~7, K~e~ = KpeKp~KpT, 
Kg~7Kpa = Km,Kpn, K~2sKp,~Kpn = K,aKp~, KpaoK~t = K9=Km4KDaK~7, 

Kp2KpaK~. Kp~gK,~lKp14 = (9) 

In the thermodynamic approach, the w r can immediately be written down in the special 
form [5, 6, 17, 18] 

w~ = 9" exp ( ~ ari~/ RT) ' (i0) 

where ~, i s  a new n o n n e g a t i v e  i n t e n s i v e  q u a n t i t y .  R e p r e s e n t i n g  t h e  r a t e  o f  an e l e m e n t a r y  
r e a c t i o n  in  t e rms  o f  t h i s  new q u a n t i t y  and t h e  c h e m i c a l  p o t e n t i a l s  ~i  i n t r o d u c e s  no new 
r e s t r i c t i o n s  e x c e p t  t h a t ,  b e c a u s e  o f  t h e  l o g a r i t h m i c  s i n g u l a r i t y  o f  ~i  when c i + 0 and 
~ r i  # 0, t h e  e x p o n e n t i a l  in  Eq. (10)  and,  t h u s ,  w r a p p r o a c h  z e r o .  (The r a t e  o f  consumpt ion  
o f  t h e  m a t e r i a l  a p p r o a c h e s  z e r o  when i t s  c o n c e n t r a t i o n  i s  r e d u c e d  t o  z e r o . )  

The p r i n c i p l e  o f  d e t a i l e d  b a l a n c i n g  in  t h i s  c a s e  becomes t h e  i d e n t i t y  

~2 = ~ 7 ( =  9,). (11) 

When m i c r o r e v e r s i b i l i t y  e x i s t s  t h i s  i d e n t i t y  i s  assumed t o  be s a t i s f i e d  in  a l l  s t a t e s .  

The a d v a n t a g e  o f  t h i s  a p p r o a c h  i s  i t s  a u t o m a t i c  t r a n s f e r a b i l i t y  t o  n o n i d e a l  s y s t e m s ,  
where t h e  i d e a l  e x p r e s s i o n  f o r  t h e  c h e m i c a l  p o t e n t i a l s  

~ = RTln  c i+  ~io (12) 

can no longer  be used and t h e  law of mass a c t i o n  may not  be v a l i d .  The d i sadvan tage  (more 
appropriately, the imperfection) is the absence of rules for constructing the functions 
9,(2,  c) or 9,(T, ~). 

Assuming that 9, is a function of only one variable (T) and using the principle of 
detailed balancing in the form (ii), we arrive at the Marcelin--de Donde kinetic law [19-20]: 

This simplification, however, is still unrealistic and contradicts the expressions obtained 
for a number of nonideal systems in the theory of absolute reaction rates [19-21]. (Of 
course, neither Eq. (i0) nor Eq. (ii) can contradict this theory.) In general, the ~, 
must depend on c (or ~). 

There is an intermediate approach in which the rates of the forward reactions are deter- 
mined from the law of mass action (4), and the formula 

where As=~?~i~i is the affinity, is used for the reverse reactions [22]. It can, in 

principle, be used without contradiction for ideal as well as nonideal systems, although in 
the latter case it is difficult to justify using the law of mass action for the forward reac- 
tions since it will not be satisfied for the reverse reactions. Equation (14) contains the 
principle of detailed balancing (ii) and using the law of mass action for the forward reac- 
tions can be regarded as a method for constructing the T~. 

For ideal systems Eq. (14) becomes the equation 

k ~ / k 7  = K ~ ,  ( 15 ) 
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where the ratio of the kinetic constants is on the left and the equilibrium constant calcula- 
ted on the basis of thermodynamic data is on the right. In the absence of microreversibil- 
ity for multistage reactions, Eq. (15) may obviously fail. Only the condition that the ther- 
modynamic equilibrium point is unmoved for the kinetic equations remains unconditionally 
true and the right hand side of Eq. (3) goes to zero for that point. 

In the absence of microreversibility, when detailed balancing can no longer be used 
(for example, in magnetic fields), the conditions for consistency among the kinetic parame- 
ters have a more general form [8]. They have been obtained from the microscopic condition 
of unitarity (conservation of the total probability) and are written as an equality between 
different combinations of kinetic factors ~. These can have many consequences, ranging 
from failure of uniqueness to relaxation oscillations. 

