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Abstract. We prove that a non-linear kinetic system with conservation of sup-
ports for distributions has generically limit distributions with final support only.
The conservation of support has a biological interpretation: inheritance. We call
systems with inheritance “Darwin’s systems”. Such systems are apparent in many
areas of biology, physics (the theory of parametric wave interaction), chemistry and
economics. The finite dimension of limit distributions demonstrates effects of nat-
ural selection. Estimations of the asymptotic dimension are presented. After some
initial time, solution of a kinetic equation with conservation of support becomes a
finite set of narrow peaks that become increasingly narrow over time and move in-
creasingly slowly. It is possible that these peaks do not tend to fixed positions, and
the path covered tends to infinity as t → ∞. The drift equations for peak motion
are obtained. They describe the asymptotic layer near the omega-limit distributions
with finite support .

1 Introduction: Unusual Conservation Law

How can we prove that all the attractors of an infinite-dimensional system
belong to a finite-dimensional manifold? How can we estimate the dimensions
of attractor? There exist two methods to obtain such estimations.

First, if we find that k-dimensional volumes are contracted due to dy-
namics, then (after some additional technical steps) we can claim that the
Hausdorff dimension of the maximal attractor is less than k. This idea is in
the essence of inertial manifold theory [11]. The standard way to prove this
k-dimensional volumes contraction is to check that the symmetrized Jako-
bian operator has discrete spectrum and the sum of any k its eigenvalues has
negative real part (under some additional conditions of uniform boundness
of solutions).

Second, if we find a representation of our system as a nonlinear kinetic sys-
tem with conservation of supports of distributions, then (again, after some ad-
ditional technical steps) we can state that the asymptotics is finite-dimensional:
the distribution evolves in a sum of several narrow peaks of density. This
conservation of support has a quasi-biological interpretation, inheritance (if
a gene was not presented initially in an isolated population without muta-
tions, then it cannot appear at later time). The finite-dimensional asymptotic
demonstrates effects of “natural” selection. It is very natural to call them
Darwin’s systems.

In the 1970s to the 1980s, theoretical work developed another “com-
mon” field simultaneously applicable to physics, biology and mathematics.
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For physics it is (so far) part of the theory of a special kind of approxima-
tion, demonstrating, in particular, interesting mechanisms of discreteness in
the course of the evolution of distributions with initially smooth densities.
However, what for physics is merely a convenient approximation is a funda-
mental law in biology: inheritance. The consequences of inheritance (collected
in the selection theory [13,27,41,48,49,3,17,28,21,25,47]) give one of the most
important tools for biological reasoning.

Consider a community of animals. Let it be biologically isolated. Muta-
tions can be neglected in the first approximation. In this case, new genes do
not emerge. Support of the distribution of genes does not increase.

An example from physics is also possible and leads to a very seminal
approach to nonlinear wave theory. Let waves with wave vectors k be excited
in some system. Denote K a set of wave vectors k of excited waves. Let the
wave interaction does not lead to the generation of waves with new k /∈ K.
Such an approximation is applicable to a variety of situations, and has been
described in detail for wave turbulence in [53,54].

What is common in these examples is the evolution of a distribution with
a support that does not increase over time.

What does not increase must, as a rule, decrease, if the decrease is not
prohibited. This naive thesis can be converted into rigorous theorems for
the case under consideration [21]. It is proved that the support decreases
in the limit t → ∞ if it was sufficiently large initially. (At finite times the
distribution supports are conserved and decrease only in the limit t → ∞.)
Conservation of the support usually results in the following effect: dynamics
of an initially infinite-dimensional system at t → ∞ can be described by
finite-dimensional systems and distribution degenrates into a sum of finite
number of narrow peaks, the peaks’ width tends to zero and the ω-limit
distributions are finite sums of δ-functions.

This is description of the final, ω-limit distribution. More precisely, it is
given by the selection theorem, and the dimension of the limiting systems
can be evaluated by the properties of the reproduction coefficient functions.

In this paper we are focused on another problem: how a Darwin system
approaches this finite-dimensional asymptotic? The first naive expectation is
as follows: dynamics of infinite system tends to a finite-dimensional dynamics,
which is predefined by the support of initial distribution and the adaptation
landscape. This is, on some sense, another example of finite-dimensional in-
ertial manifold.

Such asymptotic behavior of Darwin systems is possible, but surprisingly
it was demonstrated [46,20,21] that even in rather simple examples Dar-
win’s systems do not obligatory tend to one finite-dimensional asymptotic
dynamical system, but can wander near infinitely many such systems. This
wandering becomes slower in time, the density peaks become narrower, but
the way of the wandering may tend to infinity because the velocity does not
tends to zero in logarithmic time, log t. We call this wandering the “drift ef-
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fect”. Below we describe the asymptotic behavior of systems with inheritance
approaching their ω-limit distributions.

The simplest model for “reproduction + small mutations” where muta-
tions are presented as diffusion is also studied. The limit of zero mutations
is singular, and in the systems with small mutations the zero limit of the
drift velocity of their drift at t → ∞ substitutes by a small finite one in the
presence of drift effect. Moreover, there exists a scale invariance, and dynam-
ics for large t does not depend on nonzero mutation intensity, if the last is
sufficiently small: to change this intensity, we need just to rescale time.

The structure of the paper is as follows. In Sec. 2 Darwin’s systems are
formally described and selection theorems are presented. In Sec. 2.2 the op-
timality principles for supports of ω-limit distributions are developed. These
principles have a “weak” form; the set of possible supports is estimated from
above and it is not obvious that this estimation is effective. A theorem of
selection efficiency is presented in Sec. 2.5. The sense of this theorem is as
follows: for almost every system the support of all ω-limit distributions is
small (in an appropriate strong sense). Its geometrical interpretation sug-
gested by M. Gromov is explained in Sec. 2.6.

Minimax estimations of the number of points in the support of ω-limit
distributions are given in Section 2.3. The idea is to study systems under
a ε-small perturbation, to estimate the maximal number of points for each
realization of the perturbed system, and then to estimate the minimum of
these maxima among various realizations. These minimax estimates can be
constructive and do not use integration of the system. The set of reproduction
coefficients {k(μ) |μ ∈ M} is compact in C(X). Therefore, this set can be
approximated by a finite–dimensional linear space Lε with any given accuracy
ε.

The number of coexisting inherited units (“quasi-species”) is estimated
from above as dimLε. This estimate is true both for stationary and non-
stationary coexistence. In its general form this estimate was proved in 1980
[20,21], but the reasoning of this type has a long history. Perhaps, G. Gause
[19] was the first to suggest the direct connection between the number of
species and the number of resources. One can call this number “dimension of
the environment.” He proposed the famous concurrent exclusion principle.

More details about early history of the concurrent exclusion principle are
presented in the review paper of G. Hardin [29].

MacArthur and Levins [39] suggested that the number of coexisting species
is limited by the number of ecological resources. Later [40], they studied the
continuous resource distribution (niche space) where the number of species
is limited by the fact that the niches must not overlap too much. In 1999,
G. Meszena and J.A.J. Metz [43] developed further the idea of environmental
feedback dimensionality (perhaps, independently of [20,21]).

In 2006 the idea of robustness in concurrent exclusion was approached
again, as a “unified theory” of “competitive exclusion and limiting similarity”
[42]. All these achievements are related to estimation of dimension of the set
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{k(μ) |μ ∈M} or of some its subsets. This dimension plays the role of “robust
dimension of population regulation”.

Drift equations without mutations are derived in Sec. 3.1 and asymptotic
equations For Darwin’s systems with small mutations with scaling invariance
theorem are presented in Sec. 3.2.

The special structure of Darwin’s systems requires to introduce three
types of stability of the limit behavior (Sec. 4): internal stability (stability
in the limiting finite-dimensional systems), external stability or uninvadabil-
ity (stability with respect to strongly small perturbations that extend the
support), and stable realizability (stability with respect to small shifts and
extensions of the density peaks). Internal stability (Sec. 4.1) is just a par-
ticular case of Lyapunov stability applied to finite-dimensional asymptotic.
External stability (uninvadability, Sec. 4.2) was first introduced and stud-
ied by J.B.S. Haldane [27], then, after papers [48,49] it was intensively used
in biology [50,31,?,51,12,9,4,5,8,6,7], and general evolutionary games theory
[15,44,45,32]. In physics, this notion was introduced in an entirely indepen-
dent series of works on the S-approximation in the spin wave theory and on
wave turbulence [53,54,38], which studied wave configurations in the approx-
imation of an “inherited” wave vector.

The stable realizability (stability with respect to small shifts and exten-
sions of the density peaks, Sec. 4.3) was first introduced and studied in full
generality in early 1980th [21]. Later, the important particular cases were
independently introduced and studied in series of papers [44,45,15]. In these
papers the idea of drift equations appeared for the gaussian peaks in the
dynamics of continuous symmetric evolutionary games. The authors [44,45]
called this property of “stable realizability” by “evolutionary robustness” and
claimed the necessity of this additional type of stability very energetically:
“Furthermore, we provide new conditions for the stability of rest points and
show that even strict equilibria may be unstable”.

In Sec. 5 a rich family of examples is described. Those examples are the
generalized Lottka–Volterra–Gause infinite dimensional systems with distrib-
uted coefficients. The main benefit from this special structure is the general-
ized Volterra averaging principle [52]. This principle allows to substitute the
time averages of linear functionals by their values at steady states. For the
distributed Lottka–Volterra–Gause systems the drift equations are written
explicitly.

