
13 Slow Invariant Manifolds for Open Systems

13.1 Slow Invariant Manifold for a Closed System
Has Been Found. What Next?

Suppose that the slow invariant manifold is found for a dissipative system.
What have we constructed it for? First of all, for solving the Cauchy problem,
in order to separate motions. This means that the Cauchy problem is divided
in the following two subproblems:

– Reconstruct the “fast” motion from the initial conditions to the slow
invariant manifold (the initial layer problem).

– Solve the Cauchy problem for the “slow” motions on the manifold.

Thus, solving the Cauchy problem becomes easier (and in some compli-
cated cases it just becomes possible).

Let us stress here that for any sufficiently reliable solution of the Cauchy
problem one must solve not only the reduced Cauchy problem for the slow
motion, but also the initial layer problem for fast motions.

While solving the latter problem it was found to be surprisingly effective
to use piece-wise linear approximations with smoothing or even without it
[26,27]. This method was used for the Boltzman equation.

There exists a different way to model the initial layer in kinetics prob-
lems: it is the route of model equations. For example, the Bhatnagar–Gross–
Krook (BGK) equation [116] is the simplest model for the Boltzmann equa-
tion. It describes relaxation into a small neighborhood of the local Maxwell
distribution. There are many types and hierarchies of the model equations
[22, 112, 116, 117, 166]. The principal idea of any model equation is to re-
place the fast processes by a simple relaxation term. As a rule, it has a form
dx/dt = . . .− (x−xsl(x))/τ , where xsl(x) is a point of the approximate slow
manifold. Such form is used in the BGK-equation, or in the quasi-equilibrium
models [117]. It also can take a gradient form, like in the gradient mod-
els [22, 166]. These simplifications not only allows to study the fast motions
separately but it also allows to zoom in the details of the interaction of fast
and slow motions in the vicinity of the slow manifold.

What concerns solving the Cauchy problem for the “slow” motions, this
is the basic problem of the hydrodynamics, of the gas dynamics (if the ini-
tial “big” systems describes kinetics of a gas or a fluid), etc. Here invariant
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manifold methods provide equations for a further study. However, even a
preliminary consideration of the practical aspects of these studies shows a
definite shortcoming. In practice, obtained equations are exploited not only
for “closed” systems. The initial equations (3.1) describe a dissipative sys-
tem that approaches the equilibrium. The equations of slow motion describe
dissipative system too. Then these equations are supplied with various forces
and flows, and after that they describe systems with more or less complex
dynamics.

Because of this, there is a different answer to our question, what have
we constructed the invariant manifold for? First of all, in order to construct
models of open system dynamics in the neighborhood of the slow manifold.
Various approaches to this modeling are described in the following subsec-
tions.

13.2 Slow Dynamics in Open Systems.
Zero-Order Approximation
and the Thermodynamic Projector

Let the initial dissipative system (3.1),

dx
dt

= J(x), x ∈ U ,

be “spoiled” by an additional term (“external vector field” Jex(x, t)):

dx
dt

= J(x) + Jex(x, t), x ⊂ U . (13.1)

For this driven system the entropy does not increase everywhere. In the
system (13.1) various nontrivial dynamic effects become possible, such as
a non-uniqueness of stationary states, auto-oscillations, etc. The “inertial
manifold” effect is well-known: solutions of (13.1) approach some relatively
low-dimensional manifold on which all the non-trivial dynamics takes place
[173, 317, 318]. This “inertial manifold” can have a finite dimension even for
infinite-dimensional systems, for example, for the “reaction+diffusion” sys-
tems [334].

In the theory of nonlinear control of partial differential equations systems
a strategy based on the approximate inertial manifolds [342] is suggested to
facilitate the construction of finite-dimensional systems of ordinary differen-
tial equations (ODE), whose solutions can be arbitrarily close to the solutions
of the infinite-dimensional system [344].

It is natural to expect that the inertial manifold of the system (13.1) is
located somewhere close to the slow manifold of the initial dissipative system
(3.1). This hypothesis has the following motivation. Suppose that the vector
field Jex(x, t) is sufficiently small. Let us introduce, for example, a small
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parameter ε > 0, and consider εJex(x, t) instead of Jex(x, t). Let us assume
that for the system (3.1) a separation of motions into “slow” and “fast” takes
place. In that case, there exists such an interval of positive ε that εJex(x, t)
is comparable to J only in a small neighborhood of the given slow manifold
of the system (3.1). Outside this neighborhood, εJex(x, t) is negligibly small
in comparison with J and its influence on the motion is negligible. For this
statement to be true, it is important that the system (3.1) is dissipative and
every solution comes in finite time to a small neighborhood of the given slow
manifold.

