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Abstract-An explicitly solvable Riabouchinsky model with a partially penetrable obstacle is 
introduced. This model applied to the estimation of the efficiency of free flow turbines allows us 
to take into account the pressure drop past the lamina. @ 2002 Elsevier Science Ltd. All rights 
reserved. 
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1. INTRODUCTION 

The investigation of hydrodynamic models with partially penetrable obstacles has been initiated 
by the recent progress in the development of free flow turbines [l] for the purpose of estimating 
their efficiency limit [2]. In the previous paper [3], an explicitly solvable analog of the Kirchhoff 
cavitation flow was obtained. As in the classical situation, the main deficiency of the Kirchhoff 
model is the infinite size of the stagnation domain that resulted from the assumption that the 
pressure in the stagnation domain is equal to the pressure at infinity. In the Riabouchinsky 
model (Figure lb), a virtual obstacle past the actual one is introduced to make the stagnation 
domain finite. In this model, the separating streamlines y and y’ join the edges of both obstacles. 
The velocity V, on y and y’ is greater than the velocity at infinity V, and the pressure in the 
stagnation domain is less than the pressure at infinity. The number 0, s.t. 

V2 
y=1+0, 
V& 

(1) 

is called the cavitational number. For practical application, the Riabouchinsky model attains 
their importance because of its ability to deal with variably small cavitation numbers. 
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Figure 1. Kirchhoff and Riabouchinsky models. 

2. MODIFIED RIABOUCHINSKY FLOW 

The modified Riabouchinsky flow is constructed similarly to the modified Kirchhoff flow [2,3]. 
In the flow domain R, (Figure lb), the flow is potential. Let us denote its potential w, i.e., a 
holomorphic function: s.t. - 

&1” 
dz ’ (2) 

where ? is the velocity field. The Agrand diagram [4] of the modified Riabouchinsky flow is 
presented in Figure 2. (The current moves towards the positive direction of the z-axis.) In this 
situation, the flow is symmetric about the vertical line equally distant from both obstacles (with 
reverting the direction of the flow). Therefore, it suffices to consider only its left part. Since 
the efficiency we are interested in is dimensionless, assume for simplicity that the density of the 
fluid, the half of the length of the lamina, and the velocity at infinity are all equal to one. As 
in the case of modified Kirchhoff flow [2,3], the situation becomes explicitly solvable with the 
additional assumption that the flow crosses the lamina at the same angle Q at any point. In this 
case, potential maps the left half of R, onto the shape shown in Figure 2b. The hodograph plane 

is shown in Figure 2c. Using the geometrical meaning of the hodograph given by (3), one can 
check that the conformal image the left half of R, is the semistrip having a cut along the positive 
part of the x-axis. The width of the semistrip is 2 - 4cu/7r, since the current crosses the lamina 
at the angle 0. 

As in the classical case and the case of modified Kirchhoff flow [2,3], the Kirchhoff method is still 
applicable in our situation. The essence of this method is to eliminate free boundaries y and y’ 
from the problem by considerin g the potential and the hodograph planes, where they become 
straight. Since < = log 2, the conformal representations of the shapes on w- and z-planes give 
the differential equation for w as the function of z that can be integrated. 

Let the upper semiplane {t > 0) be the canonical domain (Figure 2d). The conformal repre- 
sentation of the shape on the w-plane is constructed using the Christoffel-Schwarz integral 

dw 
dt= iK (t2 - t;> >I/2 @2 _ ,)4, tl-2a/x, 

w= iK J ,'(T2 _ t;)-1'2 (T" _ l)a+-2d~dT, 
(4 

(5) 
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Figure 2. Modified Riabouchinsky flow. 

where to and K are the constant to be determined. The distance s on the w-plane that can be 
interpreted as the distance between free streamlines at infinity or the fraction of the flow that 
passes through the obstacle can be computed from 

seia o1 (T” _ ,)+ (7” _ t;)-“” +-2a/x dr, = iK 

sin cu s 
s = KI1 sin( cx) , (7) 
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where 

I1 = 
J 
o1 (1 _ TV)“‘* (t; _ T2) --Ii2 T1-2+ dT. 