In Section 7 a brief description of the main results is presented.

2 Inheritance and Selection Theorems

2.1 Asymptotically Stable States

The simplest and most common class of equations in applications for which
the distribution support does not grow over time is constructed as follows.
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To each distribution μ is assigned a function kμ by which distributions can
be multiplied. Let us write down the equation:

dμ
dt

= kμ × μ . (1)

The multiplier kμ is called a reproduction coefficient. It depends on μ, and
this dependence can be rather general and non-linear.

Two remarks can be important:

1. The apparently simple form of (1) does not mean that this system is
linear or even close to linear. The operator μ �→ kμ is a general non-linear
operator, and the only restriction is its continuity in an appropriate sense
(see below).

2. On a finite set X = {x1, . . . , xn}, non-negative measures μ are simply
non-negative vectors μi ≥ 0 (i=1,. . . , n), and (1) appears to be a system
of equations of the following type:

dμi

dt
= ki(μ1, . . . , μn) × μi , (2)

and the only difference from a general dynamic system is the special
behavior of the right-hand side of (2) near zero values of μi.

The right-hand side of (1) is the product of the function kμ and the
distribution μ, and hence dμ/dt should be zero when μ is equal to zero;
therefore the support of μ is conserved in time (over finite times).

X the space of inherited units. Most of the selection theorems are proved
for compact metric space X with a metric ρ(x, y). Further, for the drift and
mutations equations we assume that X is a domain in finite-dimensional real
space Rn (closed and bounded). As a particular case of compact space, a
finite set X can be discussed.

μ is distribution on X . Each distribution on a compact space X is a
continuous linear functional on the space of continuous real functions C(X).
We follow the Bourbaki approach [10]: a measure is a continuous functional,
an integral. Book [10] contains all the necessary notions and theorems. Space
C(X) is a Banach space endowed with the maximum norm

‖f‖ = max
x∈X

|f(x)| . (3)

If μ ∈ C∗(X) and f ∈ C(X), then [μ, f ] is the value of μ at a function f .
If X is a bounded closed subset of a finite-dimensional space Rn, then we
represent this functional as the integral

[μ, f ] =
∫
μ(x)f(x) dx , (4)

which is the standard notation for distribution (or generalized function) the-
ory. The “density” μ(x) is not assumed to be an absolute continuous function
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with respect to the Lebesgue measure dx (or even a function), and the no-
tation in Eq. (4) has the same sense as [μ, f ]. If the measure is defined as a
function on a σ-algebra of sets, then the following notation is used:

[μ, f ] =
∫
f(x)μ(dx) .

We use the notation [μ, f ] for general spaces X and the representation (4)
on domains in Rn. The product k×μ is defined for any k ∈ C(X), μ ∈ C∗(X)
by the equality: [kμ, f ] = [μ, kf ].

The support of μ, suppμ, is the smallest closed subset of X with the
following property: if f(x) = 0 on suppμ, then [μ, f ] = 0, i.e. μ(x) = 0
outside suppμ.

In the space of measures we use weak∗ convergence, i.e. the convergence
of averages:

μi → μ∗ if and only if [μi, ϕ] → [μ∗, ϕ] (5)

for all continuous functions ϕ ∈ C(X). This weak∗ convergence of measures
generates weak∗ topology on the space of measures (sometimes called weak
topology of conjugated space, or wide topology).

Strong topology on the space of measures C∗(X) is defined by the norm
‖μ‖ = sup‖f‖=1[μ, f ].

The properties of the mapping μ �→ kμ should be specified, and the exis-
tence and uniqueness of solutions of (1) under given initial conditions should
be identified. In specific situations the answers to these questions are not
difficult.

The sequence of continuous functions ki(x) is considered to be convergent
if it converges uniformly. The sequence of measures μi is called convergent
if for any continuous function ϕ the integrals [μi, ϕ] converge [weak∗ conver-
gence (5)]. The mapping μ �→ kμ assigning the reproduction coefficient kμ to
the measure μ is assumed to be continuous with respect to these convergen-
cies.

The space of measures is assumed to have a bounded set M that is pos-
itively invariant relative to system (1): if μ(0) ∈ M , then μ(t) ∈ M (we
also assume that M is non-trivial, i.e. it is neither empty nor a one-point
set i.e. it is neither empty nor a one-point set but includes at least one
point with its vicinity). This M serves as the phase space of system (1).
(Let us remind that the set of measures M is bounded if the set of integrals
{[μ, f ] |μ ∈ M, ‖f‖ ≤ 1} is bounded, where ‖f‖ is the norm (3).) We study
dynamic of system (1) in bounded positively invariant set M .

Most of the results for systems with inheritance use a theorem on weak∗

compactness: The bounded set of measures is precompact with respect to
weak∗ convergence (i.e. its closure is compact). Therefore the set of corre-
sponding reproduction coefficients kM = {kμ |μ ∈M} is precompact.
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The simplest example of an emerging discrete distribution from a contin-
uous initial distribution gives us the following equation:

∂μ(x, t)
∂t

=

[
f0(x) −

∫ b

a

f1(x)μ(x, t) dx

]
μ(x, t) , (6)

where the functions f0(x) and f1(x) are positive and continuous on the closed
segment [a, b]. Let the function f0(x) reach the global maximum on the seg-
ment [a, b] at a single point x0. If x0 ∈ suppμ(x, 0), then:

μ(x, t) → f0(x0)
f1(x0)

δ(x− x0), when t→ ∞ , (7)

where δ(x− x0) is the δ-function.
If f0(x) has several global maxima, then the right-hand side of (7) can be

the sum of a finite number of δ-functions. Here a natural question arises: is
it worth considering such a possibility? Indeed, such a case seems to be very
unlikely to occur. More details on this are given below.

The limit behavior of a typical system with inheritance (1) can be much
more complicated than (7). Here we can mention that any finite-dimensional
system with a compact phase space can be embedded in a system with in-
heritance (2). An additional possibility for the limit behavior is, for example,
the drift effect (Section 3.1).

The first step in the routine investigation of a dynamical system is a ques-
tion about fixed points and their stability. The first observation concerning
the system (1) is that it can only be asymptotically stable for steady-state
distributions, the support of which is discrete (i.e. the sums of δ-functions).
This can be proved for all consistent formalizations.Thus, we have the first
theorem.

Theorem 1. The support of asymptotically stable distributions for the sys-
tem (1) is always discrete. �

For the proof of this theorem and other selection theorems we refer to
[20,21,23,24]

The perturbation discussed is small not only in the weak∗ topology, but
also in the strong sense, and thus it is sufficient to consider strongly small
perturbations to prove that the asymptotically stable distribution should be
discrete. Hence, this statement is true if the operator μ �→ kμ is continuous
for strong topology on the space of measures. This is a significantly weaker
requirement than being continuous in weak∗ topology.

This simple observation has many strong generalizations to general ω-
limit points, to equations for vector measures, etc.
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2.2 Optimality Principle for Limit Diversity

Description of the limit behavior of a dynamical system can be much more
complicated than enumerating stable fixed points and limit cycles. The lead-
ing rival to adequately formalize the limit behavior is the concept of the
“ω-limit set”. It was discussed in detail in the classical monograph [1]. The
fundamental textbook on dynamical systems [30] and the introductory review
[34] are also available.

Let f(t) be the dependence of the position of point in the phase space
on time t (i.e. the motion of the dynamical system). A point y is a ω-limit
point of the motion f(t), if there exists such a sequence of times ti → ∞,
that f(ti) → y.

The set of all ω-limit points for the given motion f(t) is called the ω-
limit set. If, for example, f(t) tends to the equilibrium point y∗ then the
corresponding ω-limit set consists of this equilibrium point. If f(t) is winding
onto a closed trajectory (the limit cycle), then the corresponding ω-limit set
consists of the points of the cycle and so on.

General ω-limit sets are not encountered oft in specific situations. This
is because of the lack of efficient methods to find them in a general situa-
tion. Systems with inheritance is a case, where there are efficient methods to
estimate the limit sets from above. This is done by the optimality principle.

Let μ(t) be a solution of (1). Note that

μ(t) = μ(0) exp
∫ t

0

kμ(τ) dτ . (8)

Here and below we do not display the dependence of distributions μ and of
the reproduction coefficients k on x when it is not necessary. Fix the notation
for the average value of kμ(τ) on the segment [0, t]

〈kμ(t)〉t =
1
t

∫ t

0

kμ(τ) dτ . (9)

Then the expression (8) can be rewritten as

μ(t) = μ(0) exp(t〈kμ(t)〉t) .

If μ∗ is the ω-limit point of the solution μ(t), then there exists such a
sequence of times ti → ∞, that μ(ti) → μ∗. Let it be possible to chose a
convergent subsequence of the sequence of the average reproduction coeffi-
cients 〈kμ(t)〉t, which corresponds to times ti. We denote as k∗ the limit of
this subsequence. Then, the following statement is valid: on the support of
μ∗ the function k∗ vanishes and on the support of μ(0) it is non-positive:

k∗(x) = 0 if x ∈ suppμ∗,
k∗(x) ≤ 0 if x ∈ suppμ(0) . (10)
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Taking into account the fact that suppμ∗ ⊆ suppμ(0), we come to the
formulation of the optimality principle (10): The support of limit distri-
bution consists of points of the global maximum of the average reproduction
coefficient on the initial distribution support. The corresponding maximum
value is zero.