Precisely this perspective on the system (13.1) allows to exploit slow in-
variant manifolds constructed for the dissipative system (3.1) as the ansatz
and the zero-order approximation in a construction of the inertial manifold
of the open system (13.1). In the zero-order approximation, the right part of
the equation (13.1) is simply projected onto the tangent space of the slow
manifold.

The choice of the projector is determined by the motion separation which
was described above, because the fast component of the vector field (13.1) is
taken from the dissipative system (3.1). A projector which is suitable for all
dissipative systems with the given entropy function is unique. It is constructed
in the following way (detailed consideration was given above in Chap. 5 and
in [10]). Let a point x ∈ U be defined and some vector space T , on which one
needs to construct a projection (T is the tangent space to the slow manifold
at the point x). We introduce the entropic scalar product 〈|〉x:

〈a | b〉x = −(a,D2
xS(b)) . (13.2)

Let us consider T0, a subspace of T , which is annulled by the differential
of S at the point x

T0 = {a ∈ T |DxS(a) = 0} . (13.3)

Suppose1 that T0 �= T . Let eg ∈ T , eg ⊥ T0 with respect to the entropic
scalar product 〈|〉x, and DxS(eg) = 1. These conditions uniquely define vector
the eg.

The projector onto T is defined by the formula

P (J) = P0(J) + egDxS(J) (13.4)

where P0 is the orthogonal projector onto T0 with respect to the entropic
scalar product 〈|〉x. For example, if T is a finite-dimensional space, then the
projector (13.4) is constructed in the following way. Let e1, . . . , en be a basis
in T , and for definiteness, DxS(e1) �= 0.

(1) Let us construct a system of vectors

bi = ei+1 − λie1, (i = 1, . . . , n− 1) , (13.5)
1 If T0 = T , then the thermodynamic projector is the orthogonal projector on T

with respect to the entropic scalar product 〈|〉x.
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where λi = DxS(ei+1)/DxS(e1), and hence DxS(bi) = 0. Thus, {bi}n−1
1

is a basis in T0.
(2) Let us orthogonalize {bi}n−1

1 with respect to the entropic scalar product
〈|〉x (3.1). We thus derived an orthonormal with respect to 〈|〉x basis
{gi}n−1

1 in T0.
(3) We find eg ∈ T from the conditions:

〈eg | gi〉x = 0, (i = 1, . . . , n− 1),DxS(eg) = 1 . (13.6)

and, finally we get

P (J) =
n−1∑
i=1

gi〈gi | J〉x + egDxS(J) . (13.7)

If DxS(T ) = 0, then the projector P is simply the orthogonal projector with
respect to the 〈|〉x scalar product. This happens if x is the point of the global
maximum of entropy (equilibrium). Then

P (J) =
n∑

i=1

gi〈gi|J〉x, 〈gi|gj〉 = δij . (13.8)

Remark. In applications, equation (3.1) often has additional linear balance
constraints (conservation laws) such as numbers of particles, momentum,
energy, etc. When solving the closed dissipative system (3.1), we simply fix
the balance values and consider the dynamics of (3.1) on the corresponding
affine balance subspace.

For driven system (13.1) the conservation laws can be violated by external
flows and fields. Because of this, for the open system (13.1) the natural bal-
ance subspace includes the balance subspace of (3.1) with different balance
values. For every set of balance values there is a corresponding equilibrium.
Slow invariant manifold of the dissipative systems that is applied to the de-
scription of the driven systems (13.1) is usually the union of slow manifolds
for all possible balance values. The equilibrium of the dissipative closed sys-
tem corresponds to the entropy maximum given the balance values are fixed.
In the phase space of the driven system (13.1) the entropy gradient in the
equilibrium points of the system (3.1) is not necessarily equal to zero.

In particular, for the Boltzmann entropy in the local finite-dimensional
case one gets the thermodynamic projector in the following form.

