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Topological grammars for data approximation
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Abstract

A method of topological grammars is proposed for multidimensional data approximation. For data with complex topology we
define a principal cubic complex of low dimension and given complexity that gives the best approximation for the dataset. This
complex is a generalization of linear and non-linear principal manifolds and includes them as particular cases. The problem of
optimal principal complex construction is transformed into a series of minimization problems for quadratic functionals. These
quadratic functionals have a physically transparent interpretation in terms of elastic energy. For the energy computation, the
whole complex is represented as a system of nodes and springs. Topologically, the principal complex is a product of one-
dimensional continuums (represented by graphs), and the grammars describe how these continuums transform during the process
of optimal complex construction. This factorization of the whole process onto one-dimensional transformations using minimization
of quadratic energy functionals allows us to construct efficient algorithms.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this work, we discuss a classical problem: how to approximate a finite set D in Rm for relatively large m by a
finite subset of a regular low-dimensional object in Rm . In application, this finite set is a dataset, and this problem
arises in many areas: from data visualization to fluid dynamics. The first hypothesis we have to check is whether the
dataset D is situated near a low-dimensional affine manifold (plane) in Rm . If we look for a point, straight line, plane,
. . . that minimizes the average squared distance to the datapoints, we immediately come to the Principal Component
Analysis (PCA). PCA is one of the most seminal inventions in data analysis. Now it is textbook material. Non-linear
generalization of PCA is a great challenge, and many attempts have been made to achieve it. Two of them are especially
important for our consideration: Kohonen’s Self-Organizing Maps (SOM) and principal manifolds.

With the SOM algorithm [1] we take a finite metric space Y with metric ρ and try to map it into Rm with (a) the best
preservation of initial structure in the image of Y and (b) the best approximation of the dataset D. The SOM algorithm
has several set-up variables to regulate the compromise between these goals. We start from some initial approximation
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of the map, φ1 : M → Rm . On each (k-th) step of the algorithm we have a datapoint x ∈ D and a current
approximation φk : M → Rm . For these x and φk we define an “owner” of x in Y : yx = argminy∈Y ‖x − φk(y)‖. The
next approximation, φk+1, is

φk+1(y) = φk(y) + hkw(ρ(y, yx))(x − φk(y)). (1)

Here hk is a step size, 0 ≤ w(ρ(y, yx)) ≤ 1 is a monotonically decreasing cutting function. There are many ways to
combine steps (1) in the whole algorithm. The idea of SOM is very flexible and seminal, has plenty of applications
and generalizations, but, strictly speaking, we don’t know what we are looking for: we have the algorithm, but
no independent definition: SOM is a result of the algorithm work. The attempts to define SOM as solution of a
minimization problem for some energy functional were not very successful [3].

For a known probability distribution, principal manifolds were introduced as lines or surfaces passing through
“the middle” of the data distribution [2]. This intuitive vision was transformed into the mathematical notion of self-
consistency: every point x of the principal manifold M is a conditional expectation of all points z that are projected
into x . Neither manifold, nor projection should be linear: just a differentiable projection π of the data space (usually
it is Rm or a domain in Rm ) onto the manifold M with the self-consistency requirement for conditional expectations:
x = E(z|π(z) = x). For a finite dataset D, only one or zero datapoints are typically projected into a point of the
principal manifold. In order to avoid overfitting, we have to introduce smoothers that become an essential part of the
principal manifold construction algorithms.

SOMs give the most popular approximations for principal manifolds: we can take for Y a fragment of a regular
k-dimensional grid and consider the resulting SOM as the approximation to the k-dimensional principal manifold (see,
for example, [4,5]). Several original algorithms for construction of principal curves [6] and surfaces for finite datasets
were developed during the last decade, as well as many applications of this idea. In 1996, in a discussion about SOM
at the 5th Russian National Seminar in Neuroinformatics, a method of multidimensional data approximation based
on elastic energy minimization was proposed (see [7–9] and the bibliography there). This method is based on the
analogy between the principal manifold and the elastic membrane (and plate). Following the metaphor of elasticity,
we introduce two quadratic smoothness penalty terms. This allows one to apply standard minimization of quadratic
functionals (i.e., solving a system of linear algebraic equations with a sparse matrix).

