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1. Introduction

• Suppose a Hamiltonian system consisting of 
some slow degrees of freedom coupled to a 
high-dimensional chaotic system (e.g. 
conformations of a biomolecule coupled to 
vibrations, water movement etc).

• Would like to derive a Langevin equation for 
the slow degrees of freedom (i.e. an effective 
Hamiltonian + damping + noise).

• Precursors: Ford,Kac&Mazur; Zwanzig;
Ott; Wilkinson; Berry&Robbins; Jarzynski…



2. Assumptions

• Gallavotti-Cohen “chaotic hypothesis”: 
chaotic Hamiltonian systems can be 
treated as if mixing Anosov on each 
energy level.

• Anosov condition is unlikely to hold, but 
it allows some nice theory, aspects of 
which are likely to hold more generally.

• A low-dimensional mechanical example:



The triple linkage



Assumptions in detail
• Symplectic manifold (M,ω), dim M = 2m
• Hamiltonian H, vector field X(H), flow ϕt
• Poisson map π: M → N = R2n locally, n << m
• for each Z in N, π-1(Z) is a symplectic submanifold of 

M; then the restriction HZ of H to π-1(Z) defines const-
rained dynamics X(HZ) preserving volume Ω=ω∧(m-n), 
value of H, and “ergode” µ on HZ

-1(E) def by µ∧dH=Ω.
• Vj={H,Zjπ} are slow compared to X(HZ).
• X(HZ) is mixing Anosov on HZ

-1(E); in particular, auto-
correlation of deviation ζ of V from its mean decays 
on short time ε compared to significant change in Z

• Size of ζ is of order ε-1/2 on slow timescale.



3. Aim

to show the distribution of paths πϕt(Y) for 
random Y wrt µ on (πxH)-1(Z0,E0) is close to 
that for the solutions of a stochastic ODE

dZ = (J-βD) ∇F dt + σ dW, Z(0)=Z0,
with J representing the Poisson bracket on N, 
F = free energy function on N, β = inverse 
temperature, W a multidimensional Wiener 
process, Einstein-Sutherland relation D+DT = 
σσT, and Klimontovich interpretation.



4. Strategy: 
(a) Zeroth order mean velocity
• Let WZ(E) = ∫H≤E Ω on π-1(Z)
• Anosov-Kasuga adiabatic invariant for slow Z 

when H-1(E) ergodic: WZ(t)(E(t)) ≈ w0.
• Let λ = µ/WZ’(E), normalised ergode
• λ(V) = J ∇f, where f(Z) = WZ

-1(w0), 
“microcanonical free energy”.

• Alternatively, start in canonical ensemble dν = 
e-β(H-F) Ω(dY) on π-1(Z) (“monode”) and find     
ν(V) = J∇F, but not obvious how to continue.



(b) Fluctuations

• The fluctuations ζ(t) from the mean can be 
approximated by a multidimensional white 
noise σ dW/dt with covariance
σσT = ∫ds λ(ζ(t)ζ(s)) = D+DT.

• Proofs at various levels, e.g. 
Melbourne&Nicol for the strongest.

• Refinement of π to make correlations decay 
as rapidly as possible could be useful to 
increase accuracy.



(c) Correction to λ
• If Z(t) is varied slowly, the measure on

π-1(Z(t)) starting with λ for given w0 at t=-∞
lags behind that for t.

• Ruelle’s formula for 1st order change in SRB 
for t-dependent mixing Anosov system:
δ<O(t)> =∫t ds <d(Oϕts)δXs>
for any observable O (ϕts= flow from s to t).

• In particular (assuming w0 conserved), find
δ<V> = (W’D)’/W’ J dZ/dt ≈ -βD∇F, with
Dij =∫t ds λ(ζi(s)ζj(t)), ζ = V-λ(V) along 
constrained orbits, β = (logW’)’ = 1/T.



(d) Put together

• Adding the preceding ingredients yields
V = (J-βD) ∇f + σ dW/dt
to first order.

• Now remove constraint of externally 
imposed Z(t): hope to get
dZ/dt = V = (J-βD) ∇f + σ dW/dt,
but have to examine correlations.



(e) Micro to canonical

• For m large, f ≈ F+cst, canonical free energy, 
because

∇F =∫e-βEWZ’(E) ∇f dE /∫e-βEWZ’(E) dE 
and e-βEWZ’(E) is sharply peaked around E0
for which (logW’)’ = β (large deviation theory)

• If σ depends on Z, Klimontovich interpret-
ation is necessary to make e-βF ω∧n stationary



5. Overdamped case

• If N=T*L, H(Q,P,z) = PTM-1P/2 + h(Q,z) 
then F(Q,P) = PTM-1P/2 + G(Q) and D 
has PP-block only and indpt of P

• If motion of Q is slow on time T|MD-1|
then P relaxes onto a slow manifold and 
get further reduction to
dQ = -TD-1∇G dt + 2Tσ-T dW on L



6. Quantum DoF
• Quantum Mechanics is Hamiltonian: for 

Hermitian operator h on complex Hilbert 
space U, take M = P(U) with Fubini-Study 
form, and H(ψ) = <ψ|hψ>/<ψ|ψ>; gives 
Schrodinger evolution i dψ/dt = hψ.

• Or take M = (dual of) Lie algebra of Hermitian 
operators on U with inner product <A,B> = Tr 
AB and its Lie-Poisson bracket, and H(A) = Tr 
hA; gives von Neumann dA/dt = -i [h,A].

• So can incorporate quantum DoF, e.g. 
electrons in rhodopsin conformation change. 

• Not Anosov, but maybe not really required.



7. Kinetics out of chemical 
equilibrium

• N can be a covering space, e.g. base= 
conformation of myosin, decks differ by 
number of ATP

• Need to adapt for constant pressure



8. Conclusion/Comments

• Mathematical justification of the Langevin 
equation looks possible.

• Can probably extend to some non-Anosov 
fast dynamics, e.g. partial hyperbolicity + 
accessibility may suffice for Ruelle formula.

• Main interest may be ways in which the 
above program can fail, e.g. no gap in 
spectrum of timescales.


