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"To sleep: perchance to dream: ay, there's the rub..."

William Shakespeare - To be, or not to be (from Hamlet 3/1)

Brain

Dynamical system
High dimensional

Reacts to stimulation

Memory is our imagination about past



1. Introduction. Framework

M. Hirsch, B. Baird, "Computing with dynamic attractors in neural networks", Biosystems 34, 173-195 (1995).

“We view a computational medium as a set of structurally stable input-output subsystems which can be
coupled in various ways into a larger system. By ‘structurally stable’ we mean that the dynamical
behavior of each subsystem is largely immune to small perturbations due to noise or parameter
changes. We assume that the dynamics of each subsystems is organized into attractor basins; the
attractors can be stationary, periodic or chaotic. As the overall system evolves in time, each subsystem
passes through a sequence of attractors, some function of which is presented to the observer as the
‘output’ of the system. These sequences of attractors are the ‘computation’of the System”.

Computing with Trajectories (l. Tsuda)

From the mathematical point of view, .... orbits linking attractors are important. But there is no reason
to stop at this point. The attractors are, strictly speaking, never reached and must be unstable in certain
directions, so it is equally justified to speak of orbits that link, or connect, other orbits. What is the role
of attractors at all? A probable answer is that a high-dimensional system can only perform effective
computations if it behaves like a lower dimensional system. Chaotic itinerancy achieves this by
permitting the orbits to enter the vicinity of attractors, thereby significantly reducing the dimensions.
However, generalizing the same idea, there is no reason why it should not be possible to obtain other
kinds of ‘piecewise low-dimensional systems’ which are based entirely on transients, and correspond to
computations with trajectories distant from attractors.



1. Introduction. Framework

Informal description of such processes by |.Tsuda: “attractor ruins” and “chaotic itinerancy”



1. Introduction. Framework

/ Winner-less competition in neuroscience \

(Rabinovich, 2006)
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Figure 1. Schematic representation of a stable heteroclinic
channel. The SHC is built with trajectories that condense in the vicinity
of the saddle chain and their unstable separatrices (dashed lines)
connecting the surrounding saddles (circles). The thick line represents
an example of a trajectory in the SHC. The interval ty.,—ty is the
characteristic time that the system needs to move from the metastable
state k to the k+1.

M. Rabinovich et al. 2008, PLOS Comp. Biology



1. Introduction. Problem

Phenomenon (postulates)

* A high-dimensional dynamical system evolving on a compact set
* Trajectories do not settle on any attracting sets of lower dimension (“dreaming”)

* Yet, it interacts with environment; Sensitive to small perturbations (“reduces” its
dimension, “ghosts”)

e Computes something or makes decisions

Problems

* Mathematical definition of “attractor ruins” ?
* Machinery of analysis for these objects ?
 Constructive approaches for modelling ?

* Analysis of computational power of such machines ?



2. Concepts. Definitions

Let A be a subset of R", and V(A, <) be its e-neighborhood

1. Original system Yoo x= f(t,x,u)

f:RxR*xR™— Rt -continuous

u e R™ is the vector of inputs

2. A companion system S s s sl < A
(perturbed) Yo = f(txu)+0(1), [0~ <

Without loss of generality we can assume that the state of the system
evolves on a compact (and that the systems are forward-complete)



2. Concepts. Definitions

Definition 1 (Delay time) Consider a solution x(t,xq9) of system Y passing through
' eV(Az) att.
1) The function T* (2", V(A, <))
TH( U, V(A e)) =sup{t —t', t = t" | x(r,2") e V(A,e) V 7 € [/, 1]}
t
is the delay time of x(t,20) in forward time in V(A, <) at (2, t").

2) The function T~ (2',V(A,¢2))
T (2"t V(A,e))=sup{t' —t, t <t' | (1, 2") e V(A, o) ¥V T € [t, 1]}
t

is the delay time of x(t,x¢) in backward time in V (A, <) at (2, 1').