2. Graph grammars and principal graphs

Let G be a simple undirected graph with set of vertices Y and set of edges E . For k ≥ 2 a k-star in G is a subgraph
with k + 1 vertices y0,1,...,k ∈ Y and k edges {(y0, yi ) | i = 1, . . . , k} ⊂ E . Suppose for each k ≥ 2, a family Sk

of k-stars in G has been selected. We call a graph G with selected families of k-stars Sk an elastic graph if, for all
E (i) ∈ E and S( j )

k ∈ Sk , the corresponding elasticity moduli λi > 0 and μkj > 0 are defined. Let E (i)(0), E (i)(1)

be vertices of an edge E (i) and S( j )
k (0), . . . , S( j )

k (k) be vertices of a k-star S( j )
k (among them, S( j )

k (0) is the central
vertex). For any map φ : Y → Rm the energy of the graph is defined as

Uφ(G) :=
∑

E(i)

λi

∥∥∥φ(E (i)(0)) − φ(E (i)(1))

∥∥∥
2 +

∑

S( j)
k

μkj

∥∥∥∥∥

k∑

i=1

φ(S( j )
k (i)) − kφ(S( j )

k (0))

∥∥∥∥∥

2

. (2)

Very recently, a simple but important fact was noticed [10]: every system of elastic finite elements could be
represented by a system of springs, if we allow some springs to have negative elasticity coefficients. The energy
of a k-star sk in Rm with y0 in the center and k endpoints y1,...,k is usk = μsk (

∑k
i=1 yi − ky0)

2, or, in the spring
representation, usk = kμsk

∑k
i=1(yi − y0)

2 − μsk

∑
i> j (yi − y j )

2. Here we have k positive springs with coefficients
kμsk and k(k − 1)/1 negative springs with coefficients −μsk .

For a given map φ : Y → Rm we divide the dataset D into subsets K y, y ∈ Y . The set K y contains the data points
for which the node φ(y) is the closest one in φ(Y ). The energy of approximation is:

Uφ
A(G, D) =

∑

y∈Y

∑

x∈K y

w(x)‖x − φ(y)‖2, (3)

where w(x) ≥ 0 are the point weights.
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The simple algorithm for minimization of the energy Uφ = Uφ
A(G, D) + Uφ(G) is the splitting algorithm, in

the spirit of the classical k-means clustering: for a given system of sets {K y | y ∈ Y } we minimize Uφ (it is the
minimization of a positive quadratic functional), then for a given φ we find new {K y}, and so on; stop when no
change. This algorithm gives a local minimum, and the global minimization problem arises. There are many methods
for improving the situation, but without guarantee of the global minimization.

The next problem is the elastic graph construction. Here we should find a compromise between simplicity of
graph topology, simplicity of geometrical form for a given topology, and accuracy of approximation. Geometrical
complexity is measured by the graph energy Uφ(G), and the error of approximation is measured by the energy of
approximation Uφ

A(G, D). Both are included in the energy Uφ . Topological complexity will be represented by means
of elementary transformations: it is the length of the energetically optimal chain of elementary transformation from a
given set applied to the initial simple graph.

Graph grammars [11,12] provide a well-developed formalism for the description of elementary transformations.
An elastic graph grammar is presented as a set of production (or substitution) rules. Each rule has a form A → B ,
where A and B are elastic graphs. When this rule is applied to an elastic graph, a copy of A is removed from the
graph together with all its incident edges and is replaced with a copy of B with edges that connect B to graph. For
a full description of this language we need the notion of a labeled graph. Labels are necessary to provide the proper
connection between B and the graph.

A link in the energetically optimal transformation chain is constructed by finding a transformation application
that gives the largest energy descent (after an optimization step), then the next link, and so on, until we achieve the
desirable accuracy of approximation, or the limit number of transformations (some other termination criteria are also
possible). The selection of an energetically optimal application of transformations by the trial optimization steps is
time-consuming. There exist alternative approaches. The preselection of applications for a production rule A → B
can be done through comparison of energy of copies of A with its incident edges and stars in the transformed graph
G.

As the simple (but already rather powerful) example we use a system of two transformations: “add a node to a
node” and “bisect an edge”. These transformations act on a class of primitive elastic graphs: all non-terminal nodes
with k edges are centers of elastic k-stars, which form all the k-stars of the graph. For a primitive elastic graph, the
number of stars is equal to the number of non-terminal nodes—the graph topology prescribes the elastic structure.

