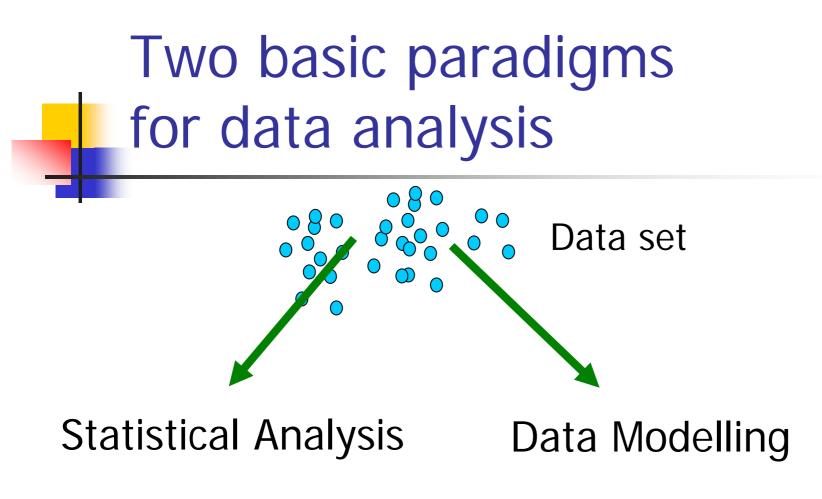
Topological Grammars for data analysis

Alexander Gorban, Leicester

with Andrei Zinovyev, Paris and Neil Sumner, Leicester

Plan of the talk

- Two paradigms for data analysis: statistics and modelling
- Clustering and K-means
- Self Organizing Maps
- Constructing PMs: elastic maps
- Adaptation and grammars
- Examples



Statistical Analysis

- Existence of a Probability Distribution;
- Statistical Hypothesis about Data Generation;
- Verification/Falsification of Hypothesises about Hidden Properties of Data Distribution

We should find the Best Model for Data description;

Data Modelling

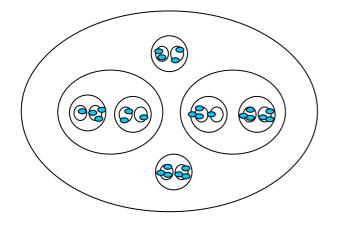
We know the Universe of Models;

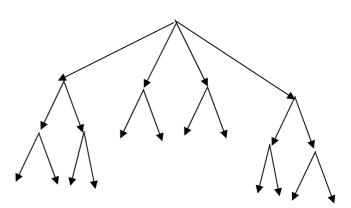
Iniverse

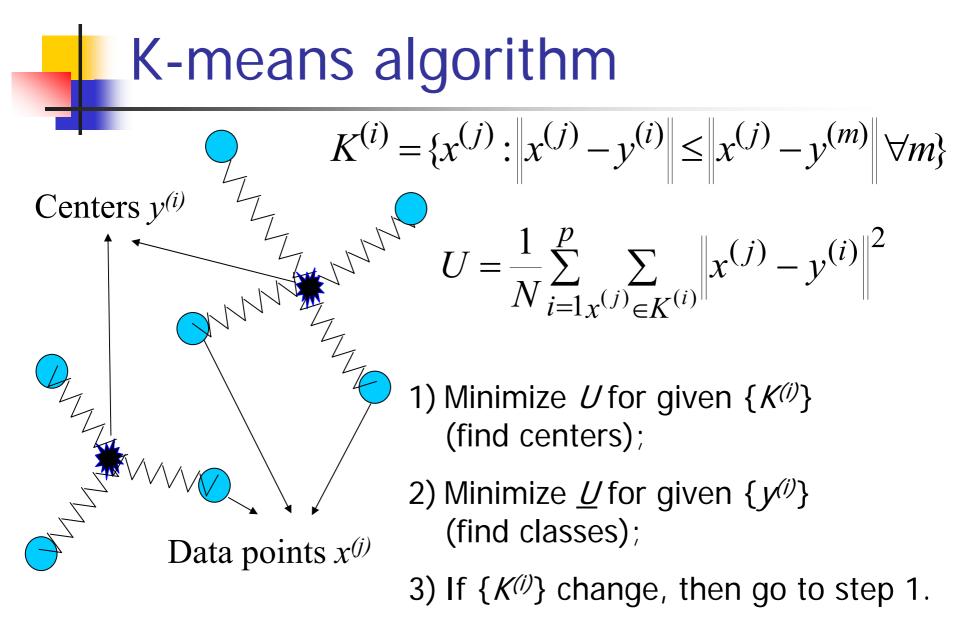
of models

- We know the Fitting Criteria;
- Learning Errors and Generalization Errors analysis for the Model Verification

Example: Simplest Clustering







"Centers" can be lines, manifolds,... with the same algorithm

1st Principal components + mean points for classes

instead of simplest means

SOM - Self Organizing Maps

- Set of nodes is a finite metric space with distance d(N,M);
- 0) Map set of nodes into dataspace $N \rightarrow f_0(N)$;
- 1) Select a datapoint X (random);
- 2) Find a nearest $f_i(N)$ $(N=N_X)$;
- $= 3) f_{i+1}(N) = f_i(N) + W_i(d(N, N_X))(X f_i(N)),$