- L ol P Y - . T+ _,r ~ o
maximal ZUET (@1, V(4.€)), inth (2., V(A,¢)) mlnlmal
delay times sup T (2 1/, V(A,£)), inf T~ (2,1, V(A, ) delay times
x' b’

't



2. Concepts. Definitions

Definition 2 (Inducible Delay time) Let 2(t,20.0) be a solution of system Xa.
1) The function Ty (2',V(A, <)):

T V(A 2) = sup  sup{t—t, t >t | x(r,2",0) e V(A,e) ¥V 1 € [, 1]}

5, [5(0)]|o<A

is the inducible delay time of x(t,xq) in forward time in V(A, =) at (2/,t).

2) The function Ty (2", V(A,z))

my

Tyt V(A e) = sup sup{t' —t, t <t'| z(1,2",0) e V(A,2) ¥V 7 et t]}

5, [5(t)]|0<

is the inducible delay time of x(t,xq) in backward time in V(A, <) at (2'. 1)

m




2. Concepts. Definitions

Definition 3 (A-invariance) Let A € Rog € Rog be given.
1) A set A is A-positively invariant if

T2 V(A 0)) =00, Vo' e A
2) A set A is A-backward invariant if
Tyt V(A 0)) =00, V2’ € A

3) A set A is A-invariant if it is both A-positively and backward invariant




2. Concepts. Definitions

Definition 4 (Pulling sets) A set A is called pulling with respect to a set U iff for all
' e U there exists t > t':
r(t,x') e A

Definition 5 [Ghost attracting set] A A-positively invariant set A is called an (s, A)
ghost attracting (or simply ghost attracting) iff
1) there exists a set U of positive measure and = € R such that V(A, <) is pulling
with respect to U ;
2) V(A,¢2) is not positively invariant (admits T3-slow relazations);
3) for every x' € U there exists a function o, : R — R™, |[0,(1)]|.c < A such that
lim dist(x(t, 2", 0,), A) = 0.

t—oo

Set U is the basin of attraction of A.

An (£, A) ghost attracting set is an (s, A) ghost attractor iff the omega-limit set of
x(t, 2, o) coincides with A for all 2’ € U.



2. Concepts. Definitions

let {z;}2; be a converging sequence of non-negative real numbers: lim;_..s; = 0. A set

A which is (£;,0) ghost attracting for all =; is weakly attracting.

Let A be a (weakly) attracting set. We say that A is s-persisting if for some ¢ € R

and sufficiently small A € Ry the set V(A, =) is not a (=, A) ghost.

[
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3. A minimal problem and first results

Problem: to be able to detect and describe mathematically creation of an attractor
located on a dense trajectory ...




3. A minimal problem and first results

If the model is a system of ODE’s ...

motions in the higher-dimensional set = = f(x, A\, t) fR"xRxR— R",

. . . ) \ T R"xRxR—R
motions in the low-dimensional set A =gz, A1), g o

Assumption 1 The function f(-,-,-) in (6) is locally Lipschitz in = and \ uniformly in

=

c

L© w '

e E t, and there exists V : R* — R, V € C! such that

£ R

= L a(lzl) < V(@) < a(z]), 0, &€ Ku

E 8 (F_)-Lfr - ' i '

< 55 (@A 1) = a(V(z) + B(V(2))e(|A]),

oo T

T a, 3 € C[0, %), a(0) = 0,4(0) = 0, ¢ € K.

ch Assumption 2 The function g(-,-,-) in (6) is locally Lipschitz in = and X\ uniformly in
-2 %D t, and there exist 6,& € K such that the following inequality holds for all z € R"™, t € R:
g 5

= % —&(AD) = o(l|z]) < g(z,A,t) <0V A=0.

