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a b s t r a c t

The principle of detailed balance states that in equilibrium each elementary process is equilibrated by

its reverse process. For many real physico-chemical complex systems (e.g. homogeneous combustion,

heterogeneous catalytic oxidation, most enzyme reactions, etc.), detailed mechanisms include both

reversible and irreversible reactions. In this case, the principle of detailed balance cannot be applied

directly. We represent irreversible reactions as limits of reversible steps and obtain the principle of

detailed balance for complex mechanisms with some irreversible elementary processes. We prove two

consequences of the detailed balance for these mechanisms: the structural condition and the algebraic

condition that form together the extended form of detailed balance. The algebraic condition is the

principle of detailed balance for the reversible part. The structural condition is the convex hull of the

stoichiometric vectors of the irreversible reactions has empty intersection with the linear span of the

stoichiometric vectors of the reversible reactions. Physically, this means that the irreversible reactions

cannot be included in oriented cyclic pathways.

The systems with the extended form of detailed balance are also the limits of the reversible systems

with detailed balance when some of the equilibrium concentrations (or activities) tend to zero.

Surprisingly, the structure of the limit reaction mechanism crucially depends on the relative speeds of

this tendency to zero.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Detailed balance for systems with irreversible reactions: the grin

of the vanishing cat

The principle of detailed balance was explicitly introduced and
effectively used for collisions by Boltzmann (1964). In 1872, he
proved his H-theorem using this principle. In its general form, this
principle is formulated for kinetic systems which are decomposed
into elementary processes (collisions, or steps, or elementary
reactions). At equilibrium, each elementary process should be
equilibrated by its reverse process. The arguments in favor of this
property are founded upon microscopic reversibility. The micro-
scopic ‘‘reversing of time’’ turns at the kinetic level into the
‘‘reversing of arrows’’: the elementary processes transform into
their reverse processes. For example, the reaction

P
iaiAi-

P
jbjBj

transforms into
P

jbjBj-
P

iaiAi and conversely. The equilibrium
ensemble should be invariant with respect to this transformation
because of microreversibility and the uniqueness of thermody-
namic equilibrium. This leads us immediately to the concept of
detailed balance: each process is equilibrated by its reverse
process.
ll rights reserved.
For a given equilibrium, the principle of detailed balance
results in a system of linear conditions on kinetic constants (or
collision kernels). On the contrary, if we postulate just the
existence of an a priori unknown equilibrium state with the
detailed balance property then a system of nonlinear conditions
on kinetic constants appear. These conditions were introduced in
by Wegscheider (1911) and used later by Onsager (1931). They
are known now as the Wegscheider conditions.

For linear kinetics, the Wegscheider conditions have a very
simple and transparent form: for each oriented cycle of elementary

processes the product of kinetic constants is equal to the product of

kinetic constants of the reverse processes.

However, many mechanisms of complex chemical and bio-
chemical reactions, in particular mechanisms of combustion and
enzyme reaction, include some irreversible (unidirectional) reac-
tions. In many cases, complex mechanisms consist of some
reversible and some irreversible reactions, equilibrium concen-
trations and rates of reactions become zeroes, and the standard
forms of the detailed balance do not have a sense.

In physical chemistry, the feasibility of a reaction depends on
the energies and entropies of system states, initial, final, and
transition ones. Nevertheless, some combinations of irreversible
reactions are impossible irrespective of the values of thermo-
dynamic functions. Since Wegscheider’s time it is known that the
cyclic sequence of irreversible reactions (the completely irrever-
sible cycle) is impossible. It is forbidden by the principle of
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detailed balance. In a similar way, the reaction mechanism A"B,
A-C, C-B is forbidden as well as A"B, A"C, C-B.

Two fundamental problems can be posed:
(1)
 Which mechanisms with irreversible steps are allowed, and
which such mechanisms are forbidden by the principle of
detailed balance?
In accordance with our knowledge, this question was not
answered rigorously and the general problem was not solved.
Beside that, the procedure of determining the forbidden mechan-
isms was not described.
(2)
 Let a mechanism with some irreversible steps be not for-
bidden. Do we still have some relationships between kinetic
constants of this mechanism?
In our paper, both problems are analyzed based on the same
procedure. Substituting the zero kinetic constants by small, however
not zero values we return to the fully ‘reversible case’, in which all
steps of the reaction mechanism are reversible. Then, we analyze a
limit case, in which small kinetic parameters tend to reach 0.

Such an idea was applied previously to several examples. In
particular, Chu (1971) used this idea for a three-step mechanism,
demonstrating that the mechanism A"B, A-C, B-C can appear
as a limit of reversible mechanisms which obey the principle of
detailed balance, whereas the system A"B, A-C, C-B cannot
appear in such a limit. However, this approach was not applied to
the general analysis of multi-step mechanisms, only to a few
systems of low dimensions.

Since Lewis Carroll’s ‘‘Alice’s Adventures in Wonderland’’, the
Cheshire Cat is well known, in particular its inscrutable grin.
Finally this cat disappears gradually until nothing is left but its
grin. Alice makes a remark she has often seen a cat without a grin
but never a grin without a cat.

The detailed balance for systems with irreversible reactions
can be compared with this grin of the Cheshire cat: the whole cat
(the reversible system with detailed balance) vanishes but the
grin persists.

1.2. Detailed balance: the classical relations

First, let us consider linear systems and write the general first
order kinetic equations:

_pi ¼
X

j

ðkijpj�kjipiÞ: ð1Þ

Here, pi is the probability of a state Ai (i¼ 1, . . . ,n) (or, for
monomolecular reactions, the concentration of a reagent Ai).
The kinetic constant kijZ0 (ia j) is the intensity of the transitions
Aj-Ai (i.e., kij is ki’jÞ. The rate of the elementary process Ai-Aj is
kjipi. The class of equations (1) includes the Kolmogorov equation
for finite Markov chains, the Master equation in physical kinetics
and the chemical kinetics equations for monomolecular reactions.

Let peq
i 40 be a positive equilibrium distribution. According to

the principle of detailed balance, the rate of the elementary
process Ai-Aj at equilibrium coincides with the rate of the
reverse process Ai’Aj:

kijp
eq
j ¼ kjip

eq
i : ð2Þ

For a given equilibrium, peq
i , the principle of detailed balance is

equivalent to this system (2) of linear equalities. To find the
conditions of the existence of such a positive equilibrium that (2)
holds, it is sufficient to write equations (2) in the logarithmic
form, ln peq

i �ln peq
j ¼ ln kij�ln kji, to consider this system as a
system of linear equations with respect to the unknown ln peq
i ,

and to formulate the standard solvability condition.
After some elementary transformation this condition gives: a

positive equilibrium with detailed balance (2) exists if and only if
1.
 If kij40 then kji40 (reversibility);

2.
 For each oriented cycle of elementary processes,

Ai1-Ai2- . . .Aiq-Ai1 , the product of the kinetic constants is
equal to the product of the kinetic constants of the reverse
processes:

Yq

j ¼ 1

kijþ 1ij ¼
Yq

j ¼ 1

kijijþ 1
ð3Þ

where the cyclic numeration is used, iqþ1 ¼ i1.

Of course, it is sufficient to use in (3) a basis of independent cycles
(see, for example the review of Schnakenberg (1976)).

Let us introduce the more general Wegscheider conditions for
nonlinear kinetics and the generalized mass action law. (For a
more detailed exposition we refer to the textbook of Yablonskii
et al., 1991.) The elementary reactions are given by the stoichio-
metric equationsX

i

ariAi-
X

j

brjAj ðr¼ 1, . . . ,mÞ, ð4Þ

where Ai are the components and ariZ0, brjZ0 are the stoichio-
metric coefficients. The reverse reactions with positive constants
are included in the list (4) separately. We need this separation of
direct and reverse reactions to apply later the general formalism
to the systems with some irreversible reactions.

The stoichiometric matrix is C¼ ðgriÞ, gri ¼ bri�ari (gain minus
loss). The stoichiometric vector gr is the rth row of C with
coordinates gri ¼ bri�ari.

According to the generalized mass action law, the reaction rate
for an elementary reaction (4) is

wr ¼ kr

Yn

i ¼ 1

aari

i , ð5Þ

where aiZ0 is the activity of Ai.
The list (4) includes reactions with the reaction rate constants

kr 40. For each r we define kþr ¼ kr , wþr ¼wr , k�r is the reaction
rate constant for the reverse reaction if it is on the list (4) and 0 if
it is not, w�r is the reaction rate for the reverse reaction if it is on
the list (4) and 0 if it is not. For a reversible reaction, Kr ¼ kþr =k�r .

The principle of detailed balance for the generalized mass
action law is: For given values kr there exists a positive equili-
brium aeq

i 40 with detailed balance, wþr ¼w�r . This means that
the system of linear equationsX

i

grixi ¼ ln kþr �ln k�r ¼ ln Kr ð6Þ

is solvable (xi ¼ ln aeq
i Þ. The following classical result gives the

necessary and sufficient conditions for the existence of the
positive equilibrium aeq

i 40 with detailed balance (see, for exam-
ple, the textbook of Yablonskii et al., 1991).