The conformal representation of semistrip with a cut on the c-plane with the boundary exten- 
sion as shown in Figure lc is constructed using the auxiliary a-plane and T-plane where 

and 

Then 

and the conformal map we need is given by 

The point C = cc maps to the origin, so 

-ln4=-(l-$)ln(/~+to/~) -i(i-a), 
lnV,= 1-g 1 

( > Ii- 
n--j$+=(l--$)ln/z, 

v = to + 1 lj2-ff/n 
Y ( > to - 1 

Then 

da 
z= 

The constant K is determined from the relation lo1 $ = 1 

(9) 

(11) 

(12) 

(13) 

(14) 

(15) 

(1’3) 

(17) 

(18) 
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The conformal representation of the left half of R, is given by 

3. THE EFFICIENCY 

The efficiency & of a free flow turbine was defined in [2,3] as the ratio of the power P absorbed 
by the obstacle to the power Pm carried by undisturbed flow through the projected area of the 
obstacle perpendicular to the flow. The power absorbed by the lamina is given by 

J 
1 

P= _lLTmzdy= is_’ K (V? - V”) dy, (21) 
1 

where V, is the x-component of the velocity P and [p] denotes the pressure drop across the lamina 
which is equal to (VT - V2)/2 by the Bernoulli theorem. The power carried by the undisturbed 
flow through the lamina of width 2 is 

P,=2.$L1, 

since p and V, are both equal to 1. Then 

P l1 

&=P,=5 -1 s 
V, (V, - V2) dy 

J 
1 

V, (VI - V2) dy 
0 

=J( > 
1 

= Re 2 (Vy” - V2) dy 

=[J(Reg)(V_f-V2)zdt 

=sVL-il’(Re$) l$12$dt 

= sV~ - since Jl I ’ dw3dzdt 
o dz idt 

V3 vy3 = sVy” - sin a<13 = z sin o (11 - 13) , 

where 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(2% 
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Table 1. 

r Inclination 
Angie, a 

0.0000 

0.0785 

0.2356 

0.3927 

0.5497 

0.7068 

0.8639 

1.0210 

1.1781 

1.3351 

1.4922 

1.5708 

0.02 0.04 

0.0000 0.0000 

0.0181 0.0186 

0.0582 0.0599 

0.1029 0.1060 

0.1516 0.1560 

0.2021 0.2081 

0.2510 0.2584 

0.2914 0.3000 

0.3102 0.3195 

0.2811 0.2898 

0.1467 0.1536 

0.0000 0.0000 

Cavitational Number, o 

0.06 

0.0000 

0.0192 

0.0616 

0.1090 

0.1605 

0.2141 

0.2659 

0.3088 

0.3289 

0.2988 

0.1622 

0.0000 

0.08 0.1 

0.0000 0.0000 

0.0197 0.0203 

0.0634 0.0651 

0.1121 0.1152 

0.1651 0.1697 

0.2202 0.2263 

0.2735 0.2811 

0.3176 0.3265 

0.3385 0.3482 

0.3082 0.3180 

0.1724 0.1839 

0.0000 0.0000 

4. COMPUTATIONS 

The results of the numerical evaluation of the efficiency for CY in the range from 0.01 to 0.10 are 
presented in Table 1. For any value of CJ the maximum efficiency is attained at the same value of 
the inclination angle Q = 37r/8 and increases as the u increases. 

1. 
2. 

3. 

4. 
5. 
6. 

7. 

5. DISCUSSION AND CONCLUSIONS 

1. An explicit solution of the problem of the streamlining of a partially penetrable obstacle 
analogous to the classical Riabouchinsky flow is obtained. 

2. For small values of the cavitation number CJ < 0.01 the model gives the estimate of the 
free flow turbine efficiency z30-35%. As in the classical situation [4], the solution is not 
applicable for modeling real flows for large values of the cavitation number. 
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