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Hastie-Stuetzle principal curves

Hastie-Stuetzle principal curves:
Definition

A smooth non-intersecting curve
m : I → Rp is called a principal curve if it is
self-consistent, i.e.

E(x|ηm(x) = η) = m(η) for a.e. η ∈ I .

ηm(x) is hereby the projection index of x
onto m.

Relationship to principal components

If the HS principal curve is linear, then it is a principal component.
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Core idea: Tangent approximations to principal curves
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Basic idea: Model tangents instead of the principal curve
(Tangents are local linear approximations)

However: Tangents as difficult to obtain as the principal curve

Locally the principal curve is close to being linear
 not too different from a “local” principal component

Approximate the principal curve by a series of
“local” principal components
(some sort of tangents)
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Core idea: some more details
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We have to . . .
1 split the principal curve into pieces, and
2 compute the principal component of the data corresponding to

each part

Can be done with a k-means-like algorithm by repeatedly
iterating . . .

1 Allocate each observation to the closest segment
2 Compute the principal component for each segment

Important questions:

How many segments?
Which initial values?

 Start with global principal
component and recursively split
(and combine) partitions.
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The algorithm

Algorithm

Iterate until convergence . . .

1 If necessary split some of the partitions.

2 If possible combine neighbouring partitions.
3 Update the partitions and local principal components by

iterating
1 Allocate each observation to the closest segment
2 Compute the principal component for each segment
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Splitting partitions (step 1)

Very much like CARTs the algorithm tries at every stage to split
every partition.

Enough to split each partition P
in the middle, i.e.
L := {i ∈ P : (xi − x̄P)′γ̂P

1 ≤ 0}
R := {i ∈ P : (xi − x̄P)′γ̂P

1 > 0}
(γ̂P

1 is the first principal component
in P, x̄P the centroid)

x

γ1

Only retain splits for with the goodness

|L| · λ̂L
1

λ̂L
1+λ̂L

2

+ |R| · λ̂R
1

λ̂R
1 +λ̂R

2

|P| · λ̂P
1

λ̂P
1 +λ̂P

2

> GS

(
λ̂P

1

λ̂P
1 +λ̂P

2

is the variance proportion of the first principal component)
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Combining neighbouring partitions (step 2)

Check for each neighbouring partition whether they can be
combined. (Two partitions L and R are neighbours if at least one
element of L has R as second-closest segment (and vice versa).)

Use the criterion gL,R from above. Combine partitions with
gL,R < GC .

It might be beneficial to “enforce” a certain number of splits.

(Not much of a problem as they can be undone by the algorithm by

combining partitions)
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A simple example
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Pros and Cons

Pros

Simple and fast algorithm

Straightforward generalisation to r -dimensional manifolds in
p-dimensional space

Discontinuity allows avoiding the problem of “warping”

Straightforward to deal with missing values

Cons

Heuristic approach (but can be motivated as “hard” version of
a MLE to a mixture problem)

Discontinuous approximation to the principal curve/manifold
 interpretation more difficult
 high variance

Tangent approximations to principal manifolds
Ludger Evers

Local principal components as tangent approximations
Application to regression problems: Projection trees

Projection trees as weak learners



Pros and Cons

Pros

Simple and fast algorithm

Straightforward generalisation to r -dimensional manifolds in
p-dimensional space

Discontinuity allows avoiding the problem of “warping”

Straightforward to deal with missing values

Cons

Heuristic approach (but can be motivated as “hard” version of
a MLE to a mixture problem)

Discontinuous approximation to the principal curve/manifold
 interpretation more difficult
 high variance

Tangent approximations to principal manifolds
Ludger Evers

Local principal components as tangent approximations
Application to regression problems: Projection trees

Projection trees as weak learners



Example: Photon counts

Objective: Estimate physical properties of stars based on
photometric data (photon counts for 16 frequency/colour
bands)

Model to be used to a catalogue of every object in the sky
brighter than V=20 (GAIA satellite to be launched in 2011)

We will focus on the prediction of the temperature (others a
lot harder).

Photon counts known to lie in a lower-dimensional manifold.

We will use five four-dimensional hyperplane segments to
approximate the manifold.
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Results

1st PC
2nd PC

3rd PC

Coverage RC of

0.8325 = 1− Residual sum of squares of the k-segments model
Residual sum of squares of the principal components
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Local dimension reduction of the covariate space

Situation: Supervised problem with large covariate space

Use k-segments for local dimension reduction (“principal
manifold as regulariser”)

Simple idea: Fit a regression / classification model in each
segment

“Soft thresholds”, i.e. all data used is in each segment,
however using weights:

Weight of the i-th observation for the k-th segment:

wik = exp(−ρd2
ik)

(dik distance of the i-th observation from the k-th segment)

Benefit of soft thresholds: Continuous prediction
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Example: photon counts (ctd.)

L1 loss (relative to constant model)
training error validation error

Linear model in each partition 458.65 (7.8%) 475.03 (7.4%)
Gaussian SVR in each partition 237.43 (4.1%) 254.16 (4.1%)
(Global Gaussian SVR) 402.08 (6.9%) 411.91 (6.4%)
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Should we really use the local principal components?

We want to do supervised learning. Should we then use an entirely
unsupervised method for (local) dimension reduction?