The transformation “add a node” can be applied to any vertex y of G: add a new node z and a new edge (y, z).
The transformation “bisect an edge” is applicable to any pair of graph vertices y, y′ connected by an edge (y, y ′):
Delete edge (y, y ′), add a vertex z and two edges, (y, z) and (z, y ′). The transformation of elastic structure (change
in the star list) is induced by the change of topology, because the elastic graph is primitive. This two-transformation
grammar with energy minimization builds principal trees (and principal curves, as a particular case) for datasets. A
couple of examples are presented on Fig. 1. For applications, it is useful to associate one-dimensional continuums
with these principal trees. Such a continuum consists of node images φ(y) and of pieces of straight lines that connect
images of linked nodes.

3. Factorization and transformation of factors

If we approximate multidimensional data by a k-dimensional object, the number of points (or, more general,
elements) in this object grows with k exponentially. This is an obstacle for grammar-based algorithms even for modest
k, because for analysis of the rule A → B applications we should investigate all isomorphic copies of A in G.
The natural way to avoid this obstacle is by the principal object factorization. Let us represent an elastic graph as
a Cartesian product of graphs (Fig. 2). The Cartesian product G1 × · · · × Gr of elastic graphs G1, . . . , Gr is an
elastic graph with the vertex set V1 × · · · × Vr . Let 1 ≤ i ≤ r and v j ∈ Vj ( j �= i ). For this set of vertices,
{v j } j �=i , a copy of Gi in G1 × · · · × Gr is defined with vertices (v1, . . . , vi−1, v, vi+1, . . . , vr ) (v ∈ Vi ), edges
((v1, . . . , vi−1, v, vi+1, . . . , vr ), (v1, . . . , vi−1, v

′, vi+1, . . . , vr )) ((v, v′) ∈ Ei ) and, similarly, k-stars of the form
(v1, . . . , vi−1, Sk , vi+1, . . . , vr ), where Sk is a k-star in Gi . For any Gi there are

∏
j, j �=i |Vj | copies of Gi in G.

Sets of edges and k-stars for Cartesian product are unions of that set through all copies of all factors. A map
φ : V1 × · · · × Vr → Rm maps all the copies of factors into Rm too. The energy of the elastic graph product is
the energy sum of all factor copies. It is, of course, a quadratic functional of φ.
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Fig. 1. Applying a simple “add a node to a node or bisect an edge” grammar to construct principal elastic trees (one node is added per iteration).
Upper row: an example of two-dimensional branching distribution of points. Lower row: the classical benchmark, the “iris” four-dimensional
dataset (point shapes distinguish three classes of points), the dataset and principal tree are presented in projection onto the plane of first two
principal components.

Fig. 2. The Cartesian product of graphs.

The only difference between the construction of general elastic graphs and factorized graphs is in the application
of transformations. For factorized graphs, we apply them to factors. This approach significantly reduces the amount
of trials in selection of optimal application. The simple grammar with two rules, “add a node to a node or bisect an
edge”, is also powerful here; it produces products of primitive elastic trees. For such a product, the elastic structure is
defined by the topology of the factors.

4. Conclusion: Adaptive dimension and principal cubic complexes

In the continuum representation, factors are one-dimension continuums; hence, a product of r factors is represented
as an r -dimensional cubic complex [13] that is glued together from r -dimensional parallelepipeds (“cubes”). Thus, the
factorized principal elastic graphs generate a new and, as we can estimate now, a useful construction: a principal cubic
complex. One of the obvious benefits from this construction is adaptive dimension: the grammar approach with energy
optimization develops the necessary number of non-trivial factors, and not more. These complexes can approximate
multidimensional datasets with complex, but still low-dimensional topology. The topology of the complex is not
prescribed, but adaptive. In that sense, they are even more flexible than SOMs. The whole approach can be interpreted
as a intermediate between absolutely flexible neural gas [14] and significantly more restrictive elastic map [9]. It
includes as simple limit cases the k-means clustering algorithm (low elasticity moduli) and classical PCA (high μ for
S2 and μ → ∞ for Sk , k > 2).
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