Proposition 1. Two conditions are sufficient and necessary for

solvability of (6):
1.
 If kþr 40 then k�r 40 (reversibility);

2.
 For any solution k¼ ðlrÞ of the system

kC¼ 0 i:e:
X

r

lrgri ¼ 0 for all i

 !
ð7Þ
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the Wegscheider identity holds:Ym
r ¼ 1

ðkþr Þ
lr ¼

Ym
r ¼ 1

ðk�r Þ
lr : ð8Þ
Remark 1. It is sufficient to use in (8) a basis of solutions of the
system (7): kAfk1, . . . ,kg

g.

Remark 2. The Wegscheider condition for the linear systems (3)
is a particular case of the general Wegscheider identity (8).
Therefore, the solutions k of equation (7) are generalizations of
the (non-oriented) cycles in the reaction networks. The basis of
solutions corresponds to the basic cycles. This basis is, obviously,
not unique.

Remark 3. In equation (6) unknown xi ¼ ln ai are independent
variables and vector x can take any value in Rn. In practice, this is
not always true. For example, for heterogeneous systems with
solid components some activities may vary in a narrow interval or
may be even constant (see the more detailed discussion below in
Section 3.5). We do not study multiphase equilibiria in our paper.

Remark 4. All the closed chemical systems have linear conserva-
tion laws: conservation of mass, various sorts of atoms, electric
charge and other conserved quantities. They are linear functions
of the amounts Ni of chemical components Ai. There is a problem
of uniqueness and existence of a positive equilibrium with
detailed balance or without it for every set of values of the
independent conservation laws. To solve this problem we need
some properties of the connection between activities and con-
centrations, ðaiÞ2ðciÞ. We do not assume any hypothesis about
this connection and study just existence of a positive equilibrium
with detailed balance in the space of activities. The Wegscheider
identity (8) gives a necessary and sufficient condition for this
existence.

In practice, very often k�r ¼ 0 for some r, whereas kþr 40. In
these cases, the standard forms of the detailed balance have no
sense. Indeed, let us consider a linear reversible cycle with an
irreversible buffer:

A1"A2" . . .An"A1-A0:

This system converges to the state where only p04 and pi¼0
for i40. In this state, trivially, wþr ¼w�r ¼ 0 and it seems that
the standard principle of detailed balance does not imply any
restriction on the kinetic constants. Of course, this impression
is wrong.

Let us consider this system as a limit of the system with a
reversible buffer, A1"A0 (both reaction rate constants are posi-
tive), when the constant of the reverse reaction is positive but
tends to zero: k1’0-0, k1’040. For each positive value k1’040
the condition of detailed balance wþr ¼w�r gives the Wegscheider
identity (3) for the cycle A1"A2" . . .An"A1: The product of
direct reaction rate constants is equal to the product of the
reverse reaction rate constants. This condition holds also in the
limit k1’0-0. So, any practically negligible but positive value of
the reverse kinetic constant implies the nontrivial Wegscheider
condition for the other constants.

If we assume that the negligible values of the constants should
not affect the kinetic systems then this Wegscheider condition
should hold for the system with fully irreversible steps as well.
Therefore, the following way for the formalization of the principle
of detailed balance for irreversible reactions is proposed. We
return to reversible reactions in which the principle of detailed
balance is assumed by the introduction of small k�r 40. Then we
go to the limit k�r -0 (k�r 40) for these reactions.
It is worth mentioning that the free energy has no limit when
some of the reaction equilibrium constants tend to zero. For
example, for the ideal gases F ¼

P
iNiðRT ln ciþm0

i �RTÞ, where ci is
the concentration, Ni is the amount and m0

i is the standard
chemical potential of the component Ai. In the irreversible limit
some m0

i -1. On the contrary, the activities

ai ¼ exp
mi�m0

i

RT

 !
ð9Þ

remain finite (for the ideal gases, for example, ai¼ci) and the
approach based on the generalized mass action law and the
equations wþr ¼w�r can be applied in the irreversible limit.

Below, we study systems with irreversible reactions as the
limits of the systems with reversible reactions and detailed
balance, when some reaction rate constants go to zero. We
formulate the restrictions on the constants in this limit and find
the finite number of conditions that is necessary and sufficient to
check. First of all we have to discuss the necessary notion of
cycles for general reaction networks.

1.3. Main results

We develop three approaches to the detailed balance condi-
tions for the systems with some irreversible reactions. The first
and the most physical idea is to consider an irreversible reaction
as a limit of a reversible reaction when the reaction rate constant
for a reverse reaction tends to zero. The limits of systems of
reversible reactions with detailed balance conditions cannot be
arbitrary systems with some irreversible reactions and we study
the structural and algebraic restrictions for these systems.

The second approach is based on the technical idea to study
the limits of the Wegscheider identities (8). Here, it is very useful
to apply the concept of the general (nonlinear) irreversible cycles
or pathways developed recently far enough for our purposes by
Schuster et al. (2000), Gagneur and Klamt (2004) and other. Let us
write all reactions separately (including direct and reverse reac-
tions) (4). The general oriented cycle or pathway is a relation
between vectors gr with non-negative coefficients:

P
rlrgr ¼ 0,

lr Z0 and
P

rlr 40. For each system with all reversible reactions
and detailed balance the Wegscheider identity (8) holds for any
oriented cycle. Therefore, if an oriented cycle persists in the limit
with some irreversible reactions, then, for lr 40, the rth reaction
should remain reversible and for this cycle the Wegscheider
condition persists.

This property motivates the definition of the extended (or
weakened, Yablonsky et al. (2011)) form of detailed balance in
Section 3.1 through the general oriented cycles and the Wegschei-
der conditions. Theorem 1 states that a system satisfies the
extended form of detailed balance if and only if it is a limit of
systems with all reversible reactions and detailed balance. One
part of this theorem (‘‘if’’) is proved immediately in Section 3.1,
the proof of the second part (‘‘only if’’) exploits the third approach
and is postponed till Section 4.

The third idea is to study the limits when some equilibrium
concentrations (or, more general, activities) tend to zero. For
systems with all reversible reactions, we can explicitly express
the constants of the reverse reactions through the constants of the
direct reactions and the equilibrium activities: just use the
detailed balance conditions, wþ ðaeqÞ ¼w�ðaeqÞ. Here, instead of
2m parameters, k7

r (m is the number of reactions) we use mþn

parameters: m reaction rate constants kþr and n equilibrium
activities aeq

i . In this description of the reversible reactions, the
principle of detailed balance is trivially satisfied. Some reactions
become irreversible in the limits when some of the equilibrium
activities tends to zero. Surprisingly, the structure of the limit
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reaction mechanism crucially depends on the relative speeds of
this tendency to zero.

In Section 4, we assume that aeq
i ¼ consti � edi and study the

limits e-0. The n-dimensional space of exponents d¼ ðdiÞ is split
by m hyperplanes ðgr ,dÞ ¼ 0 on convex cones. Each of these cones
is given by a set of inequalities ðgr ,dÞb0 (r¼ 1, . . . ,mÞ. In every
such a cone, the limit reaction mechanism for e-0 is constant.

Using this approach, we prove the second part of Theorem 1
and even more: if a system satisfies the extended form of detailed
balance then it may be obtained in the limit e-0 from a system
with all reversible reactions with given kþr and aeq

i ¼ consti � edi

for some exponents di (Theorem 4). So, all the three approaches to
the consequences of the principle of detailed balance for the
systems with some irreversible reactions are equivalent.

The computational problem associated with the extended form of
detailed balance is nontrivial. For example, the oriented cycles
(pathways) form a convex polyhedral cone and we have to formulate
the structural condition of the extended form of detailed balance for
all extreme rays (extreme pathways) of this cone (Theorem 2): if
lr 40 for a vector k from an extreme ray then the rth reaction
should remain reversible. Calculation of all these extreme rays is a
well known and computational expensive problem (Fukuda and
Prodon, 1996; Papin et al., 2003; Gagneur and Klamt, 2004). In
Theorem 3, we significantly reduce the dimension of the problem.

Instead of the set of all stoichiometric vectors gr (r¼ 1, . . . ,m)
in the whole space of composition Rn (n is the number of
components, m is the number of reactions) it is sufficient to
consider the set of the stoichiometric vectors of the irreversible

reactions in the quotient space Rn=S, where S is spanned by the
stoichiometric vectors of all reversible reactions. The simple
exclusion of the linear conservation laws provides additional
dimensionality reduction. The application of reduction methods
is demonstrated in the case study in Section 3.5.