=

o

—



3. A minimal problem and first results

From: Gorban, Tyukin, Steur, and Nijmeijer (submitted)

Lemma 1 (Boundedness 1) Let system (6) be given and satisfy Assumptions 1, 2.
Suppose that there exist a function

U: e KncH0,o00)

and a positive constant a € Ry such that

ou(V)
1%
Then the domain

a(V) + BV)o (V)] +8 (a7 (V) + £ (V) <0, ¥ V € [0,a]

Qo ={(z,A) | z € R", A€ Rsp, ¢¥(a) = A =¢(V(x)), V(z) €10,d]}
is forward invariant with respect to (6), and furthermore

3N €[0,¢(a)] : tlim_ A(t) =N,
and

lim g(x(t), A(t).t) = 0.

t—o0



3. A minimal problem and first results

Figure 2: Illustration of the proof of Lemma 1.

dv/OV = 0 it is always pointing in the direction of A < (V).
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Panel a: boundary A = (V).
vector (Ov/dV,—1) is a normal vector to the curve A = ¢(V) at the point A. Because

Y

The

Panel b: boundary

A = const. Because A < 0 for all A > 0 the vector (dV,d\) is pointing in the direction of

A= P((V).
?:gzﬂxkﬂ Tiv_i <0, ¥VVe mjL;>
A=y(V)
\ = glx, A1)
Cjﬁ; V(@) + BV (@) (1AD] + (] ]) + £(A)

A=4(V (2))



3. A minimal problem and first results

The same approach can be used to specify domains from with the trajectories
necessarily escape...




3. A minimal problem and first results

From: Tyukin, Steur, Nijmeijer, and van Leeuwen (SIAM Journal on Control and Optimization)

If the model is NOT a system of ODE’s ...

Sa
contracting
Sw &@
wandering, searching
Contracting : S, : ||X(t)||A < ﬁ(”x(to)”A t—1o) + CHua(t)”oo,[tg,t]
t t
ssearching”s 8, [ u{ua(r)r < hiafte) - Wa(t) < [ (ua(r))dr
to to

Yo(a - b) < yo1(a) - Yo,2(b)

erconnected s ["ay(Jx(r)] dr <hla(ts)) ~ A(a(t) < | allx(r) L)



3. A minimal problem and first results

Separable contracting dynamics

x4 < [1x(Eo)l 4 - Be(t = to) + ¢ - [|(2(7, 20))|oo, 10,

With Lipschitz nonlinearity in the searching part

[70(8)] < Do~ [s]

/t'}’1(|IX(’T)IIA)GPr Sh(Z(to))—h(Z(t))S/t o(l[%(7)]| 4)d.

Lemma 2 (Non-uniform Small-Gain) There is a trapping region if the following holds

Df},:‘o'C‘g(l,

o209 r (- 2)

forsome d€(0,1), k € (1,00)

with
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Standard approaches

1) domains of attraction — neighborhoods
2) for autonomous systems implies stability

[ (ol = o

e(ta)] =

|x(ti)]| =
Given: sequence of time instances ti
Prove: sequence of distances does not increase (i.e.

converges)

Mathematical framework

e contraction mapping theorems
e method of Lyapunov functions
e small-gain theorems

20



Standard approaches

1) domains of attraction — neighborhoods
2) for autonomous systems implies stability

I (to)| = o

C—K e (e) =

A
’} e (E] =

Given: sequence of time instances ti

Prove: sequence of distances’® does not increase (i.e.
converges)

Mathematical framework

e contraction mapping theorems
e method of Lyapunov functions
e small-gain theorems

Possible unstable convergence

An asymptotically convergent trajectory that
does not reach the target set in finite time ...

1) lim,_,, o, =0

2) 2 =*

21



Standard approaches

Proposed

22

1) domains of attraction — neighborhoods
2) for autonomous systems implies stability

I (to)| = o

C—K e (e) =

’ e(td] =

Weak attracting sets, concept of Milnor attracting sets

1) domains of attraction — sets of positive measure
2) possible to analyze unstable systems

X(to) € Qpo

x(tq) € Q1

/—\x (ti)e
| Q] AT
Given: sequence of time instances ti Prove: sequence of partial sums ti diverges
Prove: sequence of distances does not increase (i.e. . . :
q g ( Given: sequence of distances i

converges)