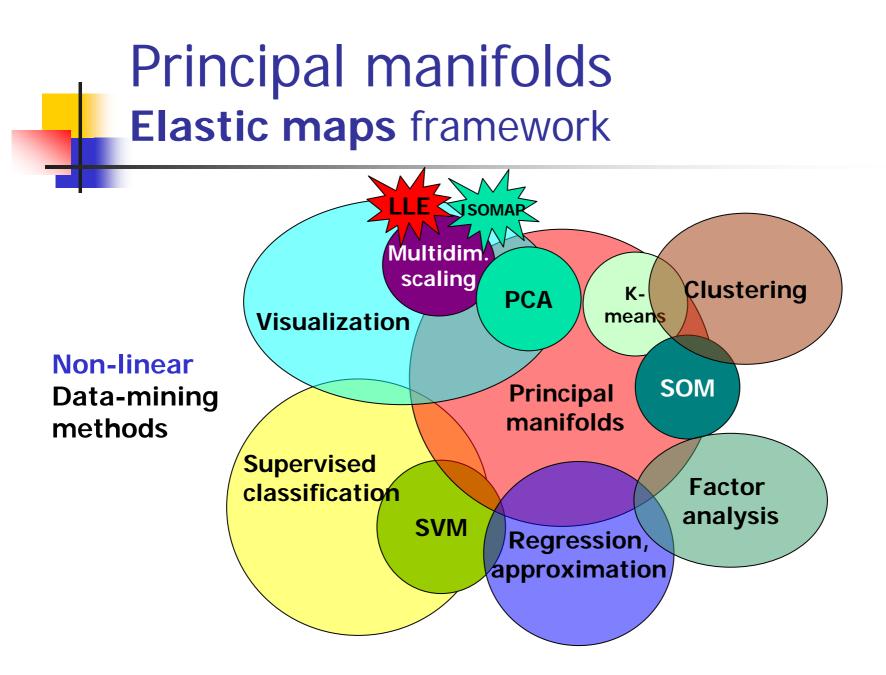
where $w_i(d)$ ($0 < w_i(d) < 1$) is a decreasing cutting function. The closest node to X is moved the most in the direction of X, while other nodes are moved by smaller amounts depending on their distance from the closest node in the initial geometry.

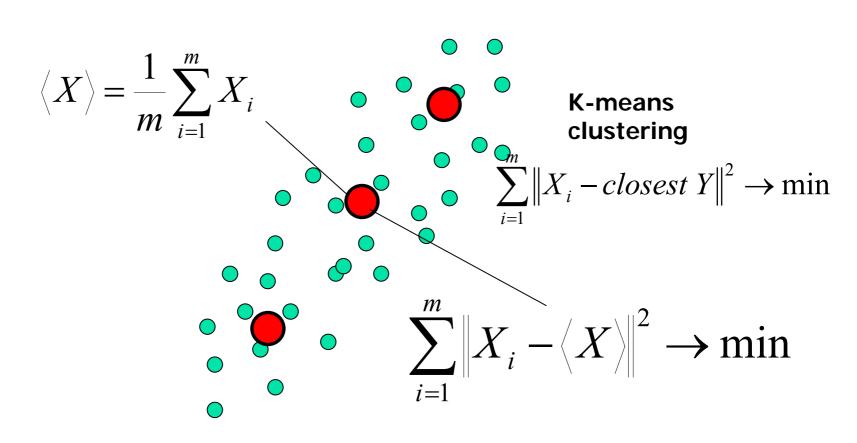
PCA and Local PCA

A top secret: the difference between two basic paradigms is not crucial

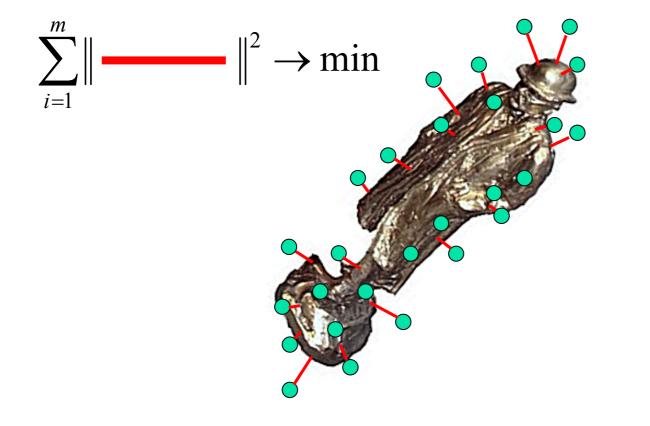
(Almost) Back to Statistics:

- Quasi-statistics:
 - 1) delete one point from the dataset,
 - 2) fitting,
 - 3) analysis of the error for the deleted data;
- The overfitting problem and smoothed data points (it is very close to nonparametric statistics)

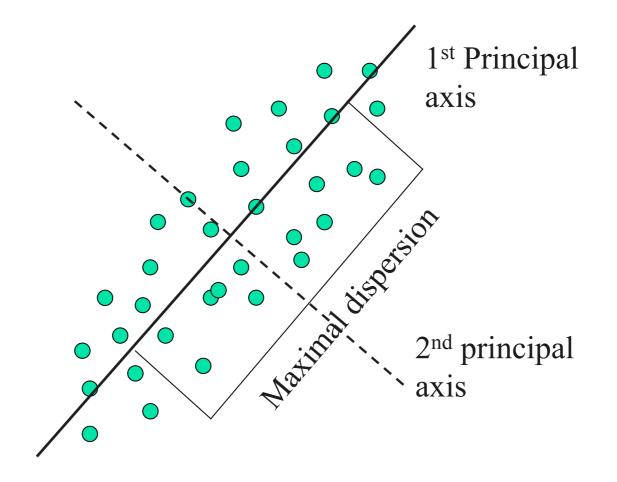




Principal "Object"