We should also note that not necessarily all points of maximum of k∗

on suppμ(0) belong to suppμ∗, but all points of suppμ∗ are the points of
maximum of k∗ on suppμ(0).

If μ(t) tends to the fixed point μ∗, then 〈kμ(t)〉t → kμ∗ as t → ∞, and
suppμ∗ consists of the points of the global maximum of the corresponding re-
production coefficient kμ∗ on the support of μ∗. The corresponding maximum
value is zero.

If μ(t) tends to the limit cycle μ∗(t) (μ∗(t + T ) = μ∗(t)), then all the
distributions μ∗(t) have the same support. The points of this support are the
points of maximum (global, zero) of the averaged over the cycle reproduction
coefficient

k∗ = 〈kμ∗(t)〉T =
1
T

∫ T

0

kμ∗(τ) dτ ,

on the support of μ(0).
The supports of the ω-limit distributions are specified by the functions

k∗. It is obvious where to get these functions from for the cases of fixed
points and limit cycles. There are at least two questions: what ensures the
existence of average reproduction coefficients at t → ∞, and how to use the
described extremal principle (and how efficient is it). The latter question is
the subject to be considered in the following sections. In the situation to
follow the answers to these questions have the validity of theorems.

Due to the theorem about weak∗ compactness, the set of reproduction
coefficients kM = {kμ |μ ∈ M} is precompact, hence, the set of averages (9)
is precompact too, because it is the subset of the closed convex hull conv(kM )
of the compact set. This compactness allows us to claim the existence of the
average reproduction coefficient k∗ for the description of the ω-limit distrib-
ution μ∗ with the optimality principle (10).

2.3 How Many Points
Does the Limit Distribution Support Hold?

The limit distribution is concentrated in the points of (zero) global maxi-
mum of the average reproduction coefficient. The average is taken along the
solution, but the solution is not known beforehand. With the convergence
towards a fixed point or to a limit cycle this difficulty can be circumvented.
In the general case the extremal principle can be used without knowing the
solution, in the following way [21]. Considered is a set of all dependencies
μ(t) where μ belongs to the phase space, the bounded set M . The set of all
averages over t is {〈kμ(t)〉t}. Further, taken are all limits of sequences formed
by these averages – the set of averages is closed. The result is the closed
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convex hull conv(kM ) of the compact set kM . This set involves all possible
averages (9) and all their limits. In order to construct it, the true solution
μ(t) is not needed.

The weak optimality principle is expressed as follows. Let μ(t) be a solution
of (1) in M , μ∗ is any of its ω-limit distributions. Then in the set conv(kM )
there is such a function k∗ that its maximum value on the support suppμ0 of
the initial distribution μ0 equals to zero, and suppμ∗ consists of the points
of the global maximum of k∗ on suppμ0 only (10).

Of course, in the set conv(kM ) there are usually many functions that are
irrelevant to the time average reproduction coefficients for the given motion
μ(t). Therefore, the weak extremal principle is really weak – it gives too
many possible supports of μ∗. However, even such a principle can help to
obtain useful estimates of the number of points in the supports of ω-limit
distributions.

It is not difficult to suggest systems of the form (1), in which any set can
be the limit distribution support. The simplest example: kμ ≡ 0. Here ω-limit
(fixed) is any distribution. However, almost any arbitrary small perturbation
of the system destroys this pathological property.

In the realistic systems, especially in biology, the coefficients fluctuate and
are never known exactly. Moreover, the models are in advance known to have
a finite error which cannot be exterminated by the choice of the parameters
values. This gives rise to an idea to consider not individual systems (1), but
ensembles of similar systems [21].

Let us estimate the maximum for each individual system from the ensem-
ble (in its ω-limit distributions), and then, estimate the minimum of these
maxima over the whole ensemble – (the minimax estimation). The latter is
motivated by the fact, that if the inherited unit has gone extinct under some
conditions, it will not appear even under the change of conditions.

Let us consider an ensemble that is simply the ε-neighborhood of the given
system (1). The minimax estimates of the number of points in the support of
ω-limit distribution are constructed by approximating the dependencies kμ

by finite sums

kμ = ϕ0(x) +
n∑

i=1

ϕi(x)ψi(μ) . (11)

Here ϕi depend on x only, and ψi depend on μ only. Let εn > 0 be the
distance from kμ to the nearest sum (11) (the “distance” is understood in
the suitable rigorous sense, which depends on the specific problem). So, we
reduced the problem to the estimation of the diameters εn > 0 of the set
conv(kM ).

The minimax estimation of the number of points in the limit
distribution support gives the answer to the question, “How many points
does the limit distribution support hold”: If ε > εn then, in the ε-vicinity
of kμ, the minimum of the maxima of the number of points in the ω-limit
distribution support does not exceed n.
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In order to understand this estimate it is sufficient to consider system (1)
with kμ of the form (11). In this case for any dependence μ(t) the averages
(9) have the form

〈kμ(t)〉t =
1
t

∫ t

0

kμ(τ) dτ = ϕ0(x) +
n∑

i=1

ϕi(x)ai . (12)

where ai are some numbers. The ensemble of the functions (12) for various
ai forms a n-dimensional linear manifold. How many points of the global
maximum (equal to zero) could a function of this family have?

Generally speaking, it can have any number of maxima. However, it seems
obvious, that “usually” one function has only one point of global maximum,
while it is “improbable” that the maximum value is zero. At least, with an
arbitrary small perturbation of the given function, we can achieve for the
point of the global maximum to be unique and the maximum value be non-
zero.

In a one-parametric family of functions there may occur zero value of the
global maximum, which cannot be eliminated by a small perturbation, and
individual functions of the family may have two global maxima.

In the general case we can state, that “usually” each function of the n-
parametric family (12) can have not more than n points of the zero global
maximum (of course, there may be less, and the global maximum is, as a rule,
not equal to zero at all for the majority of functions of the family). What
“usually” means here requires a special explanation given in the next section.

In application kμ is often represented by an integral operator, linear or
nonlinear. In this case the form (11) corresponds to the kernels of integral
operators, represented in a form of the sums of functions’ products. For ex-
ample, the reproduction coefficient of the following form

kμ = ϕ0(x) +
∫
K(x, y)μ(y) dy ,

where K(x, y) =
n∑

i=1

ϕi(x)gi(y) , (13)

has also the form (11) with ψi(μ) =
∫
gi(y)μ(y) dy.

The linear reproduction coefficients occur in applications rather frequently.
For them the problem of the minimax estimation of the number of points in
the ω-limit distribution support is reduced to the question of the accuracy of
approximation of the linear integral operator by the sums of kernels-products
(13).

2.4 Almost Finite Sets and “Almost Always”

The supports of the ω-limit distributions for the systems with inheritance
were characterized by the optimality principle. These supports consist of



12 Alexander N. Gorban

points of global maximum of the average reproduction coefficient. We can a
priori (without studying the solutions in details) characterize the compact
set that includes all possible average reproduction coefficients. Hence, we get
a problem: how to describe the set of global maximum for all functions from
generic compact set of functions. First of all, any closed subset M ⊂ X is
a set of global maximum of a continuous function, for example, of the func-
tion f(x) = −ρ(x,M), where ρ(x,M) is the distance between a set and a
point: ρ(x,M) = infy∈M ρ(x, y), and ρ(x, y) is the distance between points.
Nevertheless, we can expect that one generic function has one point of global
maximum, in a generic one-parametric family might exist functions with two
points of global maximum, etc. How these expectations meet the exact re-
sults? What does the notion “generic” mean? What can we say about sets of
global maximum of functions from a generic compact family? In this section
we answer these questions.

Here are some examples of correct but useless statements about “generic”
properties of function: Almost every continuous function is not differentiable;
Almost every C1-function is not convex. Their meaning for applications is
most probably this: the genericity used above for continuous functions or for
C1-function is irrelevant to the subject.

Most frequently the motivation for definitions of genericity is found in such
a situation: given n equations with m unknowns, what can we say about the
solutions? The answer is: in a typical situation, if there are more equations,
than the unknowns (n > m), there are no solutions at all, but if n ≤ m (n
is less or equal to m), then, either there is a (m − n)-parametric family of
solutions, or there are no solutions.

The best known example of using this reasoning is the Gibbs phase rule
in classical chemical thermodynamics. It limits the number of co-existing
phases. There exists a well-known example of such reasoning in mathemat-
ical biophysics too. Let us consider a medium where n species coexist. The
medium is assumed to be described by m parameters sj . Dynamics of these
parameters depends on the organisms. In the simplest case, the medium is a
well-mixed solution of m substances. Let the organisms interact through the
medium, changing its parameters – concentrations of m substances. It can
be formalized by a system of equation:

dμi

dt
= ki(s1, . . . , sm) × μi (i = 1, . . . n) ;

dsj

dt
= qj(s1, . . . , sm, μ1, . . . , μn) (j = 1, . . .m) , (14)

In a steady state, for each of the coexisting species we have an equation
with respect to the state of the medium: the corresponding reproduction
coefficient ki is zero. So, the number of such species cannot exceed the number
of parameters of the medium. In a typical situation, in the m-parametric
medium in a steady state there can exist not more than m species. This is
the concurrent exclusion principle in the G. Gause form [19]. Here, the main
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hypothesis about interaction of organisms with the media is that the number
of essential components of the media is bounded from above bym and increase
of the number of species does not extend the list of components further.
Dynamics of parameters depends on the organisms, but their nomenclature
is fixed.