In order to demonstrate the qualitative consequences to which an inconsistency in the 
rate constants may lead even in the simplest cases, let us examine the mechanism of reaction 
(6) in a closed system. When detailed balancing exists in this system and imposes the limi- 
tations (8) on the rate constants, the equilibrium point is a stable node and the approach 
to equilibrium proceeds without damped oscillations. 

Let us write Eq. (3) in the standard way for the system (6) under isothermal conditions 
and solve the problem for the eigenvalues of this system. We find (without using the consis- 
tency condition (8)) that 

where 

2i+,_=--EkT• (16) 
? 

D=(~kO2--4(k3--k_O(k,--k_~)--4(k I + k3 + k-s)(k2 + k-2 + k-l). (i7) 

The equilibrium of the system is stable for arbitrary kr, since D~(~ kr)~ �9 The requirement 

that it be a node, however, is satisfied only for D>0 ; otherwise the equilibrium would be 
a stable focus. The condition (8) implies that D> 0 ; however, even small violations of 
(8) can lead to a change in the sign of the inequality, so that D < 0. In order to illus- 
trate the mutual positions of the region D ~ 0 and the manifold of consistent sets of con- 
stants, let us set k I = k 2 = v, k 3 = k_ 2 = D, and k I = k_ 3 = ~. After substituting the new 
variables in the formula for the discriminant (17), we obtain D = 4(T - D)(v - D) and, in 
place of Eq. (8), �9 = ~. Figure 1 shows the intersection of the regions where D has a con- 
stant sign and the consistency manifold in the plane D = D0. It is easy to see that in an 
arbitrarily small neighborhood of the point �9 = D0 = v, points corresponding to sets of con- 
stants with focal-type equilibria do exist. 

This example shows that even a small deviation of this set of rate constants for the 
elementary reactions from the consistency manifold can lead to false qualitative effects. 
Other examples of this sort can be found in [23]. 

CONSISTENCY OF KINETIC AND THERMODYNAMIC DATA 

The data used to construct kinetic models can be divided into two large groups: thermo- 
dynamic and inherently kinetic. The two are obtained by different methods, ranging from 
direct experiment to semiempirical or theoretical calculations. The consistency problem can 
be regarded as intrinsic to both groups of data or as a question of consistency between 
kinetic and thermodynamic data. 

The condition that the kinetic data should be internally consistent makes it possible, 
in particular, to narrow the arbitrariness in the determination of the constants. Let us 
consider the example of a system obtained from the law of mass action with an Arrhenius 

temperature dependence for the rate constants, 
z~ 

k~ (T) = A~T ~ exp ( - -  E~/RT).  (18) 

We s h a l l  use  t h e  p r i n c i p l e  o f  d e t a i l e d  b a l a n c i n g  (under  t h e  assumpt ion  o f  m i c r o r e v e r s i b i l i t y )  
as a b a s i s  f o r  e s t a b l i s h i n g  c o n s i s t e n c y .  The c o n s i s t e n c y  c o n d i t i o n  f o r  each r e a c t i o n  mecha- 
nism i s  w r i t t e n  as a sys tem of  l i n e a r  homogeneous e q u a t i o n s  in  ks • which~must be s a t i s f i e d  
f o r  any T [4,  6] ( f o r  example,  t he  i d e n t i t i e s  (8)  and ( 9 ) ) .  
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Fig. i. The intersection of the manifold of con- 
sistent sets of constants for the example of 
reaction (6) in the plane ~ = ~0- 1 denotes the 
consistency condition. 

Fig. 2. The consistency polyhedron for the reac- 
tion mechanism (6). 

The primary stages of the consistency algorithm are as follows: 
ciple of detailed balancing, a point c* where Eq. (5) is satisfied must exist. 
(4) and (5), we can write 

k+ ~ "=" k7 II d ~'L 11 ci = 
i i 

Taking the logarithm of this expression and using Eq. (15), we obtain 

or, in matrix form, 

(where y is a row vector). 
tion (21) takes the form 

In K v = ~ ( ~  - -  <z~) In c~ 
i 

according to the prin- 
Using Eq. 

(19) 

In K, =Fln c*, (20) 

where F is the stoichiometric matrix. Since as long as c* covers the set of positive vec- 
tors, in c* will cover all of n-dimensional space, the only restriction on Kp imposed by the 
principle of detailed balancing is 

In Kp ~ Im F. (21) 

In order to write this restriction in explicit form, we must find all linearly independent 
solutions of the system of equations 

yF = 0 (22) 

Let  y l  . . . . .  yq be the  s o l u t i o n s  of  Eq. (22) ;  then  the  r e s t r i c -  

ySln Kp =0 ,  ] =  1, q. (23) 

For the  Ar rhen ius  dependence (18) ,  Eqs. (23) reduce to  t h r e e  systems of  l i n e a r  homo- 
+ + 

geneous e q u a t i o n s  wi th  r e s p e c t  to  {E]}~ {s and {ln A~}. These systems de termine  l i n e a r  
+ + + 

subspaces w i t h i n  the  spaces  wi th  c o o r d i n a t e s  {E~}, {s and {Am}. We s h a l l  denote  t he se  
subspaces by WE, Ws and Wln A, r e s p e c t i v e l y .  