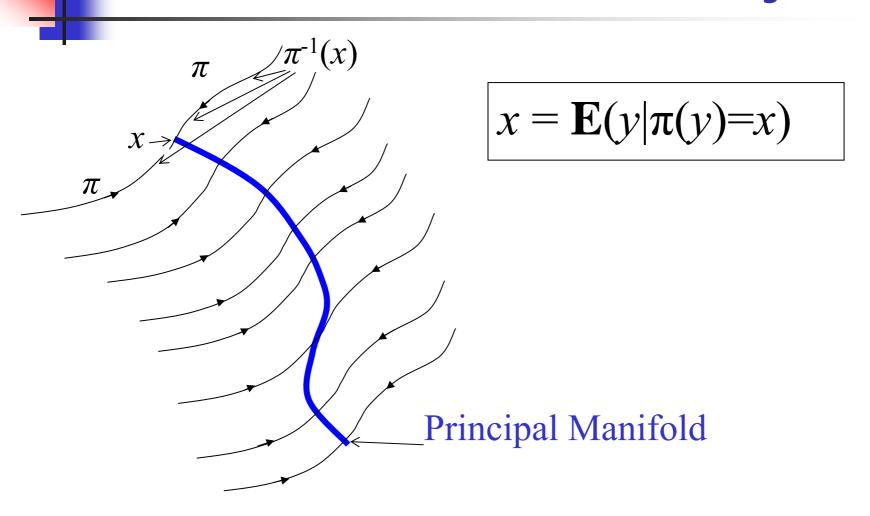


Principal Component Analysis



Principal manifold

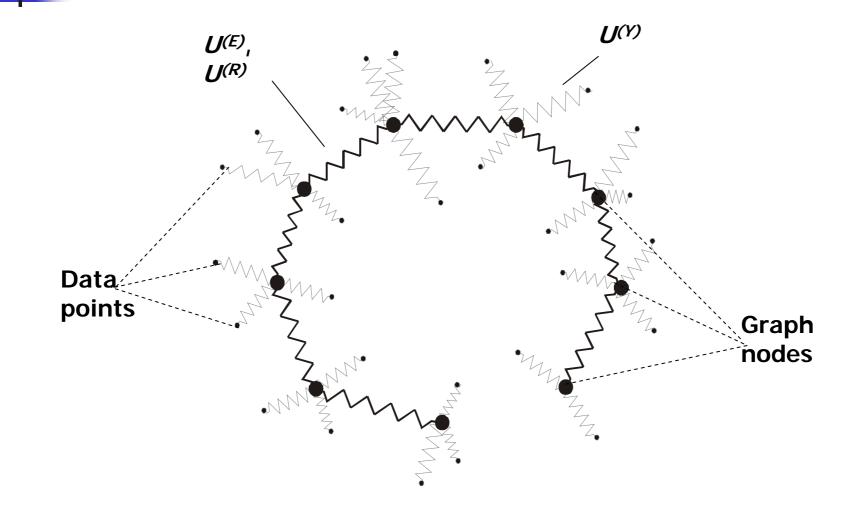
Statistical Self-consistency



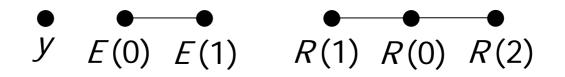
What do we want?

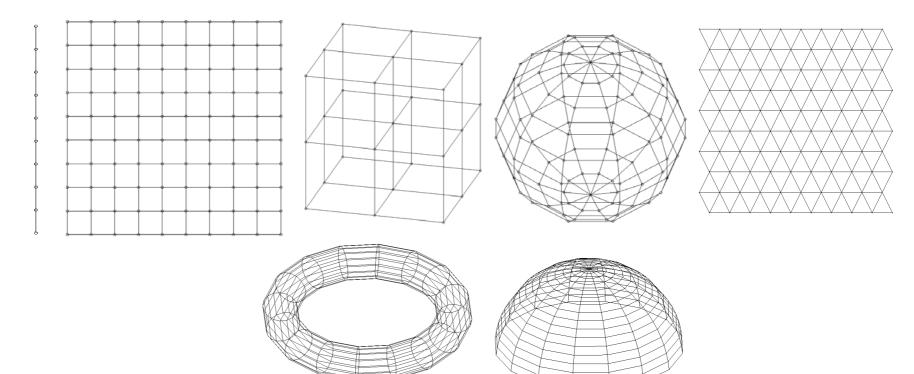
- Non-linear surface (1D, 2D, 3D ...)
- Smooth and not twisted
- The data model is unknown
- Speed (time linear with Nm)
- Uniqueness
- Fast way to project datapoints