S = −
∫
f(v)(ln(f(v)) − 1) dv ,

DfS(J) = −
∫
J(v) ln f(v) dv ,

〈ψ | ϕ〉f = −(ψ,D2
fS(ϕ)) =

∫
ψ(v)ϕ(v)
f(v)

dv

P (J) =
n−1∑
i=1

gi(v)
∫

gi(v)J(v)
f(v)

dv − eg(v)
∫
J(v) ln f(v) dv, (13.9)
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where gi(v) and eg(v) are constructed according to the scheme described
above,

∫
gi(v)gj(v)

f(v)
dv = δij , (13.10)

∫
gi(v) ln f(v) dv = 0 , (13.11)

∫
gi(v)eg(v) dv = 0 , (13.12)

∫
eg(v) ln f(v) dv = 1 . (13.13)

If for all g ∈ T we have
∫
g(v) ln f(v) dv = 0, then the projector P is

defined as the orthogonal projector with respect to the 〈|〉f scalar product.

13.3 Slow Dynamics in Open Systems.
First-Order Approximation

The thermodynamic projector (13.4) defines the duality of slow and fast
motions: if T is the tangent space of the slow manifold, then T = imP , and
kerP is the plane of fast motions. Let us denote by Px the projector at a
point x of a given slow manifold.

The vector field Jex(x, t) can be decomposed in two components:

Jex(x, t) = PxJex(x, t) + (1 − Px)Jex(x, t) . (13.14)

Let us denote Jex s = PxJex, Jex f = (1 − Px)Jex. The slow component
Jex s gives a correction to the motion along the slow manifold. This is a zero-
order approximation. The “fast” component shifts the slow manifold in the
fast motions plane. This shift changes PxJex accordingly. Consideration of
this effect gives a first-order approximation. In order to find it, let us rewrite
the invariance equation taking Jex into account:

{
(1 − Px)(J(x+ δx) + εJex(x, t)) = 0 ;
Pxδx = 0 . (13.15)

The first iteration of the Newton method subject to incomplete lineariza-
tion gives: {

(1 − Px)(DxJ(δx) + εJex(x, t)) = 0 ;
Pxδx = 0 . (13.16)

(1 − Px)DxJ(1 − Px)J(δx) = −εJex(x, t) . (13.17)

Thus, we have derived a linear equation in the space kerPx. The operator
(1 − Px)DxJ(1 − Px) is defined in this space.
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Taking into account of the self-adjoint linearization instead of the opera-
tor DxJ (see Chap. 7) considerably simplifies solving and studying equation
(13.17). It is necessary to take into account here that the projector Px is a
sum of the orthogonal projector with respect to the entropic scalar product
〈|〉x and a projector of rank one.

Assume that the first-order approximation equation (13.17) has been
solved and the following function is found:

δ1x(x, εJex f ) = −[(1 − Px)DxJ(1 − Px)]−1εJex f , (13.18)

where DxJ is either the differential of J or symmetrized differential of J
(7.17).

Let x be a point on the initial slow manifold. At the point x+δx(x, εJex f )
the right-hand side of equation (13.1) in the first-order approximation is given
by

J(x) + εJex(x, t) +DxJ(δx(x, εJex f )) . (13.19)

Due to the first-order approximation (13.19), the motion projected onto
the manifold is given by the following equation

dx
dt

= Px(J(x) + εJex(x, t) +DxJ(δx(x, εJex f (x, t)))) . (13.20)

Note that in equation (13.20), the vector field J(x) enters only in the form
of projection, PxJ(x). For the invariant slow manifold it holds PxJ(x) = J(x),
but actually we always deal with approximately invariant manifolds, hence,
it is necessarily to use the projection PxJ instead of J in (13.20).

Remark. The notion “projection of a point onto the manifold” needs to
be specified. For every point x of the slow invariant manifold Ω there are
defined both the thermodynamic projector Px (13.4) and the fast motions
plane kerPx. Let us define a projector Π of some neighborhood of motion
onto motion in the following way:

Π(z) = x, if Px(z − x) = 0 . (13.21)

Qualitatively, it means that z, after all fast motions were completed, comes
into a small neighborhood of x. The operation (13.4) is defined uniquely in
some small neighborhood of the manifold motion.

