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Additive generalization of the Boltzmann entropy
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ETH Zürich, Department of Materials, Institute of Polymers, ETH-Zentrum, CH-8092 Zu¨rich, Switzerland
~Received 21 June 2002; published 27 June 2003!

There exists a unique extension of the classical Boltzmann entropy functional to a one-parametric family of
additive trace-form entropy functionals. We find the analytical solution to the corresponding deformation of the
classical ensembles, and present an example of the deformation of the uncorrelated state caused by finiteness
of the number of particles.
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I. INTRODUCTION

The growing interest in nonclassical entropies in rec
years@1,2# is motivated by the fact that they can be used
describe observable statistical effects such as the follow

~i! Nonclassical tails of distribution functions which ca
deviate significantly from the Gaussian distribution. In p
ticular, this asymptotics can be power law~‘‘long tails’’ ! or,
instead, distribution functions can decay in a more ra
fashion~‘‘short tails’’ !, in particular, they can become equ
to zero at finite distance~‘‘cut tails’’ !.

~ii ! Strong correlations between subsystems in equi
rium and quasiequilibrium states.

The entropy-based description of these effects in the s
of the Gibbs ensembles is advantageous both in static
dynamic problems. For the latter~dynamic! aspect, we refer
here to a vast literature on theories of nonequilibrium sta
tical thermodynamics~see, e.g., Ref.@3#!, as well as entropy-
based kinetic modeling@4#.

Usually, when one attempts to introduce nonclassical
tropies, there is a price to be paid. Nonclassical entropie
use in most of the contemporary studies violate at least
of the following important and familiar properties of th
Boltzmann-Gibbs-Shannon~BGS! entropy: ~i! Additivity—
the entropy of the system which is composed of independ
subsystems equals the sum of the entropies of the
systems,~ii ! trace form—the entropy is a sum over the sta
~see below!. For example, the Tsallis entropy@1# is not ad-
ditive, the Re´nyi entropy@5# is not of the trace form. A usefu
discussion of various properties of the entropy can be fo
in Ref. @6#.

Recently @7#, it was indicated that there exists a on
parametric family of concave entropy functions which sati
both the conditions~additivity and trace form! simulta-
neously. This family is essentially the linear convex com
nation between the Boltzmann entropy and the so-ca
Burg entropy~cf. Ref. @7#!. While the existence of such
family of additive entropies was eventually mentioned so
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time ago@8#, the result of the paper@7# indicates that it can
be most pertinent to a unified study of systems out of
strict thermodynamic limit.

The finding of the present paper is that the solution to
maximization problem pertinent to this class of entropies
actually tractable analytically almost as efficiently as t
classical Gauss distribution.

The structure of the paper is as follows. In Sec. II, w
describe the one-parametric family of additive entropies@7#
for the sake of completeness. In Sec. III, we demonstrate
the maximum entropy problem for the family of entropies@7#
reduces to studying of one function of one variable. T
result enables the analytical formulas for the deformation
the classical ensembles around the thermodynamic~BGS!
limit in Sec. IV. An example of such a deformation of th
classical uncorrelated ensemble of the configuratio
N-body distribution function is discussed in Sec. V. Conclu
ing remarks are given in Sec. VI.

II. ADDITIVE TRACE-FORM ENTROPIES

For the sake of presentation, we consider a finite se
states characterized by the probabilitiespi ~finiteness and
discreteness are by no means the crucial restrictions, and
employed only in order to avoid the convergence questio!.
We consider systems which allow for a positive equilibriu
pi* .0 ~for infinite systems, it is often advantageous to u
unnormalizedp* ). Then, any convex function of one var
able, h(x), defines thetrace-form convex function of the
probability distributionHh(p):

Hh~p!5(
i

pi* h~pi /pi* !. ~1!

@We consider below the convexHh functions rather than the
concave entropy functionsSh52Hh . The variety of the
convex functions~1! was viewed in Refs.@7,8# as a set of
Lyapunov functions of the master equation withp* the equi-
librium, but this is not essential to our present discussion#

Among the set of the trace-form functions~1!, there exists
a one-parametric subset of theadditive functions, Hb , 0
<b<1:
©2003 The American Physical Society04-1
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Hb5(
i

pi* hb~pi /pi* !,

hb~x!5~12b!x ln x2b ln x. ~2!