Metaphor of elasticity



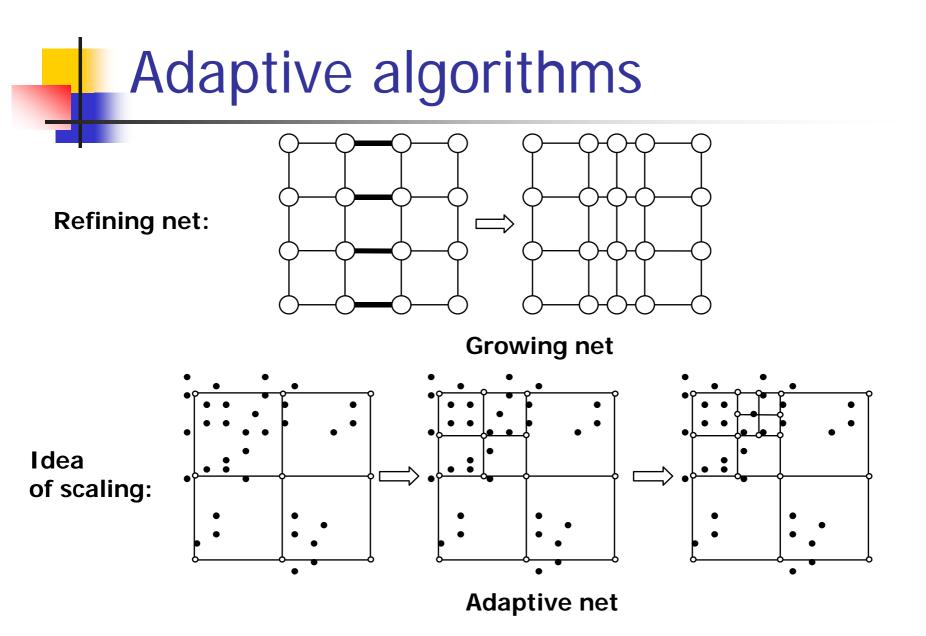
Constructing elastic nets





Definition of elastic energy ••••X^j •••V••U^(Y) = $\frac{1}{N} \sum_{i=1}^{p} \sum_{r^{(j)} \in K^{(i)}} ||X^{j} - y^{(i)}||^{2}$ $U^{(E)} = \sum_{i=1}^{S} \lambda_{i} \left\| E^{(i)}(1) - E^{(i)}(0) \right\|^{2}$ E(0) E(1) $U^{(R)} = \sum_{i=1}^{k} \mu_i \left\| R^{(i)}(1) + R^{(i)}(2) - 2R^{(i)}(0) \right\|^2$ R(1) R(0) R(2)

 $U = U^{(Y)} + U^{(E)} + U^{(R)}$ $\lambda_i = \lambda_0, \quad \mu_i = \mu_0$

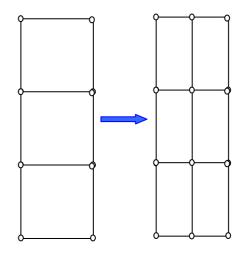


Grammars of Construction

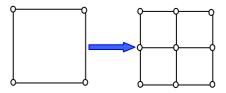
Substitution rules

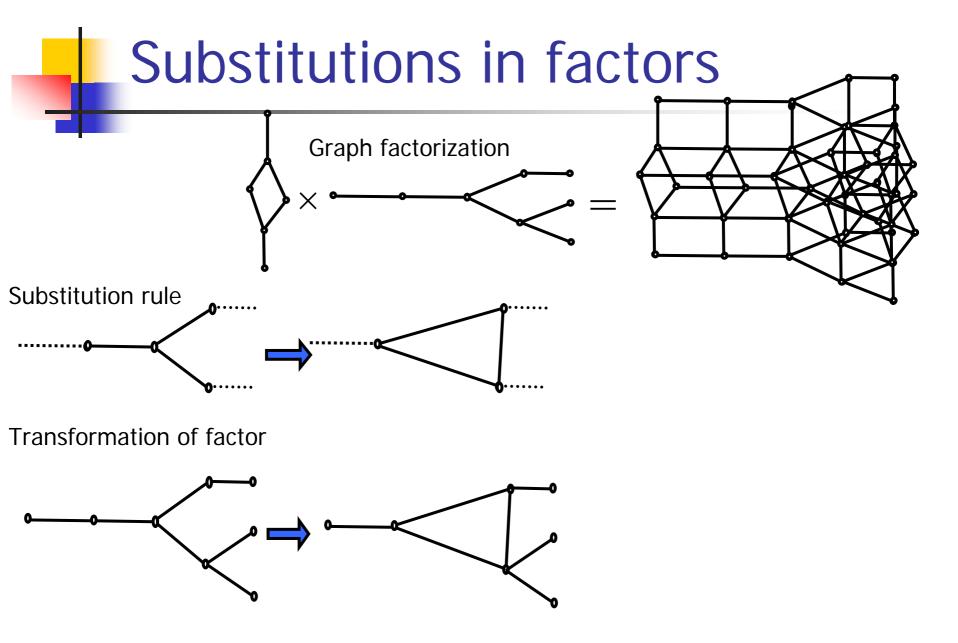
Examples:

1) For net refining: substitutions of columns and rows

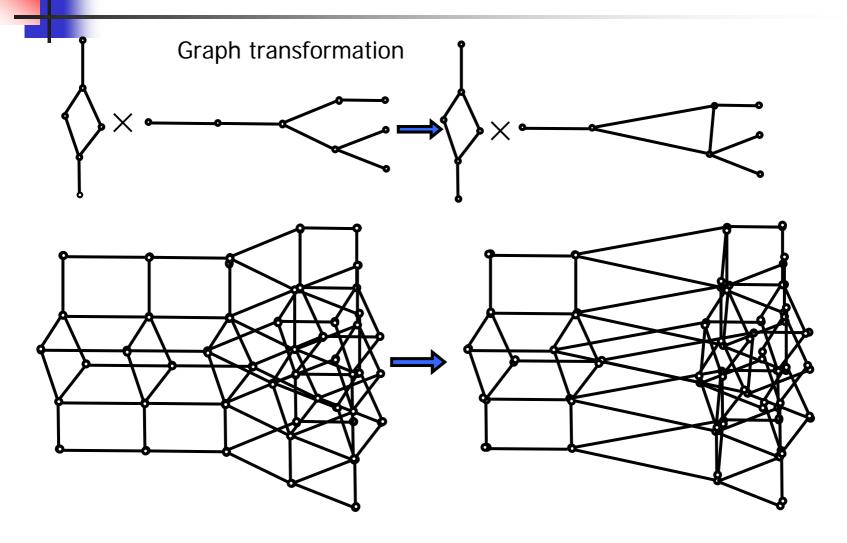


2) For growing nets: substitutions of elementary cells.





