AUTO-ASSOCIATIVE MODELS
AND GENERALIZED PRINCIPAL COMPONENT ANALYSIS

Stéphane Girard
* INRIA, Université Grenoble 1

Joint work with Serge Iovleft, Université Lille 1




Auto-Associative models and generalized Principal Component Analysis August 2006

Outlinel

—

. Principal Component Analysis, 2 points of view,
2. Generalized PCA, theoretical aspects,

3. Implementation aspects,

4. Tllustration on simulated datasets,

5. Mlustration on real datasets.

Stéphane Girard 1




Auto-Associative models and generalized Principal Component Analysis

1. Principal Component Analysisl

e Background: Multidimensional data analysis
(n observations in a p— dimensional space)

e (Goal: Dimension reduction.

o Data visualization (dimension less than 3),
o To find which variables are important,

o Compression.

e Method: Projection on low d— dimensional linear subspaces.
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PCA: Geometrical interpretationl

Problem
e Let X be a centered random vector in RP?.
e Estimate the d— dimensional linear subspace d € {0, ..., p} minimizing the mean distance to X.
e Minimize with respect to a', ..., a? (orthonormal):
p 2
E HX > (X,a")d"
k=1

Explicit solution
e al, ... a? are the eigenvectors associated to the d largest eigenvalues of E [ X X], the covariance
matrix of X.
e The a* ’s are called principal axes, the Y* = <X : ak> the principal variables.

e The associated residual is defined by

d
R'=X — Z<X,ak> a”
k=1

and it can be shown that HRdH < HRd_lH.
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PCA: Projection Pursuit interpretationl

Equivalent problem
e Estimate the d— dimensional linear subspace d € {0, ..., p} maximizing the projected variance.

e Maximize iteratively with respect to a', ..., a? (orthonormal):

Var [<X, alﬂ ..., Var [<X, adﬂ :
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Algorithm
o For j =0, let R = X.
eforj=1....d:

|A] Estimation of a projection axis.
Determine a’/ = arg maxE [<x, Rj_1>2} such that HajH =1 and <aj, ak> =0,1<k<y.

zERP
'P| Projection.
Compute the principal variable Y/ = <aj R _1>.
[R] Linear regression.
Determine &’ = arg min E [HRj_l — Yjaer} such that <bj, aj> = 1 and <bj, ak> =0,

rE€RP
1 < k < j. The solution is ¥ = a’, and let the regression function be s/(t) = ta’.

U] Residual update.
Compute R/ = R/~ — s/(Y7).
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Algorithm output. After d iterations, we have the following expansion:

d
X =Y s"Y"+ R, (1)
k=1

with s*(t) = ta* and Y* = <ak, X>, or equivalently

k=1
This equation can be rewritten as
F(X)=R" (2)
where we have defined ]
F(x)=1z— Z <ak,aj> a”.
k=1
The equation F(z) = 0 defines a d— dimensional linear subspace, spanned by a', ..., a®

Equation (2) defines a d— dimensional linear auto-associative model for X.
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Goals of a generalized PCA'

1. To keep an expansion similar to (2):

F(X)=R"

but with a non necessarily linear function F', such that the equation F'(z) = 0 could model more
general subspaces.

2. To keep an expansion “principal variables + residual” similar to (1):

d
X =) YY"+ R
k=1
but with non necessarily linear functions s*.

3. To benefit from the “nice” theoretical properties of PCA.

4. To keep a simple iterative algorithm.
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2. Generalized PCA, theoretical aspectsl

We adopt the Projection Pursuit point of view. The steps [A] and [R] are generalized:

'A] Estimation of a projection axis.
Introduction of an index I which measures the quality of the projection axis. For instance:
e Dispersion,
e Deviation from normality,
e Clusters detection,
e Outliers detection,...
R] Regression.
Estimation of the regression function from R to R? in a given set:
e Linear functions,

e Splines, kernels,...
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New algorithm.
e For j =0, let R = X.
eforj=1,....d:

A| Estimation of a projection axis.
| proj
Determine a’ = argmax](<x,Rj_1>) such that HajH =1 and <aj,ak’> =0,1<k<j.

r€RP
[P| Projection.
Compute the principal variable Y7 = <aj i _1>.
'R] Regression.
Determine s/ = arg min [E [}‘Rj_l — S(Yj)HQ} such that P os/ = Idg and P o s’ =0,
seS(R,RP)
1<k<jy.
U] Residual update
Compute R/ = R/~ — s/(Y7).
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Remark: At the end of iteration j, the residual is given by

R = Ri-1_g (Yj>
- R (@ R
— RI7l_ 4o = (Rj—l)
— (Idz — 8’ 0 P (RF)
= (Id]Rp —slo Paj) o (IdRp — s to Paj—l) (Rj_z)
= (Id]Rp —so Paj> 0...0 (Id]Rp —slo Pa1) (RO)
= (Idpp — s’ 0 Pyj) o...0 (Idge — s' 0 P1) (X).

Auto-associative composite model.
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Remark: The constraint P, o s/ = Idg.

e Natural constraint.

e Important consequence: At the end of iteration j, the residual is given by
R = (IdRp —s/o Paj) (Rj_l) . and thus is projection on a’ is
PR = (Paj —Pjoslo Paj> (Rj_l)
= (P;— P,) (Rj_l)
= 0.