Recall the objectives of dimension reduction.
1 Project data onto lower-dimensional manifold / subspace . . .
2 . . . under preservation of the relevant structure

Rationale for using principal components:
Variance = Information

But do we have
Variance = Information relevant to us ???

Principal components and manifolds to a good job for
objective (1). Objective (2) is not at all guaranteed.

Example microarray data: Main source of variability usually
some sort of contamination.

 Maybe there are better projection directions.
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Overview of possible projection direction (not exhaustive)
Comparison of different sequences of directions γ j to extract tj = Xγ j

Principal components

γPC
j = arg max

‖γ‖=1,γ′CγPC
ν

Var(Xγ).

Regularisation. Use of the manifold structure. No use of the response y.

PLS

γPLS
j = arg max

‖γ‖=1,corr2(Xγν ,Xγ)=0

Cov(y,Xγ) = arg max
‖γ‖=1,corr2(Xγν ,Xγ)=0

corr2(y,Xγ) · var(Xγ)

Regularisation. Use of the manifold structure. Use of the response y.

Least-squares regression

γLS
1 = arg max

γ∈Rp ,‖γ‖=1

corr2(y,Xγ).

No regularisation. No use of the manifold structure. Use of the response y.
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An illustrative example: sine wave on a circle in R2

using principal components using PLS directions
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Some more details on PLS

PLS was first proposed in psychometrics

Stone & Brooks (1990) showed the important property that
the projections maximise covariance between X and y (holds
for the original algorithm only if y ∈ R)

Many different PLS methods with some different degree of
equivalence

SIMPLS: Objective

X ∈ Rn×p and Y ∈ Rn×q. Extract scores tj := Xwj and uj := Yvj

such that

1 Orthogonal tj : t′jtk = 0 for j 6= k.

2 Normalised weights: ‖wj‖ = ‖vj‖ = 1.

3 Maximal covariance: cov(tj ,uj) = w′
jcov(X,Y)vj

!−→ max.
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Some more details on PLS (ctd.)

The SIMPLS algorithm

1. Set S0 := S = X′Y.

2. For j = 1 . . . , r :

i. Compute wj (first left singular value) and vj (first right singular
value) from an SVD on Sj−1.

ii. Compute the scores tj := Xwj .

iii. Compute the loadings pj :=
X′tj
t′j tj

.

iv. Set Sj := S− Pj(P′
jPj)

−1P′
jS.

3. Set Br := (WrW′
r )X

′Y.
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Another example from astronomy
Objective: Predict radial velocity of a galaxy given its east/west
position and its radial position

ea
st

.w
es

t

−2

−1

0

1

2

radial.position 1500

1600

1700

velocity

−2

−1

0

1

2
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Another example from astronomy (ctd.)

Training set Test set
L2 error (sd) L2 error (sd)

Using principal components 1642.00 (578.4) 1758.44 (615.5)
Using PLS directions 511.42 (79.3) 577.05 (101.9)
MARS 2965.64 (334.7) 3738.76 (494.7)
GAM 3027.14 (321.6) 3554.26 (385.5)
PPR 2207.73 (622.0) 3317.94 (820.7)

(Data set split into a training set of 162 observations and a test
set of 161 observations.)
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Comparison with CARTs
PLS projection trees

Partitioning implied by
projections onto line
segments

Use of structure in the
covariates

 low variance, high bias
(ideal weak learner)

CARTs

Partitioning implied by
cuts parallel to the axes

No use of structure in the
covariates

 high variance, low bias
(needs to be heavily shrunken
to be a weak learner)
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Boosting: Idea

Aggregates weak learners to form a powerful “ensemble”
(reducing the bias).

Weak learner: Method with low variance but high bias
(“primitive method”)

Essentially an additive model where the model is fitted several
times using changing weights.

Can be seen as some sort of coordinate descent in a function
space.

Empirically known to be rather resistant against overfitting
(can be interpreted as some sort of large margin method)

Usually shrunken stumps (usually multiplied by a factor
< 10−3).

Are PLS projection trees better weak learners?
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L2 boost algorithm

1. Fix a maximal number of iterations hmax .

2. Set F̂ (0) ≡ 0.

3. Iterate for h = 1, . . . , hmax :

i. Compute the current residual ε
(h)
i := yi − F̂ (h−1)(xi ).

ii. Compute estimator f̂ (h)(xi ) using the current weights ε(h) as
regressand.

iii. Set F̂ (h)(x) := F̂ (h−1)(x) + f̂ (h)(x).
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Simulated Example

50 observations with 10 covariates xi ,1, . . . ; xi ,10 ∼ U(0, 1) and
(εi ∼ N(0, 0.22))

yi =
5∑

j=1

xi ,2j−1 · xi ,2j · sin(xij) + εi

Training set Test set
L2 error (sd) L2 error (sd)

Boosted PLS trees 0.87393 (0.195) 1.33154 (0.185)
Boosted stumps 0.63020 (0.147) 1.69423 (0.189)
MARS 0.78294 (0.303) 1.99869 (1.037)
GAM 0.76840 (0.204) 1.66810 (0.441)
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Summary

Presented a simple method to approximate principal manifolds
by hyperplane segments.

Proposed alternative directions to the principal components
for supervised settings (namely the PLS direction)

Leads to a “projection tree” algorithm

Hopefully serves as an inspiration for methods combining
regularisation using principal manifolds and supervised
learning.
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Thank you.
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