This concurrent exclusion principle allows numerous generalizations
[39,40,37,14,42]. Theorem of the natural selection efficiency may be also con-
sidered as its generalization.

Analogous assertion for a non-steady state coexistence of species in the
case of equations (14) is not true. It is not difficult to give an example of stable
coexistence under oscillating conditions of n species in the m-parametric
medium at n > m.

But, if ki(s1, . . . , sm) are linear functions of s1, . . . , sm, then for non-stable
conditions we have the concurrent exclusion principle, too. In that case, the
average in time of the reproduction coefficient is the reproduction coefficient
for the average state of the medium:

〈ki(s1(t), . . . , sm(t))〉 = ki(〈s1〉, . . . , 〈sm〉)

because of linearity. If 〈xi〉 �= 0 then ki(〈s1〉, . . . , 〈sm〉) = 0, and we obtain
the non-stationary concurrent exclusion principle “in average”. And again, it
is valid “almost always”.

The non-stationary concurrent exclusion principle “in average” is valid
for linear reproduction coefficients. This is a combination of the Volterra [52]
averaging principle and the Gause principle,

It is worth to mention that, for our basic system (1), if kμ are linear func-
tions of μ, then the average in time of the reproduction coefficient kμ(t) is
the reproduction coefficient for the average μ(t) because of linearity. There-
fore, the optimality principle (10) for the average reproduction coefficient
k∗, transforms into the following optimality principle for the reproduction
coefficient k〈μ〉 of the average distribution 〈μ〉

k〈μ〉(x) = 0 if x ∈ suppμ∗ ,
k〈μ〉(x) ≤ 0 if x ∈ suppμ(0) .

(the generalized Volterra averaging principle [52]).
Formally, various definitions of genericity are constructed as follows. All

systems (or cases, or situations and so on) under consideration are somehow
parameterized – by sets of vectors, functions, matrices etc. Thus, the “space
of systems” Q can be described. Then the “thin sets” are introduced into Q,
i.e. the sets, which we shall later neglect. The union of a finite or countable
number of thin sets, as well as the intersection of any number of them should
be thin again, while the whole Q is not thin. There are two traditional ways
to determine thinness.
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1. A set is considered thin when it has measure zero. This is resonable for
a finite-dimensional case, when there is the standard Lebesgue measure
– the length, the area, the volume.

2. But most frequently we deal with the functional parameters. In that case
it is common to restore to the second definition, according to which the
sets of Baire first category are negligible. The construction begins with
nowhere dense sets. The set Y is nowhere dense in Q, if in any nonempty
open set V ⊂ Q (for example, in a ball) there exists a nonempty open
subset W ⊂ V (for example, a ball), which does not intersect with Y :
W∩Y = ∅. Roughly speaking, Y is “full of holes” – in any neighborhood of
any point of the set Y there is an open hole. Countable union of nowhere
dense sets is called the set of first category. The second usual way is to
define thin sets as the sets of first category. A residual set (a “thick” set)
is the complement of a set of the first category.

For the second approach, the Baire category theorem is important: In a
non-empty complete metric space, any countable intersection of dense, open
subsets is non-empty.

But even the real line R can be divided into two sets, one of which has
zero measure, the other is of first category. The genericity in the sense of
measure and the genericity in the sense of category considerably differ in the
applications where both of these concepts can be used. The conflict between
the two main views on genericity stimulated efforts to invent new and stronger
approaches.

Systems (1) were parameterized by continuous maps μ �→ kμ. Denote
by Q the space of these maps M → C(X) with the topology of uniform
convergence on M . It is a Banach space. Therefore, we shall consider below
thin sets in a Banach space Q. First of all, let us consider n-dimensional
affine compact subsets of Q as a Banach space of affine maps Ψ : [0, 1]n → Q
(Ψ(α1, . . . αn) =

∑
i αifi + ϕ, αi ∈ [0, 1], fi, ϕ ∈ Q) in the maximum norm.

For the image of a map Ψ we use the standard notation imΨ .

Definition 2. A set Y ⊂ Q is n-thin, if the set of affine maps Ψ : [0, 1]n → Q
with non-empty intersection imΨ ∩ Y �= ∅ is the set of first category.

All compact sets in infinite-dimensional spaces and closed linear subspaces
with codimension greater then n are n-thin. If dimQ ≤ n, then only empty
set is n-thin in Q. The union of a finite or countable number of n-thin sets,
as well as the intersection of any number of them is n-thin, while the whole
Q is not n-thin.

Let us consider compact subsets in Q parametrized by points of a compact
space K. It can be presented as a Banach space C(K,Q) of continuous maps
K → Q in the maximum norm.

Definition 3. A set Y ⊂ Q is completely thin, if for any compact K the set
of continuous maps Ψ : K → Q with non-empty intersection imΨ ∩ Y �= ∅ is
the set of first category.
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A set Y in the Banach space Q is completely thin, if for any compact
set K in Q and arbitrary positive ε > 0 there exists a vector q ∈ Q, such
that ‖q‖ < ε and K + q does not intersect Y : (K + q) ∩ Y = ∅. All compact
sets in infinite-dimensional spaces and closed linear subspaces with infinite
codimension are completely thin. Only empty set is completely thin in a finite-
dimensional space. The union of a finite or countable number of completely
thin sets, as well as the intersection of any number of them is completely
thin, while the whole Q is not completely thin.

Proposition 4. If a set Y in the Banach space Q is completely thin, then
for any compact metric space K the set of continuous maps Ψ : K → Q with
non-empty intersection imΨ ∩ Y �= ∅ is completely thin in the Banach space
C(K,Q). �

Below the wording “almost always” means: the set of exclusions is com-
pletely thin. The main result presented in this section sounds as follows:
almost always the sets of global maxima of functions from a compact set are
uniformly almost finite.

Proposition 5. Let X have no isolated points. Then almost always a func-
tion f ∈ C(X) has nowhere dense set of zeros {x ∈ X | f(x) = 0} (the set of
exclusions is completely thin in C(X)). �

After combination Proposition 5 with Proposition 4 we get the following

Proposition 6. Let X have no isolated points. Then for any compact space
K and almost every continuous map Ψ : K → C(X) all functions f ∈ imΨ
have nowhere dense sets of zeros (the set of exclusions is completely thin in
C(K,C(X))). �

In other words, in almost every compact family of continuous functions
all the functions have nowhere dense sets of zeros.

Let us consider a space of closed subsets of the compact metric space X
endowed by the Hausdorff distance. The Hausdorff distance between closed
subsets of X is

dist(A,B) = max{sup
x∈A

inf
x∈B

ρ(x, y) , sup
x∈B

inf
x∈A

ρ(x, y)} .

The almost finite sets were introduced in [21] for description of the typical
sets of maxima for continuous functions from a compact set. This definition
depends on an arbitrary sequence εn > 0, εn → 0. For any such sequence we
construct a class of subsets Y ⊂ X that can be approximated by finite set
faster than εn → 0, and for families of sets we introduce a notion of uniform
approximation by finite sets faster than εn → 0:
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Definition 7. Let εn > 0, εn → 0. The set Y ⊂ X can be approximated by
finite sets faster than εn → 0 (εn > 0), if for any δ > 0 there exists a finite
set SN such that dist(SN , Y ) < δεN . The sets of family Y can be uniformly
approximated by finite sets faster than εn → 0, if for any δ > 0 there exists
such a number N that for any Y ∈ Y there exists a finite set SN such that
dist(SN , Y ) < δεN .

The simplest example of almost finite set on the real line for a given
εn → 0 (εn > 0) is the sequence εn/n. If εn < const/n, then the set Y on
the real line which can be approximated by finite sets faster than εn → 0
have zero Lebesgue measure. At the same time, it is nowhere dense, because
it can be covered by a finite number of intervals with an arbitrary small sum
of lengths (hence, in any interval we can find a subinterval free of points of
Y ).

Let us study the sets of global maxima argmaxf for continuous functions
f ∈ C(X). For each f ∈ C(X) and any ε > 0 there exists φ ∈ C(X) such
that ‖f − φ‖ ≤ ε and argmaxφ consists of one point. Such a function φ can
be chosen in the form

φ(x) = f(x) +
ε

1 + ρ(x, x0)2
,

where x0 is an arbitrary element of argmaxf . In this case argmaxφ = {x0}.
Hence, the set argmaxf can be reduced to one point by an arbitrary

small perturbations of the function f . On the other hand, it is impossible to
extend significantly the set argmaxf by a sufficiently small perturbation, the
dependence of this set on f is semicontinuous in the following sense.

Proposition 8. For given f ∈ C(X) and any ε > 0 there exists δ > 0 such
that, whenever ‖f − φ‖ < δ, then

max
x∈argmaxφ

min
y∈argmaxf

ρ(x, y) < ε . � (15)

These constructions can be generalized onto n-parametric affine compact
families of continuous functions. Let us consider affine maps of the cube [0, 1]k

into C(X), Φ : [0, 1]k → C(X). The space of all such maps is a Banach space
endowed with the maximum norm.