A derivation of slow motion equations requires not only an assumption
that εJex is small but it must be slow as well: d

dt (εJex) must be small too.
One can get further approximations for slow motions of the system (13.1),

taking into account the time derivatives of Jex. This approach is considered in
a more detail in the following Example for a particularly interesting driven
system of dilute polymeric solutions. A short description of the scheme is
given in the next section. That is an alternative to the using the projection
operators methods [194].
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13.4 Beyond the First-Order Approximation:
Higher-Order Dynamic Corrections,
Stability Loss and Invariant Manifold Explosion

Let us pose formally the invariance problem for the driven system (13.1) in
the neighborhood of the slow manifold Ω of the initial (dissipative) system.

Let for a given neighborhood of Ω an operator Π (13.21) be defined. One
needs to define the function δx(x, . . .) = δx(x, Jex, J̇ex, J̈ex, . . .), x ∈ Ω, with
the following properties:

Px(δx(x, . . .)) = 0 ,
J(x+ δx(x, . . .)) + Jex(x+ δx(x, . . .), t)

= ẋsl +Dxδx(x, . . .)ẋsl +
∞∑

n=0

D
J

(n)
ex
δx(x, . . .)J (n+1)

ex , (13.22)

where

ẋsl = Px(J(x+ δx(x, . . .)) + Jex(x+ δx(x, . . .), t)), J (n)
ex =

dnJex

dtn
,

D
J

(n)
ex
δx(x, . . .) is a partial differential of the function

δx(x, Jex, J̇ex, J̈ex, . . . , J
(n)
ex , . . .)

with respect to the variable J
(n)
ex . One can rewrite equations (13.22) in the

following form:

(1 − Px −Dxδx(x, . . .))(J(x+ δx(x, . . .)) + Jex(x+ δx(x, . . .), t))

=
∞∑

n=0

D
J

(n)
ex
δx(x, . . .)J (n+1)

ex . (13.23)

For solving (13.23) one can use iterations method and also take into ac-
count smallness considerations. The series in the right hand side of equation
(13.23) can be rewritten as

R.H.S. =
k−1∑
n=0

εn+1D
J

(n)
ex
δx(x, . . .)J (n+1)

ex (13.24)

at the kth iteration, considering the terms only to order less than k. The first
iteration equation was solved in the previous section. On the second iteration
one gets the following equation:

(1 − Px −Dxδ1x(x, Jex))(J(x+ δ1x(x, Jex))
+DzJ(z)|z=x+δ1x(x,Jex) · (δ2x− δ1x(x, Jex)) + Jex)

= DJex
δ1x(x, Jex) ˙Jex . (13.25)
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This is a linear equation with respect to δ2x. The solution δ2x(x, Jex, J̇ex)
depends linearly on J̇ex, but non-linearly on Jex. Let us remind that the first
iteration equation solution depends linearly on Jex.

In all these iteration equations the field Jex and its derivatives are included
in the formulas as if they were functions of time t only. Indeed, for any solution
x(t) of the equations (13.1) Jex(x, t) can be substituted for Jex(x(t), t). The
function x(t) will be a solution of the system (13.1) in which Jex(x, t) is
substituted for Jex(t) in this way.

However, in order to obtain the macroscopic equations (13.20) one must
return to Jex(x, t). For the first iteration such return is quite simple as one
can see from (13.19). There Jex(x, t) is calculated in points of the initial slow
manifold. In the general case, suppose that δx = δx(x, Jex, J̇ex, . . . , J

(k)
ex ) has

been found. The equations for x (13.20) have the following form:

dx
dt

= Px(J(x+ δx) + Jex(x+ δx, t)) . (13.26)

In these equations the shift δx must be a function of x and t (or a function
of x, t, α, where α are external fields, see example below. One calculates the
shift δx(x, t) using the following equation:

Jex = Jex(x+ δx(x, Jex, J̇ex, . . . , J
(k)
ex ), t) . (13.27)

It can be solved, for example, by the iterative method, taking Jex0 =
Jex(x, t):

Jex(n+1) = Jex(x+ δx(x, Jex(n), J̇ex(n), . . . , J
(k)
ex(n)), t) . (13.28)

We hope that using Jex in the equations (13.27) and (13.28) both as a
variable and as a symbol of an unknown function Jex(x, t) will not lead to a
confusion.