Substitutions in factors

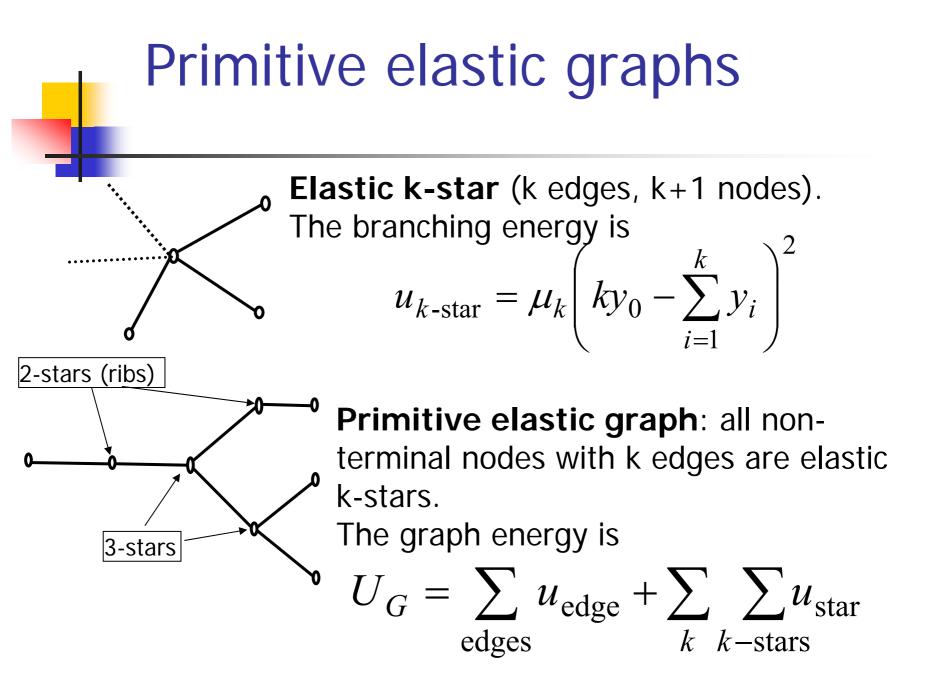


Transformation selection

A grammar is a list of elementary graph transformations.

Energetic criterion: we select and apply an elementary applicable transformation that provides the maximal energy decrease (after a fitting step).

The number of operations for this selection should be in order O(N) or less, where N is the number of vertexes



A grammar: "add a node to a node or bisect an edge"

Production: "add a node to a node:"

A production rule applicable to any graph node y:

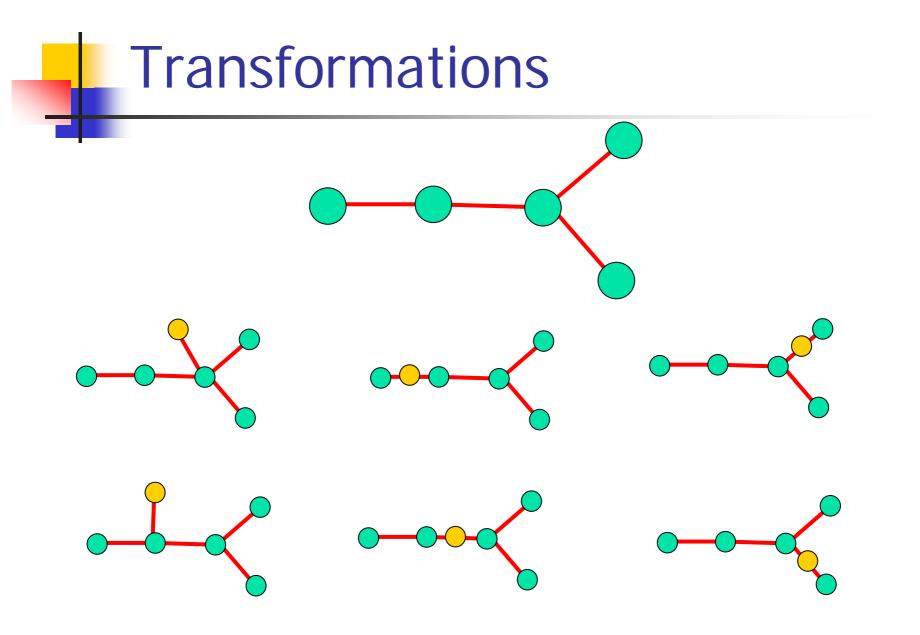
If y is a terminal node then add a new node z, a new edge (y,z), and a new 2-star with centre in y;

If y is a centre of a k-star then add a new node z, a new edge (y,z), and change the k-star with centre in y to (k+1)-star. Production: "bisect an edge:"

