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Outline

• Why renewable power?
• Why tidal stream?
• The THAWT concept
• Betz limit can be exceeded
• 1/20th Scale tests: hydrodynamics
• CFD adds understanding of flow
• Loads on blades



Increase of atmospheric CO2
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The "Keeling Curve"

May 2009 – first monthly average over 390 ppmv
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Historical records of atmospheric CO2

Source: GRID-Arendal (United Nations Environment Programme)
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Problem:
• Climate change due to fossil fuel use
• Diminishing supply of hydrocarbons

Solution:
• Nuclear
• Renewables



Why Tidal Stream Energy?

• Potential to supply at least 18TWh/yr (6%) of UK 
electricity requirements (source: Black & Veatch/Carbon Trust)

– Minimal environmental impact - unlike a barrage

– Power is highly predictable - unlike wind

• Resident UK-based expertise in marine engineering 

• Export potential



Tidal Resource – UK Target Areas

Pentland Firth, 4m/s

Irish Sea, 2m/s

Bristol Channel, 2m/s

English Channel,  2m/s

Peak tidal flow

Source: DTI Atlas of UK Marine 
Renewable Energy Resources 

NB: Tides are cyclic 
but totally predictable



Options for tidal stream power (1)
• Axial flow turbines 

(“underwater windmills”)
– “Unducted”

» MCT  (most developed)
» TidalStream
» Tidel
» … at least 8 others

– “Ducted”
» Lunar Energy
» Open Hydro
» … at least 8 others

– Fixing options:
• Fixed foundation
• Pivoted
• Anchored



Options for tidal stream power (2)
• Vertical axis turbines

– Blue Energy
– Polo
– … 4 other vertical axis devices

• Horizontal axis turbine
– THAWT (Oxford development)
– … one or two others?

• Oscillating devices
– Stingray
– Pulse  Tidal
– … other oscillating devices

• Weird variants
– Tidal Sails
– Atlantis “Aquanator”



Scalability of tidal devices

… stretch …



Scalability of tidal devices

THAWT



• Turn axis of Darrieus vertical 
axis wind turbine (VAWT) 
through 90 to lie horizontally 
across a tidal flow

• Stretch across the flow 

THAWT Concept
Transverse Horizontal Axis Water Turbine

• Length limited only by stiffness of structure and width of channel
• THAWT is scalable horizontally



Fluid Mechanics of Darrieus Cross-Flow Turbine

Driving mechanism:

Torque per blade = R (L sinα – D cos α)



A comparison: axial flow turbine v. THAWT

• Advantages:
– fewer foundations
– fewer (larger) generators
– fewer moving parts

THAWT
Generic 

Axial Flow
Tidal velocity (m/s) 2.5 2.5
Depth (m) 20 20
Rotor Dia. (m) 10 10
Rotor length (m) 60
Number of rotors 2 10
Flow area intercepted  sq. m) 1200 785
Total length (m) 128.0 125.0
Power Output (MW) 7.0 3.7
Number of foundations 3 5
Number of generators 1 10
Number of primary seals 4 30
Estimated manufacturing costs 60% 100%
Estimated maintenance costs 40% 100%



Tests at Newcastle University at 1/20th scale
• Tests on a single turbine bay

– 0.5m diameter
– 0.875m length
– up to 1m depth

• Power curves recorded using 
servo motor/generator  control of 
turbine speed

• Performance in a range of realistic 
flow conditions explored

• Turbine optimisation explored



Froude number scaling of flow conditions
• Choice between Froude number 

or blade Reynolds number scaling

• Maximum power available to a device in an open channel flow only a 
function of Froude number and blockage ratio
(G.T. Houlsby et al. (2008). Application of Linear Momentum Actuator Disc Theory to Open 

Channel Flow, University of Oxford Internal report, OUEL 2296/08)

• Froude number scaling

• Lower Reynolds number flows result in poor hydrofoil performance and 
a conservative estimate of the full scale performance

Scale Model Full Scale
Flow depth 1m 20m
Froude number range 0.09 ‐ 0.22 0.09 ‐ 0.22
Flow velocity range (m/s) 0.3 – 0.7 1.3 ‐ 3.1
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What about the Betz limit?
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For  wind turbine in free air, mass/momentum analysis shows that 
stream tube area increases and velocity decreases  through the turbine.

Max power is the Betz limit



Betz limit does not apply to tidal flows

Mixing

41 2 5

ub4

h5

At1

At4

ub4

u5ut4

h

h1 = h

u1 = u

3

A
T

X

  hbhugP 

Head Efficiency             Mass flow rate        Change in depth

Power extracted from turbine best represented by Head efficiency 



Tidal flows are subcritical



Downstream Mixing and Efficiency
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CFD : Computational Fluid Dynamics

• Calculation of flow through turbine is difficult
– Unsteady, three dimensional, free surface, wide 

range of length scales
• Simplified analysis to calculate:

– Power
– Forces on blades



CFD : Computational Fluid Dynamics
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Phase 2 testing at Newcastle



Power curves
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Exceeding the Betz limit
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Measurements of bending moment
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Measured loads 
on blades
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Measured “Lift Coefficients”
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Performance in a reversed flow
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Varying the fixed offset blade pitch
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1/20th Scale Test Conclusions
• Device is capable of exceeding the Betz 

limit by utilising blockage effects

• THAWT has comparable performance 
to a parallel bladed equivalent

• Performance of the device may be 
improved using a fixed offset pitch

• Due to Reynolds number issues the 
results here are a conservative estimate 
of the full scale performance of the 
device

• Blade loading measurements have 
been made



100 MW from 1 km long array across Bristol 
Channel

• Linear array extracts potential energy by surface level drop
• Greater power than from kinetic energy only
• Exceeds “Betz” wind turbine theory limit
• Bristol channel example:

• 10m diameter
• 1km long array in 20m deep water 
• 2m/s flow 
• 0.5m total head drop
• 53% efficiency (modified theory) would give 102 MW



THAWT in the 
Bristol Channel

1 GW installation?
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Conclusions

• Tidal stream could provide at least 6% of UK electricity
• Efficient and robust devices like THAWT need to be 

developed
• The available resource needs to be properly understood

38