In all the constructions introduced above it was assumed that δx is suffi-
ciently small and the driven system (13.1) will not deviate too far from the
slow invariant manifold of the initial system. However, a stability loss is possi-
ble: solutions of the equation (13.1) can deviate arbitrarily far if the strength
of the perturbations exceeds a certain level. The invariant manifold can loose
it’s stability. Qualitatively, this effect of invariant manifold explosion can be
represented as follows.

Suppose that Jex includes the parameter ε: one has εJex in the equation
(13.1). When ε is small, the system’s motions are located in a small neigh-
borhood of the initial manifold. This neighborhood grows monotonically with
increase of ε, but after some ε0 a sudden change happens (“explosion”) and
the neighborhood, in which the motion takes place, becomes significantly
wider at ε > ε0 than at ε < ε0. The stability loss is not necessarily associated
with the invariance loss. In the last example to this chapter it is shown how
the invariant manifold (which is at the same time the quasiequilibrium man-
ifold in this example) can loose its stability. This “explosion” of the invariant
manifold leads to essential physical consequences.



13.5 Example: The Universal Limit for Dilute Polymeric Solutions 375

13.5 Example: The Universal Limit in Dynamics
of Dilute Polymeric Solutions

The method of invariant manifold is developed for a derivation of reduced
description in kinetic equations of dilute polymeric solutions. It is demon-
strated that this reduced description becomes universal in the limit of small
Deborah and Weissenberg numbers, and it is represented by the (revised)
Oldroyd 8 constants constitutive equation for the polymeric stress tensor.
Coefficients of this constitutive equation are expressed in terms of the mi-
croscopic parameters. A systematic procedure of corrections to the revised
Oldroyd 8 constants equations is developed. Results are tested with simple
flow situations.

Kinetic equations arising in the theory of polymer dynamics constitute a
wide class of microscopic models of complex fluids. Same as in any branch of
kinetic theory, the problem of reduced description becomes actual as soon as
the kinetic equation is established. However, in spite of an enormous amount
of work in the field of polymer dynamics [151–153, 354, 364], this problem
remains less studied as compared to other classical kinetic equations.

It is the purpose of this section to suggest a systematic approach to the
problem of reduced description for kinetic models of polymeric fluids. First,
we would like to specify our motivation by comparing the problem of the
reduced description for that case with a similar problem in the familiar case
of the rarefied gas obeying the classical Boltzmann kinetic equation [70,112].

The problem of reduced description begins with establishing a set of slow
variables. For the Boltzmann equation, this set is represented by five hydrody-
namic fields (density, momentum and energy) which are low-order moments
of the distribution function, and which are conserved quantities of the dissi-
pation process due to particle’s collisions. The reduced description is a closed
system of equations for these fields. One starts with the manifold of local
equilibrium distribution functions (local Maxwellians), and finds a correction
by the Chapman–Enskog method [70]. The resulting reduced description (the
compressible Navier–Stokes hydrodynamic equations) is universal in the sense
that the form of equations does not depend on details of particle’s interac-
tion whereas the latter shows up explicitly only in the transport coefficients
(viscosity, temperature conductivity, etc.).

Coming back to the complex fluids, we shall consider the case of dilute
polymer solutions represented by dumbbell models studied below. Two obsta-
cles preclude an application of the traditional techniques. First, the question
which variables should be regarded as slow is at least less evident because
the dissipative dynamics in the dumbbell models has no nontrivial conserva-
tion laws as compared to the Boltzmann case. Consequently, a priori, there
are no distinguished manifolds of distribution functions like the local equilib-
ria which can be regarded as a starting point. Second, while the Boltzmann
kinetic equation provides a self-consistend closed description, the dumbbell
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kinetic equations are coupled to the hydrodynamic equations. This coupling
manifests itself as an external flux in the kinetic equation.

The distinguished macroscopic variable associated with the polymer ki-
netic equations is the polymeric stress tensor [151, 364]. This variable is not
a conserved quantity but nevertheless it should be treated as a relevant slow
variable because it actually contributes to the macroscopic (hydrodynamic)
equations. Equations for the stress tensor are known as the constitutive equa-
tions, and the problem of reduced description for the dumbbell models con-
sists in deriving such equations from the kinetic equation.