In Section 3.3, we formulate the main results for the
simple case of linear (monomolecular) systems. Sections 3.4
and 3.5 are devoted to examples of nonlinear systems. In
Section 3.4, the simple examples with obvious lists of the extreme
pathways are collected. In Section 3.5, we analyze the possible
irreversible limits for a complex reaction of methane reforming
with CO2.
2. Cycles and pathways in general reaction networks

There exist several graph representations of general reaction
networks (Yablonskii et al., 1991; Temkin et al., 1996) and each of
them implies the correspondent notion of a cycle. For example,
each input and output formal sum in the reaction mechanism (4)
can be considered as a vertex (a complex) and then a reaction
with the positive rate constant is an oriented edge. This graph of
the transformation of complexes is convenient for the analysis of
the complex balance condition (Feinberg, 1972).

The bipartite graphs of reactions (Volpert and Khudyaev, 1985)
gives us another example: it includes two types of vertices:
components (correspond to Ai) and reactions (correspond to
elementary reactions from (4)). There is an edge from the ith
component to the sth reaction if ari40 and from the sth reaction
to the ith component if bri40. The correspondent stoichiometric
coefficients are the weights of the edges. This graph is convenient
for the analysis of the system stability, for calculation of Jacobians
for the right hand sides of the kinetic equations and for analysis of
their signs (Ivanova, 1979; Mincheva and Roussel, 2007). For
nonlinear systems, these graphs do not give a simple representa-
tion of the detailed balance conditions.

We need a special notion of a cycle which corresponds to
the algebraic relations between reactions. Let us recall that we
include direct and inverse reactions in the reaction mechanism
(4) separately. Each solution of (7) may be represented as
follows:

þ

l1 �
P

i

a1iAi-
P

j

b1jAj

 !

l2 �
P

i

a2iAi-
P

j

b2jAj

 !

^

lm �
P

i

amiAi-
P

j

bmjAj

 !

��������������������

¼
X

i

aiAi-
X

j

ajAj: ð10Þ

Here, ai ¼
P

slsasi �
P

slsbsi. Therefore, we need the following
definition of a cycle.

Definition 1. An oriented cycle is a vector of coefficients ka0
with all liZ0 that satisfies (10).

Remark 5. Cycles in catalysis and, especially, in biochemistry are
called pathways (Schuster et al., 2000; Papin et al., 2003). An
oriented pathway is an oriented cycle from Definition 1. An
extreme (oriented) pathway is a direction vector of an extreme
ray of the cone Lþ . A solution of equation (7) (a non-oriented
cycle) is a non-oriented pathway.

Qualitatively these concepts have been introduced in the early
1940s by Horiuti who applied them to heterogeneous catalytic
reactions (Horiuti, 1973). Horiuti used them to eliminate intermedi-
ates of the complex catalytic reaction by adding the steps of the
detailed mechanism first multiplied by special coefficients. As result
of such procedure, the chemical equation with no intermediates is
obtained.

All oriented cycles form the cone Lþ (without the origin).
Extreme ray of a convex cone is a face that is, at the same time, a
ray. Each ray may be defined by a directional vector k that is an
arbitrary nonzero vector from this ray. The cone Lþ is defined by
a finite system of linear equations (7) and inequalities lr Z0.
Therefore, it has a finite set of extreme rays.

For integer stoichiometric coefficients, asi, bsi, any extreme ray
is defined by an uniform linear systems of equations with integer
coefficients supplemented by the conditions liZ0 and ka0.
Therefore, we can always select a direction vector with the
integer coefficients. For each extreme ray, there exists a unique
direction vector with minimal integer coefficients.

For monomolecular reaction networks, these cycles coincide
with the oriented cycles in the graph of reactions (where vertices
are reagents and edges are reactions).

There exists an oriented cycle of the length two for each pair of
mutually reverse reactions. For these cycles the Wegscheider
identities (8) hold trivially, for any positive values of k7 .

Remark 6. The systems without oriented cycles (Lþ ¼ f0g) have a
simple dynamic behavior. First of all, for such a system the convex
hull of the stoichiometric vectors does not include zero:
0=2convfg1, . . . ,gmg. Therefore, there exists a linear functional l that
separates 0 from fg1, . . . ,gmg: lðgsÞ40 for all s¼ 1, . . . ,m. This linear
function l(c) increases monotonically due to any kinetic equation

dc

dt
¼
X

s

wsgs

with reaction rates wsZ0: dlðcÞ=dt40 if at least one reaction rate
ws40.
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3. Extended form of detailed balance

3.1. Definition

A practically important reaction mechanism may include
reversible and irreversible steps. However, some mechanisms
with irreversible steps may be wrong because they cannot appear
as the limits of reversible mechanisms with detailed balance.
Therefore, the first question is about the mechanism structure:
what is allowed?

The second question is about the constants: let the mechanism
not be forbidden. If it is the limit of a system with detailed
balance then the reaction rate constants may be connected by
additional algebraic conditions like the Wegscheider conditions
(3). We should describe all the necessary conditions. In this
Section we answer both questions and formulate both conditions,
structural and algebraic.

We have to study study the identities (8) in the limit when
some k�r -0. First of all, let us consider reversible reactions: if
kþr 40 then k�r 40. It is sufficient to use in (8) only k with
nonnegative coordinates, lr Z0. Indeed, the direct and reverse
reactions are included in the list (4) under different numbers.
Assume that lr o0 in an identity (8) for some r. Let the reverse
reaction for this r have number r0. Let us substitute ðkþr Þ

lr in the
left hand side of (8) by ðkþr0 Þ

�lr and ðk�r Þ
lr in the right hand side by

ðk�r0 Þ
�lr . The new condition is equivalent to the previous one. Let

us iterate this operation for various r. In the finite number of steps
all the powers lr Z0.

Let us use notation L for the linear space of solutions of (7)
and Lþ for the cone of positive solutions k (lr Z0) of (7).

For reversible reactions, we proved the following proposition.
Let the reactions are reversible and the direct and reverse
reactions are included in the list (4) separately.

Proposition 2. The Wegscheider identity (8) holds for all kAL if

and only if it holds for all positive kALþ .

Elementary linear algebra gives the following corollary for
reversible reactions.

Corollary 1. The solution of the system of linear equations for

logarithms of equilibrium activities (6) exists if and only if for any

positive solution k (lr Z0) of the system kC¼ 0 (7) the condition (8)
holds.

Let us study identity (8) for a positive k when some of kr-0. In
this limit, for every kALþ Corollary 1 gives two conditions:

Corollary 2. Let ks40, ks-klim
s and the Wegscheider identity (8)

holds for ks. Then
1.
 If ls40 and kþs -0 for some s then for some q lq40 and k�q -0;

2.
 If for all positive components ls40 the limit constants are

positive, klim
s 740, then the condition (8) holds for klim

s 7 .

We can interpret the positive solutions of (7) as oriented cycles
(linear or nonlinear). The first condition means that if a cycle is
cut by the limit kþs -0 in one direction then it should be also cut
by a limit k�q -0 in the opposite direction: the irreversible cycle is
forbidden. This remark leads to the definition of the structural

condition of the extended form of detailed balance.

Definition 2. A system of reactions (4) satisfies the structural
condition of the extended form of detailed balance if for every
kALþ the reaction which satisfy ls40 are reversible: if ls40
then k7

s 40.
This condition means that all cycles should be reversible. The
second condition means that for all cycles kALþ which persist in
the system with irreversible reactions the correspondent
Wegscheider condition (8) holds. This is the algebraic condition

of the extended form of detailed balance. Now, we are ready to
formulate the definition of the extended form of detailed balance.

Definition 3. The subsystem satisfies the extended form of
detailed balance if both the structural and the algebraic condition
hold for all kALþ .

The following theorem gives the motivation to this definition.

Theorem 1. A system with irreversible reactions is a limit of systems

with reversible reactions and detailed balance if and only if it satisfies

the extended form of detailed balance.

Proof. Let us prove the direct statement: if a system is a limit of
systems with reversible reactions and detailed balance then it
satisfies the extended form of detailed balance. Indeed, let a
system of reactions be a limit of systems with reversible reactions
and detailed balance. This means that for each j¼ 1,2, . . . a set of
reaction rate constants k7

s,j 40 is given, k7
s,j 40 satisfy the

principle of detailed balance for all j and

k7
s ¼ lim

j-1
k7

s,j :

Assume that the structural condition is violated: there exists such
a kALþ that ls40 for an irreversible reaction (kþs 40, k�s ¼ 0Þ.
For all j¼ 1,2, . . . the principle of detailed balance gives:Y
r,lr 40

ðkþr,j Þ
lr ¼

Y
r,lr 40

ðk�r,jÞ
lr : ð11Þ

If lr 40 then kþr 40. Therefore, for these r, sufficiently large j and
some e,d40, d4k7

r,j 4e40. The left hand side of (11) is sepa-
rated from zero. The right hand side of (11) tends to zero because
all factors are bounded and at least one of them tends to zero,
k�r,j-0. This contradiction proves the structural condition. To
prove the algebraic condition, it is sufficient to notice that the
Wegscheider identity for k7

s,j 40 holds for all j, hence, it holds in
the limit j-1.