The parameters E• ~, and A~ are always given, with a certain amount of error, in the 
form of an integral. Thus, the vectors of the parameters E, s and A belong to multidimen- 
sional intervals (rectangular parallelepipeds). Not all of these intervals satisfy the 
restrictions, but only those which lie within the region where they intersect WE, Ws or 
Wln A, respectively. These intersections are the consistency polyhedra for the kinetic para- 
meters. 

The problem of internal consistency (self-consistency) of the kinetic data involves 
describing these consistency polyhedra. The simplest approach is to find all their vertices. 
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TABLE 1 

No.Reacti~ I APS 

from Table 4 of [16] from the consistency condition 

1 
5 
9 
8 

15 
20 
26 
30 

2,97--337,5 
7.5--t6 
6.4-10-s--8,2 .10 -~ 
0.3.104--i04 
13--40 
4.66--i6,25 
10-7_10-a 
3,2.10-~--6 -i0 -4 

t3--39,4 
4.94--25 
i,2.i0-6--2,4 .10 -4 
0,25--3,i 
5.10-G--3.i0 -a 
2.i0-4--0,083 
3.4.10-s--t .t0-~ 
t.lO-S--2 .10 -0 

Let us consider reaction (6). We can rewrite the consistency condition (8) in the form 
In Kpi+InKp2+InKp3=O. Let each of the equilibrium constants be localized within the 
interval In Kp~[--i, i]. We now make the coordinate transformation L i = in Kpi + i. In 
these coordinates the consistency polyhedron is described by the system of inequalities 
L~>0 and L~2 together with the equation L~ + L 2 + L 3 = 3. This becomes a linear pro- 
gramming problem, if we add a target function. The first vertex is found by the simplex 
method by introducing a fictitious basis and the target function L I' + L 2' + L 3' + min. 
After determining the first vertex (2, i, 0), the search for the remaining vertices is car- 
ried out by looking over all the allowable (in the sense of the simplex method) substitu- 
tions. This procedure terminates after a finite number of steps since the polyhedron has a 
finite set of vertices (Fig. 2): (2, i, 0), (2, 0, i), (0, 2, i), (i, 2, 0) (i, 0, 2) (0, 
I, 2). After transforming to the coordinates in Kpi = L i - i, we obtain the vertices of the 
polyhedron in the original coordinates. 

A complete list of the vertices of a consistency polyhedron may be cumbersome and incon- 
venient to use. It is simpler and more customary to work with points or intervals (even one- 
dimensional). Thus, besides seeking the consistency polyhedron it is desirable to indicate 
some set of constants lying within it (e.g., the center of gravity of unit masses located at 
the vertices), as well as an interval circumscribed around the polyhedron. The latter is 
easily constructed from a description of the vertices: it is sufficient to find the maximum 
and minimum of each coordinate in the set of vertices. The product of these intervals (from 
the maximum to the minimum) will be the desired multidimensional interval. 

In the example considered previously, the center of gravity of the polyhedron in the 
coordinates in Kp will be the point (0, 0, 0), while the interval circumscribed around the 
polyhedron will coincide with the original. 

The mutual consistency of the thermodynamic and kinetic data can also be described in 
terms of constructing a consistency polyhedron. Here the equations for the law of mass 
action are simple: 

In k2 - -  k?  = In Ks, (24)  

where K s is the equilibrium constant calculated on the basis of thermodynamics. 

A basis set of reactions is chosen for which the equilibrium constants are specified by 
an interval. The remaining equilibrium constants are uniquely expressed in terms of the 
basis constants. Then, if Eq. (24) is satisfied, the kinetic constants are already consis- 
tent and no further verification is needed. 

For concreteness let the basis reactions be numbered I, ..., q and the intervals 
(s = i, q) be specified as 

K,-- A,<~K,<~K~ + A,, (25) 

- k> < + z>. 