Our approach is based on the method of invariant manifold [11], modified
for systems coupled with external fields. This method suggests constructing
invariant sets (or manifolds) of distribution functions that represent the as-
ymptotic states of the slow evolution of the kinetic system. In the case of
dumbbell models, the reduced description is produced by equations which
constitute stress-strain relations, and two physical requirements are met by
our approach: The first is the principle of frame-indifference with respect to
any time-dependent reference frame. This principle requires that the result-
ing equations for the stresses contain only frame-indifferent quantities. For
example, the frame-dependent vorticity tensor should not show up in these
equations unless being presented in the frame-indifferent combinations with
another tensors. The second principle is the thermodynamic stability: In the
absence of the flow, the constitutive model should be purely dissipative, in
other words, it should describe the relaxation of the stresses to their equilib-
rium values.

The physical picture addressed below takes into account two assumptions:
(i) In the absence of the flow, deviations from the equilibrium are small. Then
the invariant manifold is represented by eigenvectors corresponding to the
slowest relaxation modes. (ii). When the external flow is taken into account,
it is assumed to cause a small deformation of the invariant manifolds of the
purely dissipative dynamics. Two characteristic parameters are necessary to
describe this deformation. The first is the characteristic time variation of the
external field. The second is the characteristic intensity of the external field.
For dumbbell models, the first parameter is associated with the conventional
Deborah number while the second one is usually called the Weissenberg num-
ber. An iteration approach which involves these parameters is developed.

The two main results of the study are as follows: First, the lowest-order
constitutive equations with respect to the characteristic parameters men-
tioned above has the form of the revised phenomenological Oldroyd 8 con-
stants model. This result is interpreted as the macroscopic limit of the mi-
croscopic dumbbell dynamics whenever the rate of the strain is low, and the
Deborah number is small. This limit is valid generically, in the absence or in
the presence of the hydrodynamic interaction, and for the arbitrary nonlinear
elastic force. The phenomenological constants of the Oldroyd model are ex-
pressed in a closed form in terms of the microscopic parameters of the model.
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The universality of this limit is similar to that of the Navier–Stokes equations
which are the macroscopic limit of the Boltzmann equation at small Knudsen
numbers for arbitrary hard-core molecular interactions. The test calculation
for the nonlinear FENE force demonstrates a good quantitative agreement of
the constitutive equations with solutions to the microscopic kinetic equation
within the domain of their validity.

The second result is a regular procedure of finding corrections to the zero-
order model. These corrections extend the model into the domain of higher
strain rates, and to flows which alternate faster in time. Same as in the zero-
order approximation, the higher-order corrections are linear in the stresses,
while their dependence on the gradients of the flow velocity and its time
derivatives becomes highly nonlinear.

The section is organized as follows: For the sake of completeness, we
present the nonlinear dumbbell kinetic models in the next subsection, “The
problem of reduced description in polymer dynamics”. In the section, “The
method of invariant manifold for weakly driven systems”, we describe in de-
tails our approach to the derivation of macroscopic equations for an abstract
kinetic equation coupled to external fields. This derivation is applied to the
dumbbell models in the section, “Constitutive equations”. The zero-order
constitutive equation is derived and discussed in detail in this section, as well
as the structure of the first correction. Tests of the zero-order constitutive
equation for simple flow problems are given in the section, “Tests on the
FENE dumbbell model”.

13.5.1 The Problem of Reduced Description in Polymer Dynamics

Elastic Dumbbell Models

The elastic dumbbell model is the simplest microscopic model of polymer
solutions [151]. It dumbbell reflects the two basic features of the real-world
macromolecules to be orientable and stretchable by a flowing solvent. The
polymeric solution is represented by a set of identical elastic dumbbells placed
in an isothermal incompressible fluid. In this example we adopt notations
used in kinetic theory of polymer dynamics [151]. Let Q be the connector
vector between the beads of a dumbbell, and Ψ(x,Q, t) be the configuration
distribution function which depends on the location in the space x at time
t. We assume that dumbbells are distributed uniformly, and consider the
normalization,

∫
Ψ(x,Q, t) dQ = 1. The Brownian motion of beads in the

physical space causes a diffusion in the phase space described by the Fokker–
Planck equation (FPE) [151]:

DΨ
Dt

= − ∂

∂Q
· k · QΨ +

2kBT

ξ

∂

∂Q
· D ·

(
∂

∂Q
Ψ +

F

kBT
Ψ

)
. (13.29)