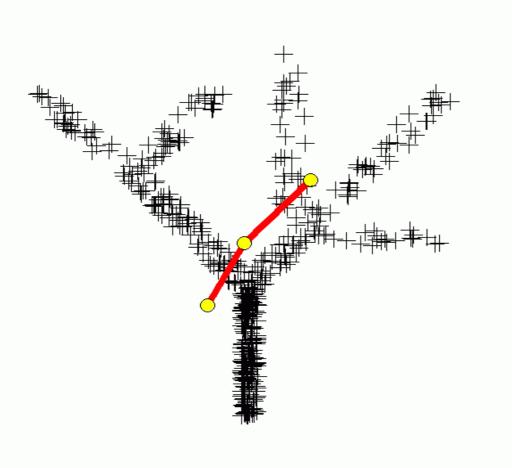
A production rule applicable to any graph edge (y,y'):

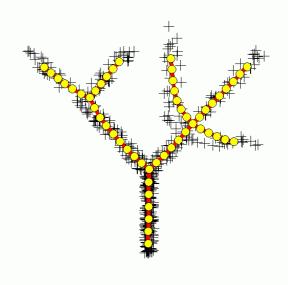
Delete edge (y,y'), add a vertex z, two edges, (y,z) and (z,y'), and a 2-star with the centre z.

If y or y' are centres of kstars, change them to (k+1)- stars.

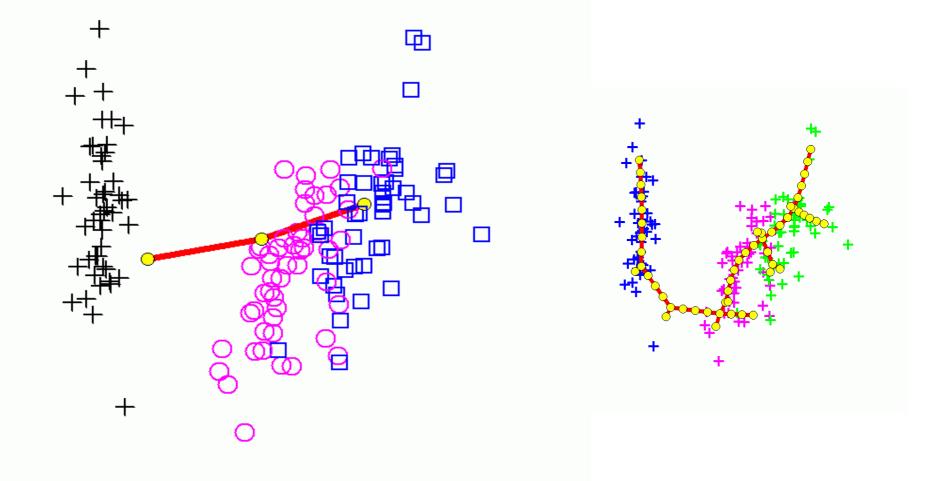


<u>Growing principal tree:</u> branching data distribution

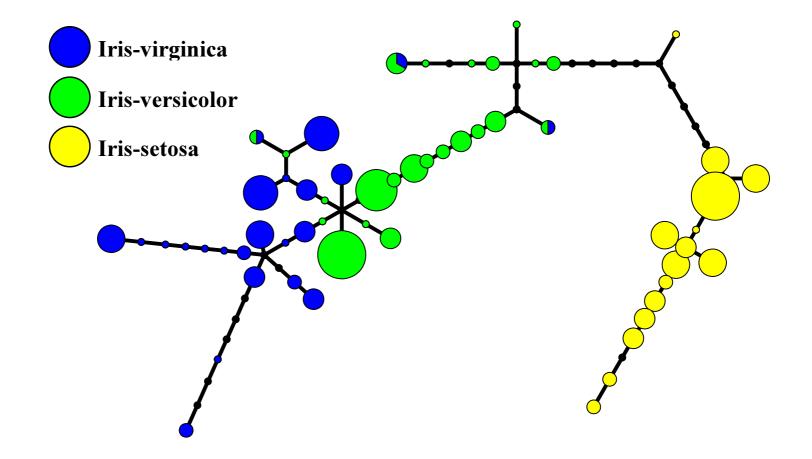




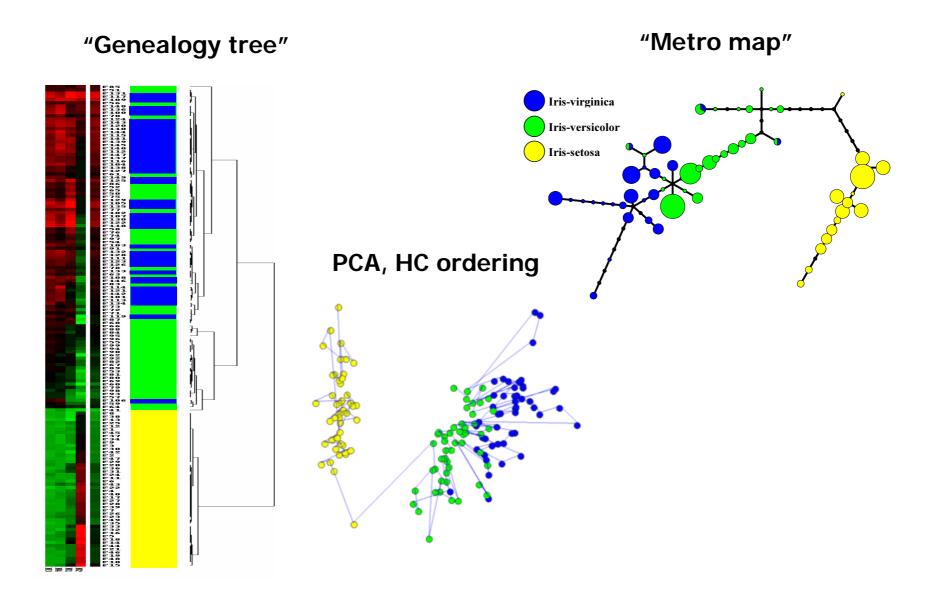
Growing principal tree: Iris 4D dataset, PCA view