We will prove the converse statement (if a system satisfies the

extended form of detailed balance then it is a limit of systems

with reversible reactions and detailed balance) in Section 4, in the

proof of Theorem 4. &

3.2. Criteria

All kALþ participate in the definition of the extended form of
detailed balance. Nevertheless, it is sufficient to use a finite subset
of this cone.

We can check directly that if for a set fks
g the structural and

the algebraic conditions of the extended form of detailed balance
hold then they hold for any conic combination of fks

g, k¼
P

sask
s,

asZ0. Therefore, it is sufficient to check the conditions for the
directional vectors of the extreme rays of Lþ .

Let a reaction mechanism satisfy the extended principle of
detailed balance. If we delete from this mechanisms any irrever-
sible elementary reaction or any couple of mutually reverse
elementary reactions, the resulting mechanism satisfies the
extended principle of detailed balance as well.

A cone is pointed if the origin is its extreme point or, which is
the same, this cone does not include a whole straight line. The
cone Lþ is pointed because it belongs to the positive orthant
fk9kZ0g.

It is a standard task of linear programming and computational con-
vex geometry to find all the extreme rays of the polyhedral pointed
cone Lþ (Bertsimas and Tsitsiklis, 1997; Motzkin et al., 1953;
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Fukuda and Prodon, 1996). Let the directional vectors of these
extreme rays be fks9s¼ 1, . . . ,qg.

Theorem 2. The system satisfies the extended form of detailed

balance if and only if the structural and algebraic conditions hold

for the directional vectors fks 9 s¼ 1, . . . ,qg of the extreme rays of the

cone Lþ .

Theorem 2 follows just from the definition of extreme rays and
the Minkowski theorem which states that every pointed cone
given by linear inequalities admits a unique representation as a
conic hull of a finite set of extreme rays.

This criterion can be simplified as well: it is necessary and
sufficient to check the structural conditions for the extreme rays
of Lþ and then the algebraic condition for a maximal linear
independent subset of fks9s¼ 1, . . . ,qg.

Corollary 3. The system satisfies the extended form of detailed

balance if and only if the structural conditions hold for all directional

vectors fks9s¼ 1, . . . ,qg of the extreme rays of the cone Lþ and the

algebraic conditions hold for a maximal linear independent subset of

fks9s¼ 1, . . . ,qg.

If, for a given reaction mechanism, the set fks 9 s¼ 1, . . . ,qg of
directional vectors of the extreme rays of Lþ is known, then it is
easy to check, whether this mechanism satisfies the structural
conditions of the extended form of detailed balance. It is sufficient
to examine for each ls

r 40, whether k�r 40.
After these conditions are examined, it is a simple task to

extract the independent set of the Wegscheider identities that
should be valid: just select a maximal linear independent subset
from the set of ks and write the correspondent Wegscheider
identities.

It is convenient to use all the extreme pathways especially if we
would like to study all the subsystems of the given system, which
satisfy the extended form of detailed balance. On the other hand, it
is computationally expensive to find the set fks9s¼ 1, . . . ,qg (see, for
example, the paper by Gagneur and Klamt, 2004). The amount of
computation could be significantly reduced because it is not
necessary to use all the extreme pathways.

Let us consider a reaction mechanism, which includes both
reversible and irreversible reactions. For the reversible reactions,
let us join the direct and reverse reactions. Let g1, . . . ,gr be the
stoichiometric vectors of the reversible reactions and n1, . . . ,ns be
the stoichiometric vectors of the irreversible reactions. We use Cr

for the stoichiometric matrix of the reversible reactions and Lr for
the solutions of the equations kCr ¼ 0.

The linear subspace S¼ spanfg1, . . . ,grg �Rn consists of all
linear combinations of the stoichiometric vectors of the reversible
reactions. Let us consider the quotient space Rn=S. We use
notation nj for the images of nj in Rn=S.

The following theorem gives the criteria of the extended form
of detailed balance, which are more efficient for computations.

Theorem 3. The system satisfies the extended form of detailed

balance if and only if
1.
 The convex hull of the stoichiometric vectors of irreversible

reactions does not intersect S, i.e.
0=2convfn1, . . . ,nsg, ð12Þ
2.
 The reversible reactions satisfy the principle of detailed balance.

Proof. Let the condition 1 be violated, i.e. 0Aconvfn1, . . . ,nsg. In

this case, there exist such a nonnegative yiZ0 that
Ps

j ¼ 1 yj ¼ 1

and
Ps

j ¼ 1 yjnjAS. This means that
Ps

j ¼ 1 yjnjþ
Pr

i ¼ 1 ligi ¼ 0. We

can transform the sum
Pr

i ¼ 1 ligi in a combination with positive
coefficients if for any negative li we substitute gi by the stoichio-

metric vector of the reverse reaction, that is, �gi. As a result, we

get the element of Lþ , a combination of the stoichiometric
vectors with nonnegative coefficients, which is equal to zero
and includes some stoichiometric vectors of the irreversible
reactions with nonzero coefficients. Therefore, the structural
condition of the extended form of detailed balance is violated.

Let the structural condition be violated. Then there exist a

combination
Ps

j ¼ 1 yjnjþ
Pr

i ¼ 1 ligi ¼ 0 with yjZ0 and
Ps

j ¼ 1 yj

40. Let us notice that

Xs

j ¼ 1

yjPs
j ¼ 1 yj

nj ¼�
Xr

i ¼ 1

liPs
j ¼ 1 yj

gi,

and, therefore, 0Aconvfn1, . . . ,nsg. The condition 1 is violated.

We proved that the condition 1 is equivalent to the structural

condition of the extended form of detailed balance.

If the condition 1 holds then the condition 2 is, exactly, the

algebraic condition of the extended form of detailed balance. &

Remark 7. The first condition of Theorem, 0=2convfn1, . . . ,nsg, is
equivalent to the existence of such a linear functional l on Rn that
lðnjÞ40 for all j¼ 1, . . . ,s and lðgjÞ ¼ 0 for all j¼ 1, . . . ,r.

3.3. Linear systems

The results of previous sections for a linear system (1) have a
geometrically clear form (see also the paper by Yablonsky et al.,
2011).

Proposition 3. The necessary and sufficient condition for the

extended form of detailed balance is: In any cycle Ai1-Ai2-

. . .-Aiq-Ai1 with the strictly positive constants kijþ 1ij 40 (here

iqþ1 ¼ i1) all the reactions are reversible (kijijþ 1
40) and the identity

(3) holds.

The states (reagents) Aq and Ar (qar) are strongly connected if
there exist oriented paths both from Aq to Ar and from Ar to Aq

(each oriented edge corresponds to a reaction with the nonzero
reaction rate constant). From Proposition 3 we get the following
statement.

Corollary 4. Let a linear system satisfy the extended form of detailed

balance. Then all reactions in any directed path between strongly

connected states are reversible.

In brief, a linear system with the extended form of detailed
balance can be described as follows: (i) the oriented cycles are
reversible and satisfy the classical condition (3), (ii) the system
consists of the reversible parts and the irreversible transitions
between these parts and (iii) the system of these irreversible
transitions is acyclic.

For example, let us analyze subsystems of the simple cycle,
A1"A2"A3"A1:

CT
¼

�1 0 1 1 0 �1

1 �1 0 �1 1 0

0 1 �1 0 �1 1

2
64

3
75 ð13Þ

The cone of nonnegative solutions Lþ to the equation kC¼ 0 has

extreme rays with the following direction vectors: k1
¼ ð1,1,1, 0,0,0Þ,

k2
¼ ð0,0,0,1,1,1Þ, k3

¼ ð1,0,0,1,0,0Þ, k4
¼ ð0,1,0,0,1,0Þ, and k5

¼

ð0,0,1,0,0,1Þ. Vectors k3�5 give trivial identities (8) kþi k�i ¼ k�i kþi

(i¼ 1,2,3) and vectors k1,2 give the same identity: kþ1 kþ2 kþ3 ¼

k�1 k�2 k�3 .

If we delete one elementary reaction from the simple cycle (i.e.
one column from CT (13)) then one of the nonnegative solutions



A.N. Gorban, G.S. Yablonsky / Chemical Engineering Science 66 (2011) 5388–53995394
k1,2 persists and, due to the extended detailed balance principle,
all the reactions should be reversible. This means that the
structural condition of extended detailed balance is not satisfied
for the simple reversible cycle without one direct or reverse
reaction. If two reactions are reversible then the third should be
reversible or completely vanish. If we delete one direct reaction
(with number 1, 2 or 3) and one reverse reaction (with number 4,
5 or 6) then there remain no non-trivial solutions in Lþ and,
therefore, no non-trivial relations between the constants persist
after deletion of these two reactions.

For the linear systems, the oriented cycles in the graph of
reactions (where vertices are the components and edges are the
reactions) give the positive solutions to the equation (7): for a linear
oriented cycle C the sum of the stoichiometric vectors of its
reactions is zero. Moreover, any positive solution of (7) is a convex
combination of such cyclic solutions and, therefore, the directed
vectors of the extreme rays of Lþ can be selected in this form.