The p o l y h e d r o n  s p e c i f i e d  by  Eqs .  ( 2 4 ) ,  t h e  i n e q u a l i t i e s  ( 2 5 ) ,  and  t h e  t h e r m o d y n a m i c  e x p r e s -  
s i o n s  K s ( s  > q) a s  Kz,  . . . ,  Kq, can  be  r e f e r r e d  t o  a s  a p o l y h e d r o n  o f  m u t u a l l y  c o n s i s t e n t  
thermodynamic and kinetic data. One of the important problems in analyzing the data is to 
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find the vertices of this polyhedron. Shorter forms of the answer, namely this interval and 
an interior point for this polyhedron, are important. 

Thus, in the course of our examination of the data consistency problem, new objects 
have appeared: the consistency polyhedra. A description of these polyhedra should be a 
constituent of all banks of kinetic (more precisely, thermodynamic--kinetic) data. One 
important question is "should the data be kept in a consistent form or should it be made con- 
sistent each time anew when it is delivered for use?" Here there is an important distinction 
from purely thermodynamic data; namely, the consistency of kinetic parameters depends on the 
reaction mechanism (the list of stages). Furthermore, inconsistent, but in a certain sense 
correct, data may exist. (This is discussed below.) Thus, we propose that consistency must 
be imposed when the data are delivered at the service level and that data banks should con- 
tain the appropriate service programs. It is better to accumulate bases of kinetic data in 
a "raw", inconsistent form. 

PROBLEM OF INCONSISTENT DATA 

We now present some results from an analysis of the consistency problem for the kinetic 
constants of the specific system (7). Taking the basis constants ADS , corresponding to Eq. 
(20) and the numbers of the elementary reactions from Eq. (7) 2, 3, 4, 7, ii, and 14, 
using Eq. (9) and the kinetic data from [16], we have calculated the remaining Aps for s = i, 
..., 30 with s # 2, 3, 4, 7, ii, 14. Part of the results are listed in the Tabie. A com- 
parison of the computed and published data indicates that for s = i, 5, 9, and 26 the ranges 
of variation of the constants derived from Eq. (9) and the Table [16] have a nonempty inter- 
section, while for s = 8, 15, 20, and 30, they do not overlap. This indicates that self-con- 
sistency is lacking in part of the kinetic data given in [16]. 

The traditional approach to using thermodynamic data in the formulation of kinetic 
models consists of the following: for all s the rate constant for the reverse elementary 
reaction k~ is expressed in terms of ks + and the equilibrium constant K s . Here half of the 
kinetic data are lost; the entire block of k~ is unused, but these parameters could be found 
in independent experiments. In this approach perhaps, in particular, an important manifes- 
tation of the inconsistency of the data may be lost in the framework of the model assump- 
tions that are used. 

Examples of differences between ks+/ks - and K s for experimentally determined constants 
are well known [24, 25]. The reasons may be many: neglect of some intermediate substances 
and fast reactions, significant deviations from a Maxwell--Boltzmann velocity distribution 
for the molecules, etc. Identifying inconsistency among the constants is important informa- 
tion on the system (assuming that the initial data are sound). 

Procedures for establishing consistency make it possible to reduce arbitrariness in the 
initial data and to construct a physically correct kinetic model, as well as to identify 
cases of inconsistency. The answer to the question of what causes this inconsistency (the 
physicochemical peculiarities of the system or inaccuracy in evaluating the errors of the 
methods being used to obtain the constants) must be found in each specific case from addi- 
tional considerations. 
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ELECTRICAL CONTACT PROCEDURE FOR RECORDING x, t-DIAGRAMS 

N. I. Kurakin, V. V. Danilenko, 
and N. P. Kozeruk 

UDC 531.761 

In performing different gas dynamic studies the problem often arises of measuring the 
free surface velocity of projected bodies or the shock and detonation wave (SW, DW) veloci- 
ties. The electrical contact procedure is the most used method for these purposes. With 
its use a record is made of the instant of closing wire or foil contacts with any surface 
(body, screen). The value of velocity sought is found as a result of treating x, t-diagrams 
of movement for the surface or wave being studied. In this work a short description is 
given of a modified electrical contact procedure developed by the authors for recording 
detailed x, t-diagrams using a miniature multicontact sensor. 

Normally in measuring devices use is made of quite massive tubular sensors with screens 
protecting the contacts from premature closure by an air SW. Sensors of different levels 
are placed in different locations beneath the surface of the flying body (e.g., a plate), 
and therefore the measurement accuracy is affected by the shape of the surface closing the 
contacts (e.g., deviation of the plate surface from being flat in the measurement zone). 
Oscillation of the amplitude and duration of electric pulse fronts obtained with closure of 
contacts also reduces measurement accuracy. 
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