Thus, iteration (j + 1) can be performed on the linear subspace orthogonal to (a?,. .., a’),
which is of dimension (p — j).
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Goal 1. After d iterations:

e One always has an auto-associative model

with

1
F = (IdRp — Sd o Pad) ©0...0 (IdRp — S1 o Pal) = H (IdRp — Sk o Pak;) ;
k=d
and P(z) = (a/, x).

e The equation F(x) = 0 defines a d— dimensional manifold.
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Goal 2. After d iterations:

e One always as the expansion “principal variables + residual” similar to (1):

d
X =) sfYH+R?
k=1
¥ are non necessarily linear.

and the functions s
e For d = p, the expansion is exact: RP = 0.

e We can still define principal axes a* and principal variables Y*.

e The residuals are centered: E [Rk] =0,k=0,...,d.
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Goal 3. After d iterations, we have:
e Some orthogonality properties
<ak,aj>:O, 1 <k<j<d,
(a" R7)=0,1<k<j<d
(a", s/ (Y1) =0, 1<k <j<d.

e Since the norm of the residuals is decreasing, we can define, similarly to the PCA case, the
information ratio represented by the d— dimensional model as

Qi=1-E||[R[| /var [[IX]?]
One can show that Qy =0, @, = 1 and (Q)q) is increasing.

Remark. Except in particular cases, the non-correlation of the principal variables is lost:

E[Y*Y7] 40, 1<k <j<d.
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Goal 4.

e We still have an iterative algorithm. It converges at most in p steps.
e [ts complexity depends on the two steps [A] et [R].

|A] Estimation of a projection axis.
Determine a’ = argmax](<x,Rj_1>) such that HajH =1 and <aj,ak’> =0,1<k<j.

rcRP

[R] Regression.
Determine s/ = arg min E [HRj_l — S(Yj)}ﬂ such that Pjo s’ = Idg and Pro s’ =0,
seS(R,RP)
1 <k<y.

e Note that the above theoretical properties do not depend on these steps.
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3. Implementation aspects, step [A]I

e Contiguity index. Measure of the neighborhood preservation. Points which are neighbor in
R? should stay neighbor on the axis.

M) = 3w A7) /3 me (o R - R
i=1 k=1 (=1

where M = (my,y) is the contiguity matrix defined by
mpe = 1 if R‘é_l is the closest neighbor of R‘;{_l, mye = 0 otherwise.

e Optimization. Explicit solution.
[A] @’ is the eigenvector associated to the largest eigenvalue of Vj*Vj_l, where
V}' _ ZtRi;_lR'/]g_la V}-* _ Z kaﬁt(Ri;_l . R‘é_lxR‘;{;_l . Ré_1>

are proportional to the covariance and local covariance matrices of R/,

Stéphane Girard 16




Auto-Associative models and generalized Principal Component Analysis August 2006

Implementation aspects, step [R]

e Set of L? functions. The regression step reduces to estimating the conditional expectation:
R /(v;) = E [R]Y].
e Estimation of the conditional expectation.

o Classical problem since the constraints P o s’ =Id and Pro s’ =1d, 1 < k < j are easily

taken into account in the a”* ’s basis. Step [R] reduces to (p — j) independent regressions from
R to R.

o Numerous estimates are available: splines, local polynomials, kernel estimates, ...

o For instance, for the coordinate k € {j +1,...,p}, the kernel estimate of s/(u) can be

written as
n

S(u)=> RKy(u—Y/) ZKhu—Y.J

1=1
where h is a smoothing parameter (the bandwidth).
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4. First illustration on a simulated dataset]

e n = 100 points in R3 randomly chosen on the curve z — (z,sinz, cos ).

e One iteration h = 0.3 — @Q; = 99.97%.

X Y Y Y B

=

0 1
Y

Theoretical curve Estimated 1— dimensional manifold
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Second illustration on a simulated dataset]

e 1. = 1000 points in R? randomly chosen on the surface

(z,9) — (z,y, cos(my/x2 + y2)(1 — exp{—64(2* + y*)})).
e Two iterations: Q1 = 84.1% et Qo = 97.6%.
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5. First illustration on a real dataset]

e Set of n = 45 images of size 256 x 256.

e Interpretation : n = 45 points in dimension p = 256

e Rotation : n = 45 points in dimension p = 44.
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e Information ratio Q4 as a function of d (blue: classical PCA| green: generalized PCA).

100
90
80
70
60
507
40
30

207

Stéphane Girard 22




Auto-Associative models and generalized Principal Component Analysis August 2006

e Projection on the 3 first PCA axes of the estimated manifolds

(dimension 1 & dimension 2).

830

55

=720
-1300

-2000 —2000

3000

Stéphane Girard 23




Auto-Associative models and generalized Principal Component Analysis August 2006

Second illustration on a real dataset|

e Dataset I, five types of breast cancer.
e Set of n = 286 samples in dimension p = 17816.
e Rotation : n = 286 points in dimension p = 285.

e Forgetting the labels, information ratio Q4 as a function of d (blue: classical PCA, green:
generalized PCA).
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Estimated 1— dimensional manifold projected on the principal plane.
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Estimated 1— dimensional manifolds projected on the principal plane, for each type of cancer.
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