3.4. Simple examples of nonlinear systems

In this section, we present several elementary examples. For
these examples, the sets of the extreme pathways are obvious.

Let us examine a reaction mechanism with irreversible reac-
tions A-

k1
B and 2B-

k2
2A:

CT
¼
�1 2

1 �2

� �
: ð14Þ

The cone Lþ is a ray with the directional vector k¼ ð2,1Þ. Both
l1,240, hence, both reactions should be reversible and the
condition holds: ðkþ1 Þ

2kþ2 ¼ ðk
�
1 Þ

2k�2 .
Let us slightly modify this example: 2H-H2, HþH2-3H:

CT
¼
�2 2

1 �1

� �
: ð15Þ

The cone Lþ is a ray with the directional vector k¼ ð1,1Þ. Both
l1,240, hence, both reactions should be reversible and the
condition holds: kþ1 kþ2 ¼ k�1 k�2 .

If we change the direction of one reaction in the previous
example then the new irreversible systems satisfies the extended
form of detailed balance: 2H-H2, 3H-HþH2:

CT
¼
�2 �2

1 1

� �
: ð16Þ

The cone Lþ is trivial (it includes no rays, just the origin), hence,
the structural condition holds. The algebraic condition trivially
holds, because there is no reversible reaction.

Let us add the forth reversible and nonlinear elementary
reaction A1þA2"2A3 (with the constants k7

4 ) to a linear rever-
sible cycle. We should add to CT (13) two new columns:

CT
¼

�1 0 1 �1 1 0 �1 1

1 �1 0 �1 �1 1 0 1

0 1 �1 2 0 �1 1 �2

2
64

3
75: ð17Þ

The extreme rays of Lþ include four rays that correspond to pairs
of mutually reverse reactions (k1�4

Þ, two rays that correspond to
the linear cycle (k5,6) and six rays for three nonlinear cycles
(k7�12): (i) A1þA2-2A3, A3-A2, A3-A1; (ii) A1þA2-2A3,
A3-A1, A1-A2 and (iii) A1þA2-2A3, A3-A2, A2-A1:

k5
¼ ð1,1,1,0,0,0,0,0Þ, k6

¼ ð0,0,0,0,1,1,1,0Þ,

k7
¼ ð0,0,1,1,0,1,0,0Þ, k8

¼ ð0,1,0,0,0,0,1,1Þ,

k9
¼ ð1,0,2,1,0,0,0,0Þ, k10

¼ ð0,0,0,0,1,0,2,1Þ,

k11
¼ ð0,0,0,1,1,2,0,0Þ, k12

¼ ð1,2,0,0,0,0,0,1Þ:
We omit k1�4 which do not produce nontrivial conditions. For the
reversible reaction mechanism (when k7

1�440Þ, there are two
independent Wegscheider identities (8) that formalize the classical
principle of detailed balance: kþ1 kþ2 kþ3 ¼ k�1 k�2 k�3 and kþ3 kþ4 k�2 ¼

k�3 k�4 kþ2 . If some of the elementary reactions are irreversible then
the direction vectors k5�12 produce eight conditions. For k5,7,9,11

these conditions are as follows:
�
 (k5) If kþ1,2,340 then k�1,2,340 and kþ1 kþ2 kþ3 ¼ k�1 k�2 k�3 ;
�
 (k7) If kþ3,4,k�2 40 then k�3,4,kþ2 40 and kþ3 kþ4 k�2 ¼ k�3 k�4 kþ2 ;
�
 (k9) If kþ1,3,440 then k�1,3,440 and kþ1 ðk
þ
3 Þ

2kþ4 ¼ k�1 ðk
�
3 Þ

2k�4 ;
�
 (k11) If kþ4 ,k�1,240 then k�4 ,kþ1,240 and kþ4 k�1 ðk
�
2 Þ

2
¼

k�4 kþ1 ðk
þ
2 Þ

2.

To obtain the conditions for k6,8,10,12 it is sufficient to change the
superscripts þ to � and inverse. These eight conditions represent
the extended form of detailed balance for a given mechanism. To
check, whether a subsystem of this mechanism satisfies the
extended form of detailed balance, it is necessary and sufficient
to check these conditions.
3.5. Methane reforming processes: a case study

3.5.1. The system

Methane reforming with CO2 is a complex reaction network
(Benson, 1981). The main reactions in the methane reforming are:
1.
 CO2þH2"COþH2O (RWGS, Reverse water-gas shift),

2.
 CH4þCO2"2COþ2H2 (Dry reforming),

3.
 CO2þ4H2"CH4þ2H2O (Methanation),

4.
 CH4þH2O"COþ3H2 (Steam reforming),

5.
 CH4"2H2þC (Methane decomposition),

6.
 2CO"CO2þC (Boudouard reaction),

7.
 CþH2O"COþH2 (Coal gasification).
For the reagents, we use the notations A1 ¼ CH4, A2 ¼ CO2,
A3 ¼ CO, A4 ¼H2, A5 ¼H2O, A6 ¼ C. Amount of Ai is Ni. There exist
three independent linear conservation laws: bC ¼N1þN2þN3þ

N6; bH ¼ 4N1þ2N4þ2N5; bO ¼ 2N2þN3þN5. The number of
degrees of freedom in the closed system is three (six components
minus three independent conservation laws).

This example enriches our discussion because it deviates
from the nice abstract scheme discussed above. First of all, the
reactions 1–7 are not elementary steps. We consider them as
overall reactions which have their own intrinsic and compli-
cated reaction mechanism. This does not cause a serious pro-
blem because the generalized mass action law describes the
equilibria of the complex overall reactions as well as the equili-
bria of the elementary ones. Therefore, we can apply the concept
of the extended form of detailed balance and our Theorems 1–3 to
the process network 1–7 build from the complex reactions.
Rigorously speaking, we deal not with the elementary reac-
tion steps but with the main equilibria and may discuss, for
example, not the ‘‘Boudouard reaction’’ but the ‘‘Boudouard
equilibrium’’.

The second problem is the heterogeneity of the system:
A1, . . . ,A5 are gases and A6 ¼ C is solid. Some of the reactions go
on the surface of the solid.

If a multiphase system is ideal and the solid components are
stoichiometric ones (i.e. they have a fixed composition) then the
free energy has the form

F ¼
X

Ai�gas

NiðRT ln ciþm0
i �RTÞþ

X
Ai�solid

Nim0
i : ð18Þ
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Here, the free energy of solid components differs from the free
energy of gases by the absence of the term RTN ln c. This term
corresponds to the ideal gas pressure PV¼NRT. In our case,

F ¼
X5

i ¼ 1

NiðRT ln ciþm0
i �RTÞþN6m0

6: ð19Þ

To define the activities, we follow (9). For the ideal gases ai¼ci

and for the stoichiometric solids ai � 1.
In Section 1.2, we studied homogeneous systems and consid-

ered xi ¼ ln ai as independent unknowns in the detailed balance
equations (6):X

i

grixi ¼ ln Kr ðxi ¼ ln aeq
i Þ: ð20Þ

Therefore, for any solution of this system, the activities ai ¼ exp xi

represented a positive equilibrium.
In a heterogeneous system with the free energy (18) the

activities for the solid components are constant, the correspon-
dent xi � 0. Let x¼ ðxiÞ be a solution to Eqs. (20), Cx¼K , where K
is the vector of the equilibrium constants. The vector a¼ ðaiÞ,
ai ¼ ln xi is a vector of equilibrium activities if and only if xi¼0 for
all the solid components Ai. Instead of analyzing the solvability of
the detailed balance equations (20) we have to study its solva-
bility under additional condition: xi¼0 for all the solid compo-
nents Ai.

Let us postpone the discussion of the extended principle of
detailed balance in multiphase systems and consider the system
‘‘gaseous mixture þ one stoichiometric solid’’. Let An be solid.

If there is the only solid component then the solvability
conditions for the system (20) and for this system with additional
condition xn¼0 coincide. Indeed, there exist a positive stoichio-
metric linear conservation law:

Xn

i ¼ 1

gribi ¼ 0 for all r and bi40 for all i:

For example, this may be conservation of mass or of the amount
of atoms. Let b¼ ðbiÞ. For any solution of the detailed balance
conditions (20) x¼ ðxiÞ, the vector

x0 ¼ x�
xn

bn
b

is also a solution to (20) with the condition x0n ¼ 0.
So, for our example with seven equilibria 1–7 the conditions of

the extended principle of detailed balance for the heterogeneous
system with solid A6 ¼ C are described by the Theorems 1–3 and
wee can use the results of the preceding sections.
3.5.2. The classical Wegscheider conditions

To formulate the classical Wegscheider identities, we have to
join the direct and inverse reactions and to find the basic
solutions of the system of linear equations kC¼ 0. The stoichio-
metric matrix for this example is:

CT
¼

0 �1 1 �1 �1 0 0

�1 �1 �1 0 0 1 0

1 2 0 1 0 �2 1

�1 2 �4 3 2 0 1

1 0 2 �1 0 0 �1

0 0 0 0 1 1 �1

2
666666664

3
777777775
: ð21Þ

The system of seven equations kC¼ 0) is redundant. There are
only three independent equations (one equation for every degree
of freedom). It is sufficient to take the components of
stoichiometric vectors that correspond to the components A2,
A4, A6. Other components satisfy the same linear relations as the
selected ones. The reduced matrix CT

r is

CT
r ¼

�1 �1 �1 0 0 1 0

�1 2 �4 3 2 0 1

0 0 0 0 1 1 �1

2
64

3
75: ð22Þ

There are four independent solutions of the equations kC¼ 0
(seven variables minus three independent equations). For exam-
ple, we can take the following basis of solutions: ð�1,1,0,�1,
0,0,0Þ, ð0,0,0,�1,1,0,1Þ, (1, 0,0,0,0,1,1), ð1,0,�1,�1,0,0,0Þ.