Mathematical framework

e contraction mapping theorems
e method of Lyapunov functions
e small-gain theorems

Mathematical framework

e Non-uniform small-gain theorem




4. Model. Design principles

There is a transitive low-dimensional invariant set (maximal attractor)
This attractor can broken into the smaller ones by “external perturbations”

Slight perturbation leads to that no other attractors emerge, but there are ghost
attracting sets

Basins of attraction of these ghost attracting sets do not have common points with
that of the resting state




Higher-dimensional,

contracting

4. Model. Diagrams, Equations and Parameters

p?
EC}Z o »

P :_Tp(pi —0)

g, = _Tq[qi - g(pi'Wivki)(ZN:Cj¢(y_Hj) +o(U, _eu,)j]i

7,,7,€R,, 6,0, €[01], weR, keRy,

X=2(Xx+Yy-X(X*+Yy?)
y=2z(x—y-y(x* +y?),

=yKZl— f(qi)co(y—ei)jw} SR,

exploring

g(pw i) :l+Wi taﬂh(ki pi); §D(Z) = e_z2

Low-dimensional,

Important Parameters of the model

III

scan”: T

“Relaxation” constants Maximal time of ful

Px x() Xi



4. Model. Input-induced memory diagrams

Ghost Attractor

X0

Autonomous behavior Resting state Input-induced trajectories



4. Model. Input-induced memory diagrams




4. Model
X=2z2(X+y-Xx(X*+Yy%)
y=2(x=y-y(x* +y?),

P =-7,(p )
z :7{[21— () ¢(y—«9i)j+5}, SeR,

e g(pi’Wilki)( 2 c;p(y—0;)+o(u _eu,)J]’

7,7, €R, 6,6, €[01], weR, keR,,

9(p;, ;) =1+w; tanh(k; p;); (0(2):6_22 Y

What predictions can we make ? (depending on the parameters)

* existence of memory
* illusions
* limitations of active (supra-threshold) memory
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4. Model. Properties (3-node system)

Observed behavior
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4. Model. Properties

1. There are “active” and “non-active” ghost memory states
2. The number of “active” memory states is dependent on the strength of coupling

3. Recently induced memory state may “erase” ghosts that were induced earlier

Conjecture . The model is computationally universal, i.e. it reproduces programs which a
Turing machine with finite number of states can produce over a finite number of steps.

Idea of the proof:

Model = Asynchronous Hopfield Networks = Universal computations




5. Discussion

Extension to tori (point-ghosts = orbit-ghosts) leads to

“Neurolocator” (Kryukov, 2006)

@
Ve
(x0)  (x0)

Models of memory and attention

Oscillatory memory (R. Borisyuk and Y. Kazanovich)
1999, 2003, 2006, and Biological Cybernetics, 2009

Instantaneous Frequency (Hz)

56 58 60 62 64 66 68 70 72 74
Time (sec)

Fig. 2 Instantaneous frequency of the CO and POs as a function of
time. There are two groups of POs and the natural frequencies of POS
of one group are distributed in the interval [5, 10] and of another group
in the interval [20, 25]. The frequency of CO “jumps™ from the fre-
quency range of one group of POs to the range of another, temporally
synchronizing most oscillators in the “selected” group



6. Conclusion

Mathematical modelling of the brain is considered from the view point of
dynamical (and controlled) systems. High-dimensional, evolving on (to) a transitive
set, and “reducing” its complexity in response to stimulation

A novel concept of computation with ghost attractors has been presented. Our
formal definition of ghost attractors is constructive. The concept unifies earlier
frameworks (computing with attractors, Hirsh, or trajectories, Tsuda) and offers a
resolution to the debate about which framework is better suited as a model of
brain computations

A mathematical formalism is developed to study emergence of weak attractors in
a class of systems described as an interplay between contacting higher-
dimensional an exploring low-dimensional components

We presented a simple model realizing these features. Surprisingly, the model has
certain computational universality (as the Hopfield nets do) and is operationally
similar to more biologically plausible models such as neurolocator