Proposition 9. For any affine map Φ : [0, 1]k → C(X) and an arbitrary
ε > 0 there exists such a continuous function ψ ∈ C(X), that ‖ψ‖ < ε and
the set argmax(f + ψ) includes not more than k + 1 points for all f ∈ imΦ.
�

To prove this Proposition we used the following Lemma which is of general
interest.
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Lemma 10. Let Q ⊂ C(X) be a compact set of functions, ε > 0. Then there
are a finite set Y ⊂ X and a function φ ∈ C(X) such that ‖φ‖ < ε, and any
function f ∈ Q+ φ achieves its maximum only on Y : argmaxf ⊂ Y . �

Note, that Proposition 9 and Lemma 10 demonstrate us different sources
of discreteness: in Lemma 10 it is the approximation of a compact set by a
finite net, and in Proposition 9 it is the connection between the number of
parameters and the possible number of global maximums in a k-parametric
family of functions. There is no direct connection between N and k values,
and it might be that N � k. For smooth functions in finite-dimensional real
space polynomial approximations can be used instead of Lemma 10 in order
to prove the analogue of Proposition 9.

The rest of this Sec. 2.4 is devoted to application of Proposition 9 to
evaluation of maximizers for functions from a compact sets of functions. For
any compact K the space of continuous maps C(K,C(X)) is isomorphic to
the space of continuous functions C(K ×X). Each continuous map F : K →
C(X) can be approximated with an arbitrary accuracy ε > 0 by finite sums
of the following form (k ≥ 0):

F (y)(x) =
k∑

i=1

αi(y)fi(x) + ϕ(x) + o ,

y ∈ K, x ∈ X, 0 ≤ αi ≤ 1, fi, ϕ ∈ C(X), |o| < ε . (16)

Each set fi, ϕ ∈ C(X) generates a map Φ : [0, 1]k → C(X). A dense
subset in the space of these maps satisfy the statement of Proposition 9: each
function from imΦ has not more than k + 1 points of global maximum. Let
us use for this set of maps Φ notation Pk, for the correspondent set of the
maps F : K → C(X), which have the form of finite sums (16), notation PK

k ,
and PK = ∪kPK

k .
For each Φ ∈ PK

k and any ε > 0 there is δ = δΦ(ε) > 0 such that,
whenever ‖Ψ −Φ‖ < δΦ(ε), the set argmaxf belongs to a union of k+1 balls
of radius ε for any f ∈ imΨ (Proposition 8).

Let us introduce some notations: for k ≥ 0 and ε > 0

UK
k,ε = {Ψ ∈ C(K,C(X)) | |Ψ − Φ‖ < δΦ(ε) for some Φ ∈ PK

k } ;

for εi > 0, εi → 0

VK
{εi} =

∞⋃
k=0

UK
k,εk

;

and, finally,

WK
{εi} =

∞⋂
s=1

VK
{ 1

2s εi} .
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The set PK is dense in C(K,C(X)). Any F ∈ PK has the form of finite
sum (16), and any f ∈ imF has not more than k+1 point of global maximum,
where k is the number of summands in presentation (16). The sets VK

{εi} are
open and dense in the Banach space C(K,C(X)) for any sequence εi > 0,
εi → 0. The set WK

{εi} is intersection of countable number of open dense
sets. For any F ∈ WK

{εi} the sets of the family {argmaxf | f ∈ imF} can
be uniformly approximated by finite sets faster than εn → 0. It is proven
that this property is typical in the Banach space C(K,C(X)) in the sense of
category.

In order to prove that the set of exclusions is completely thin in C(K,C(X))
it is sufficient to use the approach of Proposition 4. Note that for arbitrary
compact space Q the set of continuous maps Q → C(K,C(X)) in the maxi-
mum norm is isomorphic to the spaces C(Q×K,C(X)) and C(Q×K ×X).
The space Q×K is compact. We can apply the previous construction to the
space C(Q×K,C(X)) for arbitrary compact Q and get the result: the set of
exclusion is completely thin in C(K,C(X)).

In the definition of WK
{εi} we use only one sequence εi > 0, εi → 0.

Of course, for any finite or countable set of sequences the intersection of
correspondent sets WK

{εi} is also a residual set, and we can claim that almost
always the sets of {argmaxf | f ∈ imF} can be uniformly approximated by
finite sets faster than εn → 0 for all given sequences.

2.5 Selection Efficiency

The first application of the extremal principle for the ω-limit sets is the
theorem of the selection efficiency. The dynamics of a system with inheritance
leads indeed to a selection in the limit t → ∞. In the typical situation, a
diversity in the limit t→ ∞ becomes less than the initial diversity. There is an
efficient selection for the “best”. The basic effects of selection are formulated
below. Let X be compact metric space without isolated points.

Theorem 11. (Theorem of selection efficiency.)

1. For almost every system (1) the support of any ω-limit distribution is
nowhere dense in X (and it has the Lebesgue measure zero for Euclidean
space).

2. Let εn > 0, εn → 0 be an arbitrary chosen sequence. The following state-
ment is true for almost every system (1). Let the support of the initial
distribution be the whole X. Then the support of any ω-limit distribution
can be approximated by finite sets uniformly faster than εn → 0.

The set of exclusive systems that do not satisfy the statement 1 or 2 is com-
pletely thin.
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Remark. These properties hold for the continuous reproduction coefficients.
It is well-known, that it is dangerous to rely on the genericity among con-
tinuous functions. For example, almost all continuous functions are nowhere
differentiable. But the properties 1, 2 hold also for the smooth reproduc-
tion coefficients on the manifolds and sometimes allow to replace the “almost
finiteness” by simply finiteness.

Scheme of Proof. To prove the first statement, it is sufficient to refer to
Proposition 2.3. In order to clarify the second part of this theorem, note that:

1. Support of an arbitrary ω-limit distribution μ∗ consist of points of global
maximum of the average reproduction coefficient on a support of the
initial distribution. The corresponding maximum value is zero.

2. Almost always a function has only one point of global maximum, and
corresponding maximum value is not 0.

3. In a one-parametric family of functions almost always there may occur
zero values of the global maximum (at one point), which cannot be elim-
inated by a small perturbation, and individual functions of the family
may stably have two global maximum points.

4. For a generic n-parameter family of functions, there may exist stably a
function with n points of global maximum and with zero value of this
maximum.

5. Our phase space M is compact. The set of corresponding reproduction
coefficients kM in C(X) for the given map μ → kμ is compact too. The
average reproduction coefficients belong to the closed convex hull of this
set conv(kM ). And it is compact too.

6. A compact set in a Banach space can be approximated by compacts from
finite-dimensional linear manifolds. Generically, in a space of continuous
functions, a function, which belongs such a n-dimensional compact, can
have not more than n points of global maximum with zero maximal value.

The rest of the of proof of the second statement is purely technical. Some
technical details are presented in the previous section. The easiest demon-
stration of the “natural” character of these properties is the demonstration
of instability of exclusions: If, for example, a function has several points of
global maxima, then with an arbitrary small perturbation (for all usually
used norms) it can be transformed into a function with the unique point of
global maximum. However “stable” does not always mean “dense”. The dis-
cussed properties of the system (1) are valid in a very strong sense: the set
of exclusion is completely thin. �

2.6 Gromov’s Interpretation of Selection Theorems

In his talk [26], M. Gromov offered a geometric interpretation of the selection
theorems. Let us consider dynamical systems in the standard m-simplex σm
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in m+ 1-dimensional space Rm+1:

σm = {x ∈ Rm+1 |xi ≥ 0,
m+1∑
i=1

xi = 1} .

We assume that simplex σm is positively invariant with respect to these
dynamical systems: if the motion starts in σm at some time t0, then it remains
in σm for t > t0. Let us consider the motions that start in the simplex σm at
t = 0 and are defined for t > 0.

For large m, almost all volume of the simplex σm is concentrated in a
small neighborhood of the center of σm, near the point c =

(
1
m ,

1
m , . . . ,

1
m

)
.

Hence, one can expect that a typical motion of a general dynamical system in
σm for sufficiently largem spends almost all the time in a small neighborhood
of c.

Indeed, the m-dimensional volume of σm is Vm = 1
m! . The part of σm,

where xi ≥ ε, has the volume (1−ε)mVm. Hence, the part of σm, where xi < ε
for all i = 1, . . . ,m+ 1, has the volume Vε > (1− (m+ 1)(1− ε)m)Vm. Note,
that (m+ 1)(1 − ε)m ∼ m exp(−εm) → 0, if m→ ∞ (1 > ε > 0). Therefore,
for m → ∞, Vε = (1 − o(1))Vm. The volume Wρ of the part of σm with
Euclidean distance to the center c less than ρ > 0 can be estimated as follows:
Wρ > Vε for ε

√
m+ 1 = ρ, hence Wρ > (1 − (m + 1)(1 − ρ/

√
m+ 1)m)Vm.

Finally, (m+ 1)(1 − ρ/
√
m+ 1)m ∼ m exp(−ρ√m), and Wρ = (1 − o(1))Vm

for m → ∞. Let us mention here the opposite concentration effect for a m-
dimensional ball Bm: for m→ ∞ the most part of its volume is concentrated
in an arbitrary small vicinity of its boundary, the sphere. This effect is the
essence of the famous equivalence of microcanonical and canonical ensembles
in statistical physics (for detailed discussion see [22]).

Let us consider dynamical systems with an additional property (“inher-
itance”): all the faces of the simplex σm are also positively invariant with
respect to the systems with inheritance. It means that if some xi = 0 initially
at the time t = 0, then xi = 0 for t > 0 for all motions in σm. The essence
of selection theorems is as follows: a typical motion of a typical dynamical
system with inheritance spends almost all the time in a small neighborhood
of low-dimensional faces, even if it starts near the center of the simplex.