The correspondent Wegscheider identities are: K2 ¼ K1K4,
K5K7 ¼ K4, K1K6K7 ¼ 1, K1 ¼ K3K4.
3.5.3. Allowed and forbidden mechanisms

In general, all the seven reactions can be considered as
reversible but under various conditions some of them are almost
irreversible. Let us study which combinations of irreversible
reactions are possible in accordance with the extended form of
detailed balance.

For example, existence of the positive solution ð0,1,0,0,0,1,
1ÞAL guarantees that the irreversible system CO2þH2-

COþH2O, CH4þCO2-2COþ2H2, CO2þ4H2-CH4þ2H2O, CH4þ

H2O-COþ3H2, CH4-2H2þC, 2CO-CO2þC, CþH2O-COþH2

is forbidden by the extended form of detailed balance. This
conclusion is also obvious from the correspondent Wegscheider
condition K2K6K7 ¼ 1. Indeed, if all the k�i -0 for bounded from
below kþi 4e40 then all Ki-1 and K2K6K7-1. This contradicts
the Wegscheider condition.

The first reaction (RWGS, Reverse water–gas shift) is reversible
in the wide interval of conditions (Moe, 1962). Let us first study
all the reaction mechanisms with the reversible first reaction and
the irreversible reactions 2-7. We find the combinations of the
directions of the irreversible reactions that satisfy the extended
form of detailed balance. As a criterion of the extended form of
detailed balance we use Theorem 3. After that, we consider other
reactions as the reversible ones (in addition to RWGS) and study
the corresponding reaction mechanisms.

The space S is a straight line with the directional vector g1 with
coordinates ð�1,�1,0Þ in the coordinate system ðN2,N4,N6Þ that
corresponds to the components A2, A4, A6. Let us represent the
quotient space R3=S in the coordinate system ðN2,N6Þ that
corresponds to the components A2, A6. For this purpose, we have
to eliminate the coordinate N4 using vector g1. As a result, we get
the following vectors:

g2 ¼
�3

0

� �
, g3 ¼

3

0

� �
, g4 ¼

�3

0

� �
,

g5 ¼
�2

1

� �
, g6 ¼

1

1

� �
, g7 ¼

�1

�1

� �
: ð23Þ

For example, to find g2, we take g2 (the second column in (22))
and exclude the coordinate N4 by adding 2g1. The result is a
vector g2þ2g1. In coordinates ðN2,N6Þ, this vector gives us g2.

The stoichiometric vectors of irreversible reactions are þgj or
�gj (j¼ 2, . . . ,7Þ. Their images in the quotient space R3=S are þg j

or �gj. The extended form of detailed balance requires that the
convex envelope of these vectors should not include zero. We
have to arrange signs in 7gj to provide this property. First of all,
we see immediately from (23) that the second and the forth
reaction should have the same directions and the third reaction
should have the opposite direction. The directions of the sixth and
the seventh reactions should be opposite. Therefore, we have to
analyze eight possible reaction mechanisms. Let us represent



A.N. Gorban, G.S. Yablonsky / Chemical Engineering Science 66 (2011) 5388–53995396
them by the directions of reactions:

ðaÞ

"

-

’

-

-

-

’

2
66666666666664

3
77777777777775

,

ðbÞ

"

’

-

’

-

-

’

2
66666666666664

3
77777777777775

,

ðcÞ

"

-

’

-

’

-

’

2
66666666666664

3
77777777777775

,

ðdÞ

"

’

-

’

’

-

’

2
66666666666664

3
77777777777775

,

ðeÞ

"

-

’

-

-

’

-

2
66666666666664

3
77777777777775

,

ðfÞ

"

’

-

’

-

’

-

2
66666666666664

3
77777777777775

,

ðgÞ

"

-

’

-

’

’

-

2
66666666666664

3
77777777777775

,

ðhÞ

"

’

-

’

’

’

-

2
66666666666664

3
77777777777775
:

ð24Þ

Arrows here correspond to the directions of reactions. For
example, the case (a) corresponds to the reaction mechanism
1.
Fig
R3=

(ab

n3
CO2þH2"COþH2O,

2.
 CH4þCO2-2COþ2H2,

3.
 CO2þ4H2’CH4þ2H2O,

4.
 CH4þH2O-COþ3H2,

5.
 CH4-2H2þC,

6.
 2CO-CO2þC,

7.
 CþH2O’COþH2.
Combinations (c) and (f) contradict the condition 1 from Theorem
3: the origin belongs to the convex envelope of the vectors nj of
irreversible reactions (see Fig. 1). Hence, only six combinations of
directions of irreversible reactions satisfy the extended form of
detailed balance (from 26

¼ 64 possible combinations of direc-
tions): (a), (b), (d), (e), (g) and (h).

Let us extend the list of reversible reactions. If we assume that
the second reaction (dry reforming), is reversible together with
the first one (RWGS) then the third and the forth reactions should
be also reversible because g3 ¼ 2g1�g2 and g4 ¼ g2�g1, hence,
g3,4Aspanfg1,g2g. According to the condition 1 from Theorem 3,
this contradicts to the extended form of detailed balance if the
first and the second reactions are reversible and the third and the
forth are not.

Analogously, in addition to the reversible reaction RWGS, the
Boudouard equilibrium 6 and coal gasification 7 can be reversible
only together because g7 ¼�g1�g6.

We have to consider three possible sets of reversible reactions:
1.
 1, 2, 3 and 4,

2.
 1 and 5,

3.
 1, 6 and 7.
For all three cases, dim S¼ 2 and dimðR3=SÞ ¼ 1. We will use
for the quotient space the coordinate N6 which corresponds to
A6 ¼ C.

In the first case, let us exclude the coordinate N4 from g5,6,7

(23) using vector g2. We get one-dimensional vectors

g5 ¼ 1, g6 ¼ 1, g7 ¼�1:
. 1. Images of the stoichiometric vectors of irreversible reactions n j ¼ 7g j in

S for various combinations of directions of reactions (24) in coordinates N2

scissa), N6. The configurations with 0Aconvfn2 , . . . ,n7g are outlined. Vectors n2,

and n4 coincide as well as vectors n6 and n7.
To satisfy the extended form of detailed balance the directions of
the fifth and the sixth reaction should coincide and the direction
of the seventh reaction should be opposite: there are two possible
combinations of arrows in irreversible reactions 5, 6 and 7 if
reactions 1, 2, 3 and 4 are reversible: 5-,6-,7’ and
5’,6’,7-.

In the second case, let us exclude the coordinate N4 from
g2,3,4,6,7 (23) using vector g5. We get one-dimensional vectors

g2 ¼�2=3, g3 ¼ 2=3, g4 ¼�2=3, g6 ¼ 1=2, g7 ¼�1=2:

Again, according to the extended form of detailed balance, here
are two possibilities of directions of irreversible reactions 2, 3, 4,
6 and 7 if reactions 1 and 5 are reversible: 2-,3’,4-,6’,7-
and 2’,3-,4’,6-,7’.

In the third case, let us exclude the coordinate N4 from g2,3,4,5

(23) using vector g6. We get one-dimensional vectors

g2 ¼ 3, g3 ¼�3, g4 ¼ 3, g5 ¼ 3:

According to the extended form of detailed balance, here are two
possibilities of directions of irreversible reactions 2, 3, 4, and 5 if
reactions 1, 6 and 7 are reversible: 2-,3’,4-,5- and
2’,3-,4’,5’.

In the first and the third cases, there are nontrivial Wegschei-
der identities for the reaction equilibrium constants of reversible
reactions. If reactions 1, 2, 3 and 4 are reversible (case 1) then
dim L¼ 2 and the basis of L is, for example, k1

¼ ð2,�1,�1,0Þ
(2g1�g2�g3 ¼ 0) and k2

¼ ð1,�1,0,1Þ (g1�g2þg4 ¼ 0Þ. The two
correspondent Wegscheider identities are: K2

1 ¼ K2K3 and
K1K4 ¼ K2 (where Ki ¼ kþi =k�i Þ.