In particular,

H05(
i

pi ln~pi /pi* !, ~3!

H152(
i

pi* ln~pi /pi* !. ~4!

The functionH0 is the BGS entropy~also, in the form pre-
sented, sometimes referred to as the Kullback-Leibler
tropy for the reference equilibrium explicitly indicated!. The
function H1 is the Burg entropy forp* as the equipartition,
in the present form first given in Ref.@8#, to the best of our
knowledge. Additivity of functionsHb ~2! is readily checked
@7,8#: If p5pi j 5qir j , and alsoif p* 5pi j* 5qi* r j* , then

Hb~p!5Hb~q!1Hb~r !. ~5!

In order to avoid a possible confusion caused in a var
of ways, the notion of additivity of the entropy is used
current literature~see, e.g., Ref.@9#!, and we note that the
additivity of family ~2! is understood in the traditional sens
that is, the usual statistical independence~factorization of the
distribution! impliesEq. ~5!. Though we do not prove it her
rigorously, the argument why family~2! represents all of the
additive functions of the trace form~1! ~up to a constant
factor and adding a constant! is readily available: Treatmen
of the additivity condition,Hh(qr)5Hh(q)1Hh(r) as a
functional equation in order to determine the functionh re-
sults in averaging of the vector function lnqir j ; this can be
done either with the joint probabilityqr ~which leads to the
BGS case! or with the equilibrium joint probabilityq* r*
which leads to the Burg case. The rest follows by convex
of their combination. Note that the second possibility~aver-
aging with q* r* ) is not mentioned in many sources~for
example, the classical review by Wehrl@6#! because Burg’s
entropy is not continuous if some of the probabilities tend
zero. This is, however, one of the possibilities to account
finiteness~see below!.

III. THE MAXIMUM ENTROPY PROBLEM

Since a factor in front ofHb is irrelevant, it proves con-
venient to use a different parametrization of family~2!, Ha ,
a5b/(12b), a>0:

Ha5(
i

@pi ln~pi /pi* !2api* ln~pi /pi* !#. ~6!

Parametric representation~6! will be used below. The limit-
ing casea→` corresponds to the pure Burg entropy~4!, and
it should be considered separately.

The major input into all the applications of the entro
functionals in statistical physics is the description of t
06710
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quasiequilibria. Quasiequilibrium is the probability distrib
tion which brings to maximum the entropyS(p) at fixed
values of the slow variables~their choice depends on th
physics of a given problem!, M5m(p):

S~p!→max, m~p!5M . ~7!

In order to address the construction of the quasiequilibri
in a general setting, we assume the macroscopic varia
M5m(p), whereMs5( imsipi , and consider problem~7!
with S52Ha . The method of Lagrange multipliers implie

]Ha

]pi
5l01(

s
lsmsi , ~8!

where Lagrange multiplierl0 corresponds to normalization
andls to the rest of the constraints. Let us denote2L i the
right hand side of Eq.~8!. With this, Eq.~8! may be written,

ln~pi /pi* !2a~pi* /pi !52L i . ~9!

The solution to an equation

ln q2aq2152L ~10!

may be written as follows:

q5e2Lelm(aeL), ~11!

where we have introduced notation lma ~modified logarithm!
for the function which is the solution to the transcende
equation,

xex5a.

The function lm satisfies the following identities:

lm a5 ln a2 ln lm a, ~12!

lm a5 ln a2 ln$ ln a2 ln@ ln a2 ln~••• !#•••%. ~13!

Identity ~13! is the recurrent application of identity~12!. A
different representation of solution~11! reads

q5a/ lm~aeL!. ~14!

From representation~11!, the asymptotics ata→0, and fixed
L, is obvious:q→e2L, and which corresponds to the usu
Boltzmann distribution. On the other hand, representat
~14! reveals the asymptotics atL→`:

q;a/~ ln a1L!. ~15!

For a symmetric distribution on the axis, and forL5l0
1l2x2, the first of the limits just mentioned gives the Gaus
ian distribution, while the second limit gives the Cauchy d
tribution. The corresponding distribution function for th
limiting caseH` is simply the Cauchy distribution on th
axis. We note it in passing that among nonsymmetric Cau
distributions of the formp5(l01l1x1l2x2)21, there are
distinguished cases with a twice degenerated zero in the
nominator:p5@l(x2a)#22. When one attempts to norma
4-2
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ize this distribution by choosing a convergent sequence
functions, one gets a Diracd functiond(x2a) which can be
interpreted as a microcanonical ensemble.