Let us denote by ∂rσm the union of all r-dimensional faces of σm. Due to
the selection theorems, a typical motion of a typical dynamical system with
inheritance spends almost all time in a small neighborhood of ∂rσm with
r � m. It should not obligatory reside near just one face from ∂rσm, but can
travel in neighborhood of different faces from ∂rσm (the drift effect). The
minimax estimation of the number of points in ω-limit distributions through
the diameters εn > 0 of the set conv(kM ) is the estimation of r.
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3 Drift and Mutations

3.1 Drift Equations

So far, we talked about the support of an individual ω-limit distribution. For
almost all systems it is small. But this does not mean, that the union of these
supports is small even for one solution μ(t). It is possible that a solution is
a finite set of narrow peaks getting in time more and more narrow, moving
slower and slower, but not tending to fixed positions, rather continuing to
move along its trajectory, and the path covered tends to infinity as t→ ∞.

This effect was not discovered for a long time because the slowing down
of the peaks was thought as their tendency to fixed positions For the best of
our knowledge, the first detailed publication of the drift equations and corre-
sponded types of stability appeared in book [21], first examples of coevolution
drift on a line were published in the series of papers [46].

There are other difficulties related to the typical properties of continuous
functions, which are not typical for the smooth ones. Let us illustrate them
for the distributions over a straight line segment. Add to the reproduction
coefficients kμ the sum of small and narrow peaks located on a straight line
distant from each other much more than the peak width (although it is ε-
small). However small is chosen the peak’s height, one can choose their width
and frequency on the straight line in such a way that from any initial distri-
bution μ0 whose support is the whole segment, at t → ∞ we obtain ω-limit
distributions, concentrated at the points of maximum of the added peaks.

Such a model perturbation is small in the space of continuous functions.
Therefore, it can be put as follows: by small continuous perturbation the limit
behavior of system (1) can be reduced onto a ε-net for sufficiently small ε. But
this can not be done with the small smooth perturbations (with small values
of the first and the second derivatives) in the general case. The discreteness
of the net, onto which the limit behavior is reduced by small continuous
perturbations, differs from the discreteness of the support of the individual
ω-limit distribution. For an individual distribution the number of points is
estimated, roughly speaking, by the number of essential parameters (11),
while for the conjunction of limit supports – by the number of stages in
approximation of kμ by piece-wise constant functions.

Thus, in a typical case the dynamics of systems (1) with smooth reproduc-
tion coefficients transforms a smooth initial distributions into the ensemble
of narrow peaks. The peaks become more narrow, their motion slows down,
but not always they tend to fixed positions.

The equations of motion for these peaks can be obtained in the following
way [21]. Let X be a domain in the n-dimensional real space, and the initial
distributions μ0 be assumed to have smooth density. Then, after sufficiently
large time t, the position of distribution peaks are the points of the average
reproduction coefficient maximum 〈kμ〉t (9) to any accuracy set in advance.
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Let these points of maximum be xα, and

qα
ij = −t∂

2〈kμ〉t
∂xi∂xj

∣∣∣∣
x=xα

.

It is easy to derive the following differential relations just by differentiation
in time of the extremum conditions: at points xα(t) gradient of the average
reproduction coefficient 〈kμ〉t vanishes: ∂〈kμ〉t(x)/∂xi

∣∣
x=xα(t) = 0.

∑
j

qα
ij

dxα
j

dt
=
∂kμ(t)

∂xi

∣∣∣∣
x=xα

;

dqα
ij

dt
= −∂

2kμ(t)

∂xi∂xj

∣∣∣∣
x=xα

. (17)

The exponent coefficients qα
ij remain time dependent even when the distrib-

ution tends to a δ-function. It means (in this case) that peaks became infi-
nitely narrow. Nevertheless, it is possible to change variables and represent
the weak∗ tendency to stationary discrete distribution as usual tendency to
a fixed points, see (21) below.

These relations (17) do not form a closed system of equations, because the
right-hand parts are not functions of xα

i and qα
ij . For sufficiently narrow peaks

there should be separation of the relaxation times between the dynamics
on the support and the dynamics of the support: the relaxation of peak
amplitudes (it can be approximated by the relaxation of the distribution
with the finite support, {xα}) should be significantly faster than the motion
of the locations of the peaks, the dynamics of {xα}. Let us write the first
term of the corresponding asymptotics [21].

For the finite support {xα} the distribution is μ =
∑

αNαδ(x − xα).
Dynamics of the finite number of variables, Nα obeys the system of ordinary
differential equations

dNα

dt
= kα(N)Nα, (18)

where N is vector with components Nα, kα(N) is the value of the reproduc-
tion coefficient kμ at the point xα:

kα(N) = kμ(xα) for μ =
∑
α

Nαδ(x− xα) .

For finite-dimensional dynamics (18) we have to find the relevant SBR
(Sinai–Bowen–Ruelle) invariant measure (or “physical measure”) [30,34] for
averaging and substitute the average time along the solutions of (18)

1
t

∫ t

0

kμ∗(N)(τ) dτ where μ∗(N) =
∑
α

Nαδ(x− xα)

by the average with respect to the SBR measure on space of vectors N . For
this average, we use notation k∗({xα}) = 〈kμ∗〉.
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In the simplest case the finite-dimensional attractor is just one stable fixed
point and the average k∗({xα}) is a value at this point. Let the dynamics of
the system (18) for a given set of initial conditions be simple: the motion N(t)
goes to the stable fixed point N = N∗({xα}). Then we can take k∗({xα}) =
kμ∗ where μ∗ =

∑
αN

∗
αδ(x− xα).

One can use in the right hand side of (17) the following approximation
for k∗({xα}) instead of kμ(t).

μ(t) = μ∗({xα(t)}) =
∑
α

N∗
αδ(x− xα(t)) . (19)

This is a standard averaging hypothesis. We can use it because den-
sity peaks are sufficiently narrow, hence, (i) the difference between true
kμ(t) and the reproduction coefficient for the measure with finite support
k(

∑
αNα(t)δ(x − xα is negligible and (ii) dynamics of peak motion is much

slower than relaxation of the finite-dimensional system (18) to its attrac-
tor.The relations (17) transform into the ordinary differential equations

∑
j

qα
ij

dxα
j

dt
=
∂k∗({xβ})(x)

∂xi

∣∣∣∣
x=xα

;

dqα
ij

dt
= −∂

2k∗({xβ})(x)
∂xi∂xj

∣∣∣∣
x=xα

. (20)

The matrix variables qα
ij are usually not bounded. For example, near a non-

degenerated fixed point {xα} they go to infinity linearly in time. On the
other hand, relaxation of {xα} to their stationary positions, for example,
is not exponential due to (20). To return to the standard situation with
compact phase space and exponential relaxation it is useful to switch to the
logarithmic time τ = ln t and to new variables

bαij =
1
t
qα
ij = −∂

2〈k(μ)〉t
∂xi∂xj

∣∣∣∣
x=xα

.

For large t we obtain from (20)

∑
j

bαij
dxα

j

dτ
=
∂k∗({xβ})(x)

∂xi

∣∣∣∣
x=xα

;

dbαij
dτ

= −∂
2k∗({xα})(x)
∂xi∂xj

∣∣∣∣
x=xβ

− bαij . (21)

In these equations it becomes obvious that dynamics of matrix bαij is the
differential pursuit of Hessian ∂2k∗({xα})(x)/∂xi∂xj |x=xβ .

Equations for drift in logarithmic time (21) are the main equations in the
theory of the asymptotic layer For Darwin’s systems near their limit behavior.

The way of constructing the drift equations (20,21) for a specific system
(1) is as follows:
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1. For finite sets {xα} one studies systems (18) and finds the equilibrium
solutions ∗({xα}) or the relevant SBR measure;

2. For given measures {xα} (19) one calculates the reproduction coefficients
k∗({xα})(x) together with the first and second first derivatives of these
functions in x at points xα. That is all, the drift equations (21) are set
up.

The drift equations (20,21) describe the dynamics of the peaks positions
xα and of the coefficients qα

ij . For given xα, qα
ij andN∗

α the distribution density
μ can be approximated as the sum of narrow Gaussian peaks:

μ =
∑
α

N∗
α

√
detQα

(2π)n
exp

⎛
⎝−1

2

∑
ij

qα
ij(xi − xα

i )(xj − xα
j )

⎞
⎠ , (22)

where Qα is the inverse covariance matrix (qα
ij).

If the limit dynamics of the system (18) for finite supports at t→ ∞ can
be described by a more complicated attractor, then instead of reproduction
coefficient k∗({xα})(x) = kμ∗ for the stationary measures μ∗ (19) one can
use the average reproduction coefficient with respect to the corresponding
Sinai–Ruelle–Bowen measure. If finite systems (18) have several attractors
for given {xα}, then the dependence k∗({xα}) is multi-valued, and there may
be bifurcations and hysteresis with the function k∗({xα}) transition from one
sheet to another. There are many interesting effects concerning peaks’ birth,
desintegration, divergence, and death, and the drift equations (20,21) describe
the motion in a non-critical domain, between these critical effects.

Inheritance (conservation of support) is never absolutely exact. Small
variations, mutations, immigration in biological systems are very important.
Excitation of new degrees of freedom, modes diffusion, noise are present in
physical systems. How does small perturbation in the inheritance affect the
effects of selection? The answer is usually as follows: there is such a value
of perturbation of the right-hand side of (1), at which they would change
nearly nothing, just the limit δ-shaped peaks transform into sufficiently nar-
row peaks, and zero limit of the velocity of their drift at t → ∞ substitutes
by a small finite one.