If the reactions 1, 6 and 7 are reversible then dim L¼ 1 and
the basis of L consists of one vector k¼ ð1,1,1Þ (g1þg6þg7 ¼ 0Þ.
The correspondent Wegscheider identity is: K1K6K7 ¼ 1.

If we add one more reversible reaction in cases 1–3 then all the
reactions 1–7 should be reversible in according to the extended
form of detailed balance.

In this case study, we demonstrated also how it is possible to
organize computations and reduce the dimension of the compu-
tational problems.
4. Multiscale degenerated equilibria

Let in a system of reversible reactions with detailed balance
some k�s -0, when the correspondent kþs remains constant and
separated from zero. In this case, some equilibrium activities also
tend to zero. Indeed, at equilibrium wþs ¼w�s , w�s -0 because
k�s -0, hence, wþs -0 and some of aeq

i with asi40 also tend to
zero due to the generalized mass action law (5). Therefore, the
irreversible limits of the reactions with detailed balance are
closely related to the limits when some equilibrium activities
tend to zero. (For the usual mass action law is sufficient to replace
the ‘‘activity ai’’ by the ‘‘concentration ci’’.)

In this section we study asymptotics aeq
i ¼ const� edi , e-0 for

various values of non-negative exponents diZ0 (i¼1,y,n).
There exists a well known way to satisfy the principle of

detailed balance: just write k�r ¼ kþr =Kr where Kr is the equili-
brium constant:

Kr ¼

Qn
i ¼ 1ða

eq
i Þ

briQn
i ¼ 1ða

eq
i Þ

ari
:

We can define the equilibrium constant through the equilibrium
thermodynamics as well (see, for example, the classical book by
Prigogine and Defay, 1962). In this case, the principle of detailed
balance is also satisfied for the mass action law.

In this approach, we have to group the direct and reverse
reactions together. Therefore, m is here the number of pairs of
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reactions, direct þ inverse ones. We deal with mþn constants
(m rate constants kþr for direct reactions and n equilibrium data for
individual reagents: equilibrium concentrations or activities) instead
of 2 m constants k7

r . For these mþn constants, the principle of
detailed balance produces no restrictions (Gorban et al., 1989; Yang
et al., 2006). It holds ‘‘by the construction’’ for any positive values of
these constants if k�r ¼ kþr =Kr and the equilibrium constants are
calculated in accordance with the equilibrium data.

To transform the conditions of aeq
i -0 into irreversibility of

some reactions, it is not sufficient to know which aeq
i -0. We have

to take into account the rates of these convergence to zero for
different i. In the simple example, A1"A2"A3"A1, if aeq

1,2-0,
a1=a2-0 then in the limit we get the system A1-A2 (because the
A1=A2 equilibrium is shifted to A2), A1-A3, A2-A3. For the inverse
relations between a1 and a2, a2=a1-0, the limit system is A2-A1

(the A1=A2 equilibrium is shifted to A1), A1-A3, A2-A3. For the
both limit systems, the equilibrium activities of A1, A2 are zero but
the directions of reaction are different.

The limit structure of the reaction mechanism when some of
aeq

i -0 depends on the behavior of the ratios aeq
i =aeq

i . To formalize
this dependence, let us introduce a parameter e40 and take
aeq

i ¼ const� edi . At equilibrium, each monomial in the general-
ized mass action law is proportional to a power of e:

weqþ
r ¼ kþr const� e

P
i
aridi , weq�

r ¼ k�r const� e
P

i
bridi :

The principle of detailed balance gives: weqþ
r ¼weq�

r . Therefore,

kþr
k�r
¼ const� eðgr ,dÞ, ð25Þ

where d is the vector with coordinates di.
There are three possibilities for the reversibility of an elemen-

tary reaction in asymptotic e-0:
1.
 If ðgr ,dÞ ¼ 0 then the reaction remains reversible in asymptotic
e-0. This means that 0o limðkþs =k�s Þo1. Therefore, if one of
the reactions persists in the limit then the reverse reaction also
persists.
2.
 If ðgr ,dÞo0 then in asymptotic e-0 can remain only direct
reaction. This means that limðk�s =kþs Þ ¼ 0.
3.
Fig. 2. Tiling of the positive octant of the plane ðd2 ,d3Þ (d1 ¼ 1) that corresponds to

seven irreversible limits of the reaction mechanism.
If ðgr ,dÞ40 then in asymptotic e-0 can remain only reverse
reaction. This means that limðkþs =k�s Þ ¼ 0.

It is possible that ðgr ,dÞ ¼ 0 but both klim7
r ¼ 0 just because

kþr ¼ 0 and k�r ¼ 0 and not because of the equilibrium degenera-
tion. If we delete some irreversible reactions or several pairs of
mutually reverse reaction then the extended form of detailed
balance persists. Therefore, we do not consider these cases
separately and always discuss the limit reaction mechanisms
with the maximal sets of nonzero rate constants.

For each stoichiometric vector gr the n-dimensional space of
vectors d is split in three sets: hyperplane ðgr ,dÞ ¼ 0 (reaction
remains reversible), hemispace ðgr ,dÞo0 (only direct reaction
remains) and hemispace ðgr ,dÞ40 (only reverse reaction
remains). For the reaction mechanism, intersections of these sets
for all gr (r¼ 1, . . . ,m) form a tiling of the n-dimensional space of
vectors d. The intersection of all hyperplanes ðgr ,dÞ ¼ 0 corre-
sponds to the initial reversible reaction mechanism. Other sets
from this tiling correspond to the reaction mechanisms that are
limits of the initial reaction mechanism when some of the
reaction rate constants tend to zero but the principle of detailed
balance is valid. In our study, the exponents dj should be non-
negative, hence, we have to study the tiling of the positive orthant
djZ0 in Rn Description of the tiling produced by a system of
hyperplanes ðgr ,dÞ ¼ 0 is a classical problem of combinatorial
geometry.
In the usual linear triangle A1"A2"A3"A1 we have to
consider three hyperplanes in the space of exponents
d¼ ðd1,d2,d3Þ: d1 ¼ d2 (ðg1,dÞ ¼ 0Þ, d2 ¼ d3 (ðg2,dÞ ¼ 0) and d3 ¼ d1

(ðg3,dÞ ¼ 0Þ. At least one of the exponents should take zero value
to keep the overall concentration in equilibrium neither zero nor
infinite. Let us take d1 ¼ 0. The hyperplanes turn in the straight
lines on the plane ðd2,d3Þ: 0¼ d2 (ðg1,dÞ ¼ 0Þ, d2 ¼ d3 (ðg2,dÞ ¼ 0)
and d3 ¼ 0 (ðg3,dÞ ¼ 0Þ. The positive octant on the plane ðd2,d3Þ is
split in five sets (A)–(E), that correspond to the limits with some
irreversible reactions, and the origin:
�
 (A) d2 ¼ 0, d340, A1"A2, A3-A1, A3-A2,

�
 (B) d34d240, A3-A2-A1, A3-A1,

�
 (C) d3 ¼ d240, A3"A2, A2-A1, A3-A1,

�
 (D) d24d340, A2-A3-A1, A2-A1 (this case differs from

(B) by the transposition 223Þ,

�
 (E) d240, d3 ¼ 0 A1"A3, A2-A1, A2-A3 (this case differs

from (A) by the transposition 223Þ.

�
 The origin corresponds to the fully reversible mechanism.

For a less trivial example, let us analyze the reaction mechan-
ism from Section 3.4: A1"A2"A3"A1, A1þA2"2A3. This is a
reversible cycle supplemented by a nonlinear step.

We join the direct and reverse elementary reactions and,
therefore,

CT
¼

�1 0 1 �1

1 �1 0 �1

0 1 �1 2

2
64

3
75: ð26Þ

The columns of this matrix are the stoichiometric vectors gr .
Let us study the tiling of the positive orthant in R3 by the

planes ðgr ,dÞ ¼ 0 (r¼ 1, . . . ,4Þ. First of all, it is necessary and
sufficient to study this tiling of the positive octants in three
planes: d1 ¼ 0, or d2 ¼ 0, or d3 ¼ 0 because at least one equilibrium
concentration should not tend to zero and, therefore, has zero
exponent. The symmetry between A1 and A2 allows us to study
two planes: d1 ¼ 0 or d3 ¼ 0.

On the plane d1 ¼ 0 with coordinates d2, d3 we have four
straight lines: ðg1,dÞ ¼ 0 (d2 ¼ 0Þ, ðg2,dÞ ¼ 0, (d2 ¼ d3Þ, ðg3,dÞ ¼ 0
(d3 ¼ 0) and ðg4,dÞ ¼ 0 (d2 ¼ 2d3Þ. These lines divide the positive
octant (d2,3Z0) into seven parts (Fig. 2) and the origin:
1.
 (A) d2 ¼ 0, d340, A1"A2, A3-A1, A3-A2, 2A3-A1þA2,

2.
 (B) d240, d34d2, A2-A1, A3-A1, A3-A2, 2A3-A1þA2,

3.
 (C) d2 ¼ d340, A2-A1, A3-A1, A3"A2, 2A3-A1þA2,
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4.
 (D) 0od3od2o2d3, A2-A1, A3-A1, A2-A3, 2A3-A1þA2,

5.
 (E) 0od2 ¼ 2d3, A2-A1, A3-A1, A2-A3, 2A3"A1þA2,

6.
 (F) d242d340, A2-A1, A3-A1, A2-A3, A1þA2-2A3,

7.
 (G) d3 ¼ 0, d240, A2-A1, A1"A3, A2-A3, A1þA2-2A3,

8.
 The origin corresponds to the fully reversible mechanism.

The same picture gives us the plane d2 ¼ 0 with coordinates d1,
d3: we need just to transpose the indexes, 122.