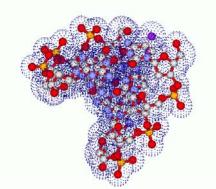


Principal coordinates: tree on plane

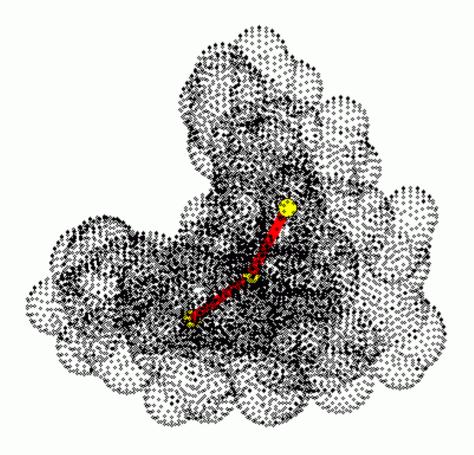


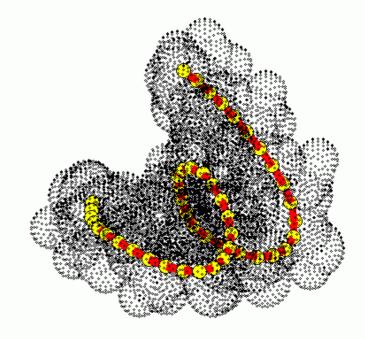
HC vs Principal Trees





<u>Growing principal tree:</u> DNA molecular surface





Genomic sequence and frequency dictionaries

cgtggtgagctgatgctagggtcgcacgtggtgagctgatgctagggtcgacgtggtgagctgatgctagggtcgc

agggtcgccacgttggtgaggctgatgccacgtggtgaggctgatgccacgtgggc gggtcgccacgttggtgaggctgatgccacgtggtgaggctgatgccacgtggc agggtcgccacgttggtgaggctgatgccacgtggtgaggctgatgccacgtggc

tagggtcgcacgtggtgagctgatgctaggg

frequency dictionaries:

tagggtcgcacgtggtgagctgatgctaggg $N = 4=4^{1}$ tagggt cg ca cg tg gt ga gc tg at gc ta gg $N = 16=4^{2}$ tag ggt cgc acg tgg tga gct gat gct agg $N = 64=4^{3}$ tagg gtcg cacg tggt gagc tgat gcta gggt $N=256=4^{4}$

From text to geometry

cgtggtgagctgatgctagggtcgcacgtggtgagctgatgctagggtcgacgtggtgagctgatgctagggtcgc

length~300-400

cgtggtgagctgatgctagggtcgcac ggtgagctgatgctagggtcgcacact tgagctgatgctagggtcgcacaattc gtgagctgatgctagggtcgcacggtg

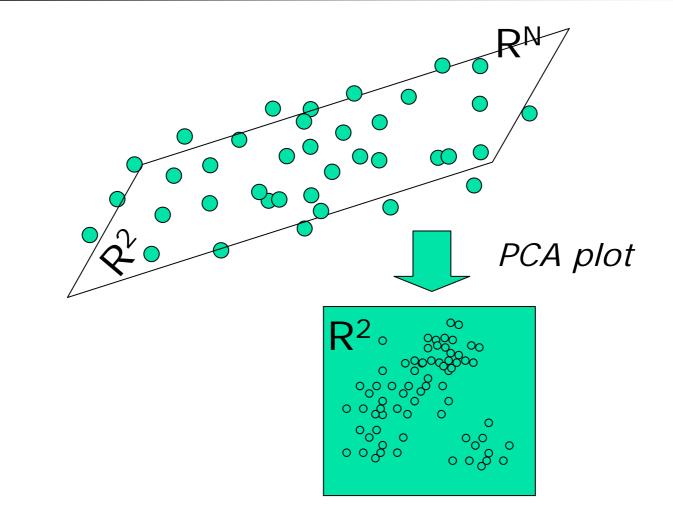
gagetgatgetagggtegeacaagtga

.....