Thus, the quasiequilibrium distribution has the form

p5p* e2Lelm(aeL)5
ap*

lm~aeL!
. ~16!

~We have omitted indices of states inp, p* , andL.! Ana-
lytical formula ~16! is the main result of this paper. Sever
remarks are in order.

~i! We have worked out the deformation of the quasieq
librium ensembles using the dual variableL while the de-
pendenceL(M ) has been kept implicit. In general, man
folds of quasiequilibrium states are well defined in terms
dual variables~Lagrange multipliers!. What is not always
well defined for the distributions with long tails is the m
ment chart of these manifolds~Lagrange multipliers canno
be expressed in terms of moments if the latter do not ex!.
For example, the manifold of Cauchy distributions me
tioned above is parametrized by Lagrange multiplie
whereas the parametrization in terms of the second mom
does not exist. In these cases, a regularization is requ
which assumes taking into account finiteness of the phys
phase space~cf. Ref. @3#!. Other possibilities to parametriz
quasiequilibrium manifolds were worked out in applicatio
to the Tsallis entropy where one uses nonlinear functional
the distribution function~so-called escort probabilities, Ref
@2,10#!. The use of these nonlinear parametrizations, ho
ever, leads to inconsistencies when dynamic problems
addressed~cf. Ref. @11#!.

~ii ! Let us indicate a remarkable formal extension of res
~16! to a,0 @or, alternatively, tob,0 in representation~2!#
when the entropy function~6! loses convexity. Function lma
is defined, and is continuous, fora>2e21 (lma>21). At
a→2e21, we have the limitdlma/da→`. If we formally
extend lma52` for a,2e21, then Eq.~16! is a distribu-
tion with a compact support~‘‘cut tail’’ !. With this, there will
be defined a nonzero ratiop/p* :

inf$p/p* upÞ0%>uau.0, ~17!

that is, eitherp>uaup* or p50. This is similar to a Max-
well construction of a stretched spinodal~the cut at the in-
flection point!, and not to the global maximum of the en
tropy. Whereas such constructions are always neces
when working with nonconvex thermodynamic potentia
we will not further discuss the casea,0 in this paper.

IV. ENSEMBLES NEAR THE BGS LIMIT

Using Eq.~16!, it is possible to study perturbatively de
formations of quasiequilibrium ensembles near the therm
dynamic limit. For the classical BGS entropy (a50), the
quasiequilibrium distribution has the form

p5p* e2L. ~18!

To first order ina, we get
06710
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p5p* ~e2L1a!1o~a!. ~19!

The first-order deformation amounts to just a homogene
shift of all quasiequilibrium populations~see also example
below!.

In order to compute the quasiequilibrium to second or
in a, we must use the expansion of lma to third order,

lm a5a2a21~3/2!a31o~a3!.

Then

p5p* ~e2L1a2 1
2 a2eL!1o~a2!. ~20!

Further corrections can also be easily computed us
higher-order terms in the expansion of the lm. We now sh
consider a specific example of formula~20!.

V. CORRELATIONS CAUSED BY FINITENESS

In order to illustrate the effect of second-order deviatio
from the BGS case, we apply Eq.~20! to the classical qua-
siequilibrium defined by the one-particle configurational d
tribution functionf 1(r ), wherer is position variable. Assum-
ing the equipartition for the reference equilibrium,p*
51/VN, whereV is the volume of the system andN is the
number of particles, we gete2L5el0) i 51

N C(r i), where the
Lagrange multiplierl0 is responsible for normalization
Then theN-body quasiequilibrium distribution function to
second order ina reads

VNp5el0)
i 51

N

C~r i !1a2S a2Y2el0)
i 51

N

C~r i !D 1o~a2!.

~21!