On the plane d3 ¼ 0 with coordinates d1, d2 the positive octant
is divided into five parts and the origin:
1.
 d1 ¼ 0, d240, A2-A1, A1"A3, A2-A3, A1þA2-2A3 (this is
exactly the case (G) from Fig. 2),
2.
 0od1od2, A2-A1, A1-A3, A2-A3, A1þA2-2A3,

3.
 0od1 ¼ d2, A1"A2, A1-A3, A2-A3, A1þA2-2A3,

4.
 d14d240, A1-A2, A1-A3, A2-A3, A1þA2-2A3,

5.
 d2 ¼ 0, d140, A1-A2, A1-A3, A2"A3, A1þA2-2A3,

6.
 The origin corresponds to the fully reversible mechanism.

This approach is equivalent to the previous definition of the
extended form of detailed balance based on the pathway analysis.
Indeed, if the reaction mechanism with some irreversible reac-
tions is a limit of the reversible mechanism with detailed balance
then it satisfies the conditions of the extended form of detailed
balance. (This is the direct statement of Theorem 1 proved in
Section 3.2.) To prove the converse statement, we have to take a
system that satisfies the extended form of detailed balance and to
find such a set of exponents diZ0 (i¼ 1, . . . ,n) that the system
appears in the limit of a reversible system with detailed balance
when e-0 and aeq

i ¼ const� edi .
Let a system with some irreversible reactions satisfy the extended

form of detailed balance. We follow the notations of Theorem 3: gj

(j¼ 1, . . . ,r) are the stoichiometric vectors of the reversible reactions
and n1, . . . ,ns are the stoichiometric vectors of the irreversible
reactions. The linear subspace S¼ spanfg1, . . . ,grg �Rn consists of
all linear combinations of the stoichiometric vectors of the reversible
reactions. We use notation nj for the images of nj in Rn=S.

Let k7
j 40 (j¼ 1, . . . ,r) be the reaction rate constants for the

reversible reactions and qj ¼ qþj 40 (j¼ 1, . . . ,s) be the reaction
rate constants for the irreversible reactions. We extend the
system by adding the reverse reactions with the constants
q�j 40. If the extended system satisfies the principle of detailed
balance then

kþj
k�j
¼
Yn

i ¼ 1

ðaeq
i Þ

gri and
qþj
q�j
¼
Yn

i ¼ 1

ðaeq
i Þ

nri , ð27Þ

where aeq
i is a point of detailed balance.

Theorem 4. Let the system satisfy the extended form of detailed

balance. Then there exists a vector of nonnegative exponents d¼ ðdiÞ

(i¼ 1, . . . ,n) and the family of extended systems with equilibria

aeq
i ¼ an

i e
di such that condition (27) hold, k7

j (j¼1,y,r) and

qj ¼ qþj (j¼ 1, . . . ,s) do not depend on e, and q�j -0 when e-0.

Proof. If the system satisfies the extended form of detailed
balance then the reversible part satisfies the principle of detailed
balance and, hence, there exists a positive point of detailed
balance for the reversible part of the system (Theorem 3):
an

i 40 and

kþj
Yn

i ¼ 1

ðan

i Þ
ari ¼ kþj

Yn

i ¼ 1

ðan

i Þ
bri :

Let us take aeq
i ¼ an

i e
di . Due to (27), kþj =k�j ¼ const� eðgj ,dÞ. To keep

the k7
i independent of e, we have to provide ðgj,dÞ ¼ 0. Analo-

gously, qþj =q�j ¼ const� eðnj ,dÞ. The rate constant qþj should not
depend on e and q�j -0 when e-0. Therefore, ðnj,dÞo0. We came
to the system of linear equations and inequalities with respect to
exponents di:

ðgj,dÞ ¼ 0 ðj¼ 1, . . . ,rÞ, ðnj,dÞo0 ðj¼ 1, . . . ,sÞ: ð28Þ

The solvability of this system is equivalent to the condition 1 of
Theorem 3 (see Remark 7). To prove the existence of nonnegative
exponents diZ0, we have to use existence of positive conserva-
tion law: bi40, ðgj,bÞ ¼ 0, ðnj,bÞ ¼ 0. For every solution d of (28)
and any number d, the vector dþdb is also a solution of (28).
Therefore, the nonnegative solution exists. We proved the theo-
rem and the converse statement of Theorem 1. &

Proposition 4. Let a system with the stoichiometric vectors gs and

the extended detailed balance be obtained from the reversible

systems with detailed balance in the limit aeq
i ¼ const� edi , e-0.

For this system, the linear function ðd,cÞ of the concentrations c

monotonically decreases in time due to the kinetic equations

dc=dt¼
P

swsgs.

Proof. Indeed, dðd,cÞ=dt¼
P

swsðgs,dÞ (compare to Remark 6). For
the reversible reactions, the sign of ws is indefinite but ðgs,dÞ ¼ 0.
For the irreversible reactions, we always can take ws ¼wþs Z0
just by the selection of notations. In this case, only kþs survived in
the limit e-0, this means that ðgs,dÞo0. Therefore, dðd,cÞ=dtr0
and it is zero if and only if all the reaction rates of the irreversible
reactions vanish. &

So, the vector of exponents d defines the (partially) irreversible
limit of the reaction mechanism and, at the same time, gives the
explicit construction of the special Lyapunov function for the
kinetic equations of the limit system.

In this Section, we developed the approach to the systems with
some irreversible reactions based on multiscale degeneration of
equilibria, when some ai-0 as edi . We proved in Theorem 4 that
this approach is equivalent to the extended form of detailed
balance based on the pathways analysis or on the limits of the
systems with detailed balance when some of the reaction rate
constants tend to zero.
5. Conclusion

The classical principle of detailed balance operates with
mechanisms, which consist of fully reversible elementary pro-
cesses (reactions). If such mechanisms have cycles of reactions,
each cycle is characterized by one Wegscheider relationship (8)
between its rate constants. The number of functionally indepen-
dent relationships is equal to the number of linearly independent
cycles, linear or nonlinear.

In difference from this classical case, we analyzed mechanisms,
which may include irreversible reactions as well. For such mechan-
isms we proved an extended form of detailed balance considering the
irreversible reactions as limits of reversible steps, when the rate
constants of the corresponding reverse reactions approach zero. The
novelty of this form is that the extended detailed balance now is
presented as a necessary combination of two constituents:
�
 Structural conditions in accordance to which the irreversible
reactions cannot be included in oriented cyclic pathways.

�
 Algebraic conditions which are written for the ‘‘reversible part’’

of the complex mechanism taken separately, without irrever-
sible reactions, using the classical Wegscheider relationships.

The computational tools combine linear algebra (some standard
tools for chemical kinetics) with methods of linear programming.
The most expensive computational problem appears when we
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check the structural condition of the extended form of detailed
balance.

Let n be the number of components, and let Rn be the
composition space. We consider a system with r reversible and
s irreversible reactions. Let us use g1, . . . ,gr for the stoichiometric
vectors of the reversible reactions, n1, . . . ,ns for the stoichiometric
vectors of the irreversible reactions and n j for the images of nj in
the quotient space Rn=S, where S is spanned by the stoichiometric
vectors of all reversible reaction, S¼ spanfg1, . . . ,grg �Rn. The
reaction mechanism satisfies the structural condition of the
extended form of detailed balance if and only if

0=2convfn1, . . . ,nsg:

We have to check whether the origin belongs to the convex
hull of the vectors n1, . . . ,ns. In practice, we can always assume
that these vectors have exactly known rational (or even integer)
coordinates.

We combined three approaches to study the restrictions
implied by the principle of detailed balance in the systems with
some irreversible reactions:
1.
 Analysis of limits of the systems with all reversible reactions
and detailed balance when some of the reaction rate constants
tend to zero.
2.
 Analysis of the Wegscheider identities for elementary path-
ways when some of the reaction rate constants turn into zero.
3.
 Analysis of limits of the systems when some equilibrium
concentrations (or, more general, activities) tend to zero.

We proved that these three approaches are equivalent if we
take into account not only which equilibrium concentrations tend
to zero, but the speed of this tendency as well. The various
partially or fully irreversible limits of the reaction mechanisms
are, in this sense, multiscale asymptotics of the reaction networks
when some equilibrium concentration tend to zero with
different speed.
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