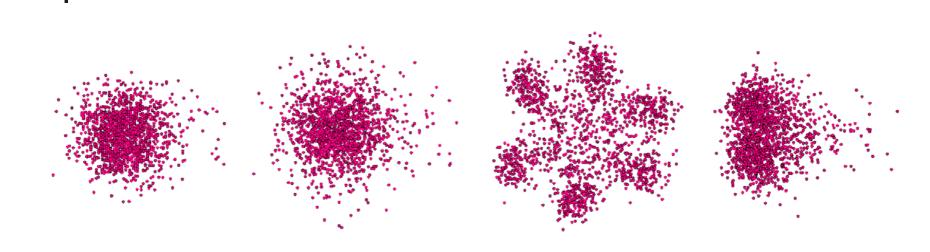
3000-4000 fragments

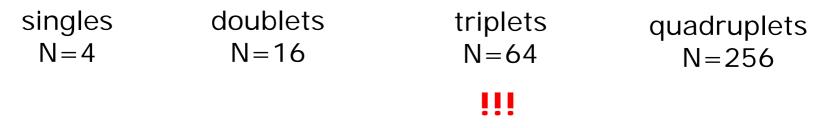
 $\mathbb{R}^{\mathbb{N}}$

Method of visualization principal components analysis



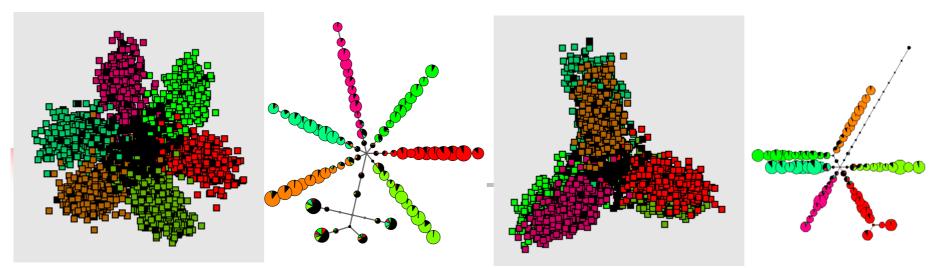
Caulobacter crescentus





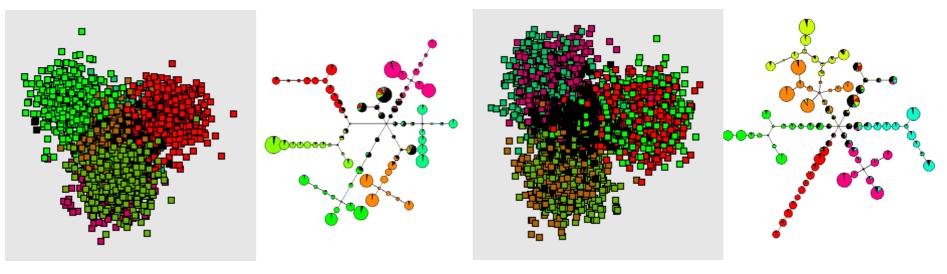
the information in genomic sequence is encoded by non-overlapping triplets





Streptomyces coelicolor

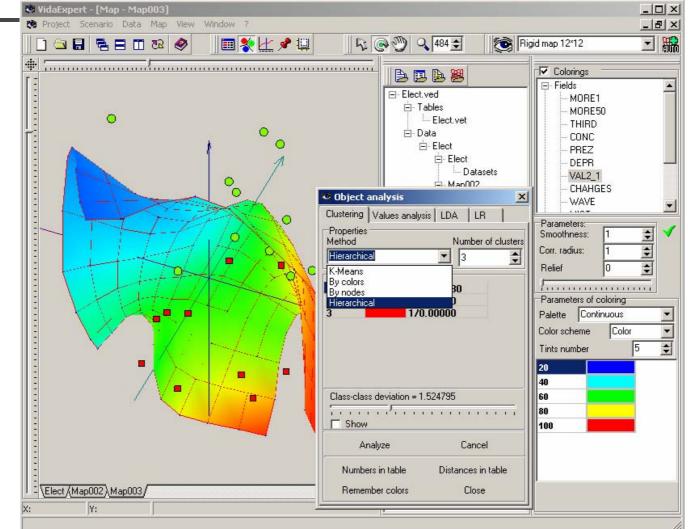
Fusobacterium nucleatum



Bacillus halodurans

Ercherichia coli

VIDAExpert tool and *elmap* C++ package



Iterative error mapping

For a given elastic manifold and a datapoint $x^{(i)}$ the error vector is $x_{err}^{(i)} = x^{(i)} - P(x^{(i)})$

where P(x) is the projection of data point $x^{(i)}$ onto the manifold.

The errors form a new dataset, and we can construct another map, getting regular model of errors. So we have *the first* map that models the data itself, *the second* map that models errors of the first model, ... and so on. Every point *x* in the initial data space is modeled by the vector

$$\widetilde{x} = P(x) + P_2(x - P(x)) + P_3(x - P(x) - P_2(x - P(x))) + \dots$$

Conclusion

- Complex topology, quadratic functionals, simple algorithm.
- The whole approach can be interpreted as a intermediate between absolutely flexible neural gas and significantly more restrictive elastic map.
- It includes as the simplest limit cases the kmeans clustering algorithm and classical PCA.

Useful links

- Principal components and factor analysis <u>http://www.statsoft.com/textbook/stfacan.html</u> <u>http://149.170.199.144/multivar/pca.htm</u>
- Principal curves and surfaces
 http://www.slac.stanford.edu/pubs/slacreports/slac-r-276.html
 http://www.iro.umontreal.ca/~kegl/research/pcurves/
- Self Organizing Maps <u>http://www.mlab.uiah.fi/~timo/som/</u> <u>http://davis.wpi.edu/~matt/courses/soms/</u> <u>http://www.english.ucsb.edu/grad/student-pages/jdouglass/coursework/hyperliterature/soms/</u>
- Elastic maps <u>http://www.ihes.fr/~zinovyev/</u> <u>http://www.math.le.ac.uk/~ag153/homepage/</u>

Several names

- K-means clustering: MacQueen, 1967;
- SOM: T. Kohonen, 1981;
- Principal curves: T. Hastie and W. Stuetzle, 1989;
- Elastic maps: A. Gorban, A. Zinovyev, A. Rossiev, 1996,1998;
- Polygonal models for principal curves: B. Kégl, 1999;
- Local PCA for principal curves construction:
 J. J. Verbeek, N. Vlassis, and B. Kröse, 2000.

Three of them are Authors

Thank you for your attention!

Questions?