Our goal now is to compute the two-body configuration
distribution function

f 2~r ,q!5N~N21!E p~r ,q,r 3 , . . . ,r N!dr3•••drN ,

in quasiequilibrium~21!. We recall that the classical resu
for the BGS entropy gives the uncorrelated two-body dis
bution, f 2(r ,q); f 1(r ) f 1(q), which also corresponds to th
limit ( a50) of Eq. ~21!. Computation to the ordera2 re-
quires expansion of Lagrange multipliersl0 and C to the
corresponding order. This computation is straightforward
though tedious, thus we give here only the final result: T
two-body quasiequilibrium configurational distribution fun
tion f 2 reads

N

N21
f 2~r ,q!5~11a1a2! f̃ 1~r ! f̃ 1~q!1an2

2
a2

2
n2BNw1~r !w1~q!1o~a2!, ~22!

wheren5N/V is the average number density, and where
have introduced notations,

f̃ 1~r !5 f 1~r !2an, ~23!
4-3
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w1~r !5 f 1~r !/n2n/B f1~r !, ~24!

B5
1

VEV

n

f 1~r !
dr. ~25!

It is readily checked that result~22! gives f 25(N
21)N21f 1f 1 at a50, which is identical with the classica
uncorrelated pair distribution.

The first two terms in Eq.~22! amount again to the un
correlated state with homogeneously shifted one-particle
tributions@ f̃ 1 ~23! instead off 1, which amounts to a homo
geneous subtraction of the average density timesa].

The underlined term~of the order ofa2) is the contribu-
tion responsible for correlations caused by finiteness. N
that this extra correlation also has a form of a product,
not of the distribution functions, rather, of functions of o
variable ~24!. In order to see the effect of this term mo
explicitly, we assume fluctuations around the homogene
density in the thermodynamic limit,

f 1~r !5n@11z~r !N21/2#, ~26!

wherez is a function with zero average, and finite amplitud
^z&50, ^z2&5s2, where we have introduced notation fo
averaging over the volume,^h&5V21*Vhdr. Note that the
amplitude of the inhomogeneity is realistic, and it scales
N21/2 in full accordance with the classical theory of fluctu
tions. Assuming large~but finite! number of particles, we
find to the leading order inN,

B511s2N211o~N21!, BN5es2
1o~1!.

Thus, specializing to the trial one-body distribution functi
~26!, the deformation to second order of the uncorrelated~in
the thermodynamic limit! two-body distribution function
reads

N

N21
f 2~r ,q!'~11a1a2! f̃ 1~r ! f̃ 1~q!1an2

22a2n2s2es2
N21u~r !u~q!, ~27!

where we have denotedu5s21z, ^u2&51.
i-
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Note that the correlations induced by finiteness of the s
tem in the present example are highly nonlinear due to
dependence of the functionw1 on the one-body distribution
f 1. For that reason, deformation of the uncorrelated s
~22! should be significant, in particular, to the correspond
derivations of the Vlasov mean-field kinetic equation fro
N-particle dynamics. This interesting problem is left for f
ture work.

VI. CONCLUSION

The one-parametric family of the additive trace-form e
tropy functions considered in this paper is a convex lin
combination of the classical Boltzmann entropy and of
Burg entropy, whereas the maximum entropy states are n
linear combinations of the Gaussian and Cauchy distri
tions ~in the case of the second moment as the macrosc
variable, and generalizations thereof for different mac
scopic variables!. This feature~trace form and additivity si-
multaneously! distinguishes the present family of entropi
among many suggestions in the recent past. We have fo
the analytic solution to the maximum entropy problem
terms of one function of one variable, which enables to stu
perturbations of classical ensembles near the thermodyna
limit. The corresponding deformation of the uncorrelated~in
the thermodynamic limit! state is established.

The asymptotic formula~15! reveals that the tail of the
distributions in this theory is parameter independent, an
always Cauchy-like whena is away from zero. This is dif-
ferent, in particular, from the Tsallis case which leads
algebraic tails with the power dependence on the Tsallis
rameterq. The present theory is explicitly focused on stud
ing perturbations to the thermodynamic limit, and this u
versality of the tails is remarkable. On the other hand
different general mechanism for nonclassical entropies
also indicated in Ref.@7#, and it is related to the incomplet
description~akin the Fermi-Dirac entropy of the electron
whole systems!. This may affect the behavior at the tail o
the distribution. In a subsequent publication@12#, we shall
study how the present entropy plus the incomplete desc
tion perform in fitting the recent turbulence data results
Beck et al. @13#.
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