3.2 Drift in Presence of Mutations and Scaling Invariance

The simplest model for “inheritance + small variability” is given by a per-
turbation of (1) with diffusion term

∂μ(x, t)
∂t

= kμ(x,t) × μ(x, t) + ε
∑
ij

dij(x)
∂2μ(x, t)
∂xi∂xj

. (23)

where ε > 0 and the matrix of diffusion coefficients dij is symmetric and
positively definite.
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There are almost always no qualitative changes in the asymptotic behav-
ior, if ε is sufficiently small. With this the asymptotics is again described by
the drift equations (20,21), modified by taking into account the diffusion as
follows:

∑
j

qα
ij

dxα
j

dt
=
∂k∗({xβ})(x)

∂xi

∣∣∣∣
x=xα

;

dqα
ij

dt
= −∂

2k∗({xβ})(x)
∂xi∂xj

∣∣∣∣
x=xα

− 2ε
∑
kl

qα
ikdkl(xα)qα

lj . (24)

Now, as distinct from (20), the eigenvalues of the matrices Qα = (qα
ij) cannot

grow infinitely. This is prevented by the quadratic terms in the right-hand
side of the second equation (24).

Dynamics of (24) does not depend on the value ε > 0 qualitatively, be-
cause of the obvious scaling property. If ε is multiplied by a positive number
ν, then, upon rescalling t′ = ν−1/2t and qα

ij
′ = ν−1/2qα

ij , we have the same
system again. Multiplying ε > 0 by ν > 0 changes only peak’s velocity values
by a factor ν1/2, and their width by a factor ν1/4. The paths of peaks’ motion
do not change at this for the drift approximation (24) (but the applicability
of this approximation may, of course, change).

4 Three Main Types of Stability

4.1 Internal stability

Stable steady-state solutions of equations of the form (1) may be only the
sums of δ-functions – this was already mentioned. There is a set of specific
conditions of stability, determined by the form of equations.

Consider a stationary distribution for (1) with a finite support

μ∗(x) =
∑
α

N∗
αδ(x− x∗α) .

Steady state of μ∗ means, that

kμ∗(x∗α) = 0 for all α . (25)

The internal stability means, that this distribution is stable with respect
to perturbations not increasing the support of μ∗. That is, the vector N∗

α

is the stable fixed point for the dynamical system (18). Here, as usual, it
is possible to distinguish between the Lyapunov stability, the asymptotic
stability and the first approximation stability (negativeness of real parts for
the eigenvalues of the matrix ∂Ṅ∗

α/∂N
∗
α at the stationary points).
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4.2 External Stability – Uninvadability

The external stability (uninvadability) means stability to an expansion of the
support, i.e. to adding to μ∗ of a small distribution whose support contains
points not belonging to suppμ∗. It makes sense to speak about the external
stability only if there is internal stability. In this case it is sufficient to re-
strict ourselves with δ-functional perturbations. The external stability has a
very transparent physical and biological sense. It is stability with respect to
introduction into the systems of a new inherited unit (gene, variety, specie...)
in a small amount.

The necessary condition for the external stability is: the points {x∗α} are
points of the global maximum of the reproduction coefficient kμ∗(x). It can
be formulated as the optimality principle

kμ∗(x) ≤ 0 for all x; kμ∗(x∗α) = 0 . (26)

The sufficient condition for the external stability is: the points {x∗α} and only
these points are points of the global maximum of the reproduction coefficient
kμ∗(x∗α). At the same time it is the condition of the external stability in the
first approximation and the optimality principle

kμ∗(x) < 0 for x /∈ {x∗α}; kμ∗(x∗α) = 0 . (27)

The only difference from (26) is the change of the inequality sign from
kμ∗(x) ≤ 0 to kμ∗(x) < 0 for x /∈ {x∗α}. The necessary condition (26)
means, that the small δ-functional addition will not grow in the first approx-
imation. According to the sufficient condition (27) such a small addition will
exponentially decrease.

If X is a finite set, then the combination of the external and the inter-
nal stability is equivalent to the standard stability for a system of ordinary
differential equations.

4.3 Stable Realizability – Evolutionary Robustness

External stability of a internally stable limit distribution is insufficient for
its stability with respect to the drift: It does not imply convergence to x∗

when starting from a distribution of small deviations from x∗, regardless of
how small these deviations are. The standard idea of asymptotic stability
is: “after small deviation the system returns to the initial regime, and do
not deviate to much on the way of returning”. The crucial question for the
measure dynamics is: in which topology the deviation is small? The small shift
of the narrow peak of distribution in the continuous space of strategies can
be considered as a small deviation in the weak∗ topology, but it is definitely
large deviation in the strong topology, for example, if the shift is not small
in comparison with the peak with.

For the continuous X there is one more kind of stability important from
the applications viewpoint. Substitute δ-shaped peaks at the points {x∗α} by
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narrow Gaussians and shift slightly the positions of their maxima away from
the points x∗α. How will the distribution from such initial conditions evolve?
If it tends to μ without getting too distant from this steady state distrib-
ution, then we can say that the third type of stability – stable realizability
– takes place. It is worth mentioning that the perturbation of this type is
only weakly∗ small, in contrast to perturbations considered in the theory of
internal and external stability. Those perturbations are small by their norms.
Let us remind that the norm of the measure μ is ‖μ‖ = sup|f |≤1[μ, f ]. If one
shifts the δ-measure of unite mass by any nonzero distance ε, then the norm
of the perturbation is 2. Nevertheless, this perturbation weakly∗ tends to 0
with ε→ 0.

In order to formalize the condition of stable realizability it is convenient
to use the drift equations in the form (21). Let the distribution μ∗ be inter-
nally and externally stable in the first approximations. Let the points x∗α

of global maxima of kμ∗(x) be non-degenerate in the second approximation.
This means that the matrices

b∗α
ij = −

(
∂2kμ∗(x)
∂xi∂xj

)
x=x∗α

(28)

are strictly positively definite for all α.
Under these conditions of stability and non-degeneracy the coefficients

of (21) can be easily calculated using Taylor series expansion in powers of
(xα − x∗α). The stable realizability of μ∗ in the first approximation means
that the fixed point of the drift equations (21) with the coordinates

xα = x∗α , bαij = b∗α
ij (29)

is stable in the first approximation. It is the usual stability for the system (21)
of ordinary differential equations, and these conditions with the notion of the
stable realizability became clear from the logarithmic time drift equations
(21) directly.

The specific structure of equations (21) allows us to simplify stability
analysis for steady states. Let the steady state be externally stable steady
states in the first approximations and let matrices b∗α be strictly positive
definite. Equations (21) have the structure

BẊ = F (X ) ;

Ḃ = Φ(X ) − B , (30)

where X is a vector composed from vectors xα, and B is a block-diagonal ma-
trix composed from matrices bα. The steady values are X ∗ and B∗: F (X ∗) =
0, B∗ = Φ(X ∗). Direct calculations gives for Jacobian J :

J =

⎛
⎝B−1 DF (X )

DX
∣∣∣
X ∗

0
DΦ(X )

DX
∣∣∣
X ∗

−1

⎞
⎠ . (31)
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This form of Jacobian immedially implies the following proposition.

Proposition 12. Stability of (21) (in the first approximation) near a steady
state could be defined by the spectrum of matrix B−1 DF (X )

DX
∣∣∣
X ∗

: If the real
parts of its eigenvalues are negative then the system is stable. If some of
them are positive then the system is unstable. �

To explain the sense of the stable realizability we used in the book [25]
the idea of the “Gardens of Eden” from J. H. Conway “Game of Life” [18].
That are Game of Life patterns which have no father patterns and therefore
can occur only at generation 0, from the very beginning. It is not known if
a pattern which has a father pattern, but no grandfather pattern exists. It
is the same situation, as for internal and external stable (uninvadable) state
which is not stable realizable: it cannot be destroyed by mutants invasion and
by the small variation of conditions, but, at the same time, it is not attractive
for drift, and, hence, can not be realized in this asymptotic motion. It can be
only created.

5 Explicit Drift Equations for Distributed
Lottka–Volterra–Gause Systems

Construction of the drift system (21) goes through several operations. The
most complicated of them is averaging: for a system with finite support
{xα} (18) we have to find the relevant finite-dimensional average k∗({xα}) =
〈k(∑αNαδ(x− xα)〉

The most difficult operation in the construction of drift equations is the
qualitative study of the finite-dimensional system and its SBR measures.
Even in the simplest case of unique and globally attractive stable steady
state in (18) the study of global stability may be difficult and even solution
of equations for steady states may be computationally expensive.

There is a lucky exclusion: if the reproduction coefficient is a value of
a linear integral operator then the steady-state can be found from linear
equations and average values of k coincide with its values at steady-states.
Replicator systems with linear reproduction coefficients include all classical
Lottka–Volterra–Gause systems and can have an arbitrary complex dynamics.
Nevertheless, equilibria of these systems satisfy linear equations and average
reproduction coefficient is equal to its steady-state value.

Let us write down these equations:

dμ(x)
dt

= μ(x)
[
r(x) +

∫
X

K(x, ξ)μ(ξ) dξ
]
. (32)

Here we assume that q(x) and K(x, ξ) are continuous functions.‘The space of
measures is assumed to have a bounded set of positive measures M μ(x ≥ 0
that is positively invariant relative to system (32): if μ(0) ∈M , then μ(t) ∈M
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(we also assume that M is non-trivial, i.e. it is neither empty nor a one-point
set but includes at least one point with its vicinity). This M serves as the
phase space of system (32).

A steady state μ with support suppμ satisfies a linear equation:

r(x) +
∫

X

K(x, ξ)μ(ξ) dξ = 0 for x ∈ suppμ . (33)

For a finite set {xα} we introduce a matrix K({xα}) = [Kαβ({xα})] =
[K(xα, xβ)] and a vector r = rα = r(xα). Equation (18) for (32) has a
form:

dNα

dt
=

⎛
⎝rα +

∑
β

KαβNβ

⎞
⎠Nα, (34)

The positive stationary solution (if it exists) is given by

N∗({xα}) = −K−1({xα})r({xα}) . (35)

For strictly positive bounded solutions of (34) N(t) with N(t) > ε > 0
the time average of N(t) coincides with N∗ and the time average of any
linear functional l(N(t)) is l(N∗). Hence, for this type of finite-dimensional
dynamics we can use in (21)

k∗({xα})(x) = r(x) +
∑
α

K(x, xβ)N∗
β({xα}) . (36)

Here functions N∗
β({xα}) are explicitly derived from the coefficients (35),

hence. the drift equations (21) could be also found in explicit form, by dif-
ferentiation. The coefficients of those equations includes nothing more than
functions r(x), K(x, xβ), their rational combinations and derivatives.

Just for simplicity let us demonstrate this for system of two quasispecies.
Let X be a disjoint union of two intervals on real line. The replicator system
(32) in this case is

dμ1(x)
dt

= μ1(x)
[
r1(x) +

∫
K11(x, ξ)μ1(ξ) dξ +

∫
K12(x, ν)μ2(ν) dν

]
;

dμ2(y)
dt

= μ2(y)
[
r2(x) +

∫
K21(y, ξ)μ1(ξ) dξ +

∫
K22(y, ν)μ2(ν) dν

]
.

(37)

Two quasispecies are two peaks, one for μ1 with coordinate x = x1 and
variance var1 ≈ 1/(tb1) and another for μ2 with coordinate y = x2 and
variance var2 ≈ 1/(tb2) for large t.

The finite-dimensional system (34) transforms in

Ṅ1 = [r1(x1) +K11(x1, x1)N1 +K12(x1, x2)N2]N1 ;

Ṅ2 = [r2(x2) +K21(x2, x1)N1 +K22(x2, x2)N2]N2 .
(38)
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The steady state solution is

N∗
1 (x1, x2) =

K22r1 −K12r2
K12K21 −K11K22

;

N∗
2 (x1, x2) =

K11r2 −K21r1
K12K21 −K11K22

,

(39)

where coefficients on the right hand side are calculated for x = x1, y = x2.
The inequalities N∗

1,2 > 0 should hold (this is a condition on the coefficients
values). We omit here stability and positivity analysis for 2D system (38).

Function k∗({xα})(x) is represented by two functions k∗1(x1, x2)(x),
k∗2(x1, x2)(y) (because X is a disjoint union of two intervals on real line):

k∗1(x1, x2)(x) = r1(x) +K11(x, x1)N∗
1 (x1, x2) +K12(x, x2)N∗

2 (x1, x2) ;

k∗1(x1, x2)(y) = r2(y) +K21(y, x1)N∗
1 (x1, x2) +K22(y, x2)N∗

2 (x1, x2) .
(40)

Now, we can write down the drift equation in logarithmic time (21):

ẋ1 =
1
b1

(∂xk
∗
1(x1, x2)(x))x=x1 , ẋ2 =

1
b2

(∂yk
∗
2(x1, x2)(y))y=x2 ;

ḃ1 = −(∂2
xk

∗
1(x1, x2)(x))x=x1 − b1, ḃ2 = −(∂2

yk
∗
2(x1, x2)(y))y=x2 − b2 .

(41)

Dynamics of b1,2 is a differential pursuit of the (minus) second derivatives of
functions k∗1,2 at peak positions. The velocity of peaks drift is proportional to
the first derivatives of these functions with the coefficients 1/b1,2. Therefore,
velocity is proportional to the peak variance or more precise, to var

t . Already
such simple systems as (41) demonstrate various regimes of coevolution [46]

6 Simple Example of Arbitrary Complex
Dynamics of Drift

Let X be a closed domain in Rn with nonempty interior. For a smooth
vector field v(x) in X we would like to construct such a Darwin’s system (1)
that drift (in logarithmic time τ = ln t) approximates dynamics defined by
differential equation ẋ = v(x). In order to consider this dynamics in X , some
additional assumptions are needed. To guarantee positive invariance of X we
can assume that there exists such ε > 0 that if x ∈ X and 0 < δ ≤ ε then
x + δv(x) ∈ X . To consider function v(x) in a vicinity of X we will use an
arbitrary smooth continuation of v(x) on Rn.

For any measure μ on X we use notations:

M0(μ) =
∫

X

μ dx, M1(μ) =
∫

X

xμ dx, M2(μ) =
∫

X

x2μ dx .

Let us select the reproduction coefficient in the following form:

K(μ)(x) = −(x− v(M1(μ)))2M0(μ) + C(μ) , (42)
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where functional C(μ) is selected in such a way that M0(μ) satisfies exactly
equation Ṁ0 = (1 − M0)M0 if μ̇ = K(μ)μ . Darwin’s equation with the
reproduction coefficient (42) gives for time derivative of M0

Ṁ0 =
∫

X

μ̇(x) dx = −M2M0 + 2(x, v(M1))M0 − v2(M1)M0 + CM0 .

It is straightforward to check that for functional

C(μ) = 1 −M0 +M2 − 2(M1, v(M1)) +M0v
2(M1)

dynamics ofM0(μ) satisfies the simple equation Ṁ0 = (1−M0)M0. Therefore,
for positive initial condition after sufficiently long time the value of M0 is
arbitrarily closed to one. After some rearranging of coefficients, we get for
time averages of K(μ):

〈K(μ)(x)〉t =
1
t

∫ t

0

K(μ(τ))(x) dτ

= −
(
x− 〈M0v(M1)〉t

〈M0〉t

)2

〈M0〉t − 〈M0v
2(M1)〉t +

〈M0v(M1)〉2t
〈M0〉t + 〈C〉t .

(43)

This average reproduction coefficient achieves its maximum at point

x∗ =
〈M0v(M1)〉t

〈M0〉t .

After sufficiently long time x∗ ≈ 〈v(M1)〉t, hence, for analysis of drift dy-
namics we have to study motion of the point 〈v(M1)〉t. By definition of time
average, the velocity of this point in logarithmic time is

d〈v(M1)〉t
d ln t

= v(M1) − 〈v(M1)〉t
t

.

For large t the second term tends to zero and we found that the time derivative
of the reproduction coefficient maximizer x∗ is v(M1): ẋ∗ = v(M1) with
arbitrarily chosen accuracy.

This is not yet an equation for peak motion. We need additional asymp-
totic identity x∗ ≈ M1. It is not always true because it is possible that
suppμ �= X . Nevertheless, if at the initial moment suppμ = X then for suffi-
ciently large t x∗ ≈M1 because μ(t) = μ(0) exp(t〈K(μ)(x)〉t) and almost all
measure μ(t) is concentrated in an arbitrarily small vicinity of x∗. Therefore,
x∗ ≈M1.

Finally, for drift dynamics we obtain equation: with an arbitrarily chosen
accuracy in logarithmic time

ẋ∗ = v(x∗) .

This simple example demonstrates that the drift of density peaks for
Darwin’s equations may be arbitrarily complex.
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7 Conclusion

Darwin’s equation demonstrate a mechanism of self-simplification of com-
plex system. This mechanism, under the name “natural selection” was ex-
tracted from analysis of biological evolution by Charles Robert Darwin and
Alfred Russel Wallace and published in 1859. Selection mechanism is based on
specific separation of time: the support of distributions changes very slowly
(small mutations) or cannot increase at al (inheritance).

Such a separation of time scales implies typical asymptotic behavior: sup-
ports of the ω-limit distributions are discrete. The asymptotic layer near the
ω-limit distributions is drift of finite number of narrow density peaks. This
drift becomes slower in time, but its dynamics in logarithmic time could be
arbitrarily complex.

The equations for peak dynamics, the drift equations, (20,21,24) describe
dynamics of the shapes of the peaks and their positions. For systems with
small variability (“mutations”) the drift equations (24) has the scaling prop-
erty: the change of the intensity of mutations is equivalent to the change of
the time scale.

Some further exact results of the mathematical selection theory can be
found in [23,35,36]. Karev [33] recently developed an entropic description of
limit behaviour of replicator systems.

There exists an important class of generalization of all selection theorems
for distributions with vector space of values. In biological language this means
that non-inherited properties are taken into account: distribution in size, age,
space of birth and so on. The results are, essentially, the same: the Perron–
Frobenius theorem and it generalizations allow to reduce the vector Darwin’s
systems back to the scalar optimality principle. The key role in this reduction
plays the Birkhoff contraction theorem [2,16]

Many examples of Darwin’s systems outside the theory of biological evo-
lution in physics and other applications, such as weak turbulence or wave tur-
bulence theory [53,54,38] or ecological applications [47], are already known.
Nevertheless, this mechanism is, perhaps, still underestimated and we will
meet them in many other areas.
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