Here, D/Dt = ∂/∂t + v · ∇ is the substantional derivative, ∇ is the spatial
gradient, k(x, t) = (∇v)† is the gradient of the velocity of the solvent v, †
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denotes transposition of tensors, D is the dimensionless diffusion matrix, kB is
the Boltzmann constant, T is the temperature, ξ is the dimensional coefficient
characterizing a friction exerted on beads moving through solvent media (the
friction coefficient [151, 152]), and F = ∂φ/∂Q is the elastic spring force
defined by the potential φ. We consider forces of the form F = Hf(Q2)Q,
where f(Q2) is a dimensionless function of the variable Q2 = Q · Q, and H
is the dimensional constant. Incompressibility of solvent implies

∑
i kii = 0.

Let us introduce a time dimensional constant

λr =
ξ

4H
,

which coincides with a characteristic relaxation time of dumbbell configura-
tion in the case when the force F is linear: f(Q2) = 1. It proves convenient
to rewrite the FPE (13.29) in the dimensionless form:

DΨ

Dt̂
= − ∂

∂Q̂
· k̂ · Q̂Ψ +

∂

∂Q̂
· D ·

(
∂

∂Q̂
Ψ + F̂Ψ

)
. (13.30)

Various dimensionless quantities used are: Q̂ = (H/kBT )1/2Q, D/Dt̂ =
∂/∂t̂+v ·∇, t̂ = t/λr is the dimensionless time, ∇ = λr∇ is the reduced space
gradient, and k̂ = kλr = (∇v)† is the dimensionless tensor of the gradients of
the velocity. In the sequel, only dimensionless quantities Q̂ and F̂ are used,
and we keep notations Q and F for them for the sake of simplicity.

The quantity of interest is the stress tensor introduced by Kramers [151]:

τ = −νsγ̇ + nkBT (1 − 〈FQ〉) , (13.31)

where νs is the viscosity of the solvent, γ̇ = k + k† is the rate-of-strain
tensor, n is the concentration of polymer molecules, and the angle brackets
stand for the averaging with the distribution function Ψ : 〈•〉 ≡

∫
•Ψ(Q) dQ.

The tensor
τ p = nkBT (1 − 〈FQ〉) (13.32)

gives a contribution to the stresses caused by the presence of polymer mole-
cules.

The stress tensor is required in order to write down a closed system of
hydrodynamic equations:

Dv

Dt
= −ρ−1∇p−∇ · τ [Ψ ] . (13.33)

Here p is the pressure, and ρ = ρs + ρp is the mass density of the solution
where ρs is the solvent, and ρp is the polymeric contributions.

Several models of the elastic force are known in the literature. The
Hookean law is relevant to small perturbations of the equilibrium configu-
ration of the macromolecule:
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F = Q . (13.34)

In that case, the differential equation for τ is easily derived from the kinetic
equation, and is the well known Oldroyd–B constitutive model [151].

Another model, the Finitely Extendible Nonlinear Elastic (FENE) force
law [355], was derived as an approximation to the inverse Langevin force
law [151] for a more realistic description of the elongation of a polymeric
molecule in a solvent:

F =
Q

1 − Q2/Q2
0

. (13.35)

This force law takes into account the nonlinear stiffness and the finite ex-
tendibility of dumbbells, where Q0 is the maximal extendibility.

The properties of the diffusion matrix are important for both the micro-
scopic and the macroscopic behavior. The isotropic diffusion is represented
by the simplest diffusion matrix

DI =
1
2
1 . (13.36)

Here 1 is the unit matrix. When the hydrodynamic interaction between the
beads is taken into account, this results in an anisotropic contribution to
the diffusion matrix (13.36). The original form of this contribution is the
Oseen-Burgers tensor DH [356,357]:

D = DI − κDH , DH =
1
Q

(
1 +

QQ

Q2

)
, (13.37)

where

κ =
(

H

kBT

)1/2
ξ

16πνs
.

Several modifications of the Oseen-Burgers tensor can be found in the liter-
ature (the Rotne-Prager-Yamakawa tensor [358, 359]), but here we consider
only the classical version.

Properties of the Fokker–Planck Operator

Let us review some of the properties of the Fokker–Planck operator J in the
right hand side of (13.30) relevant to what will follow. This operator can be
written as J = Jd + Jh, and it represents two processes.

The first term, Jd, is the dissipative part,

Jd =
∂

∂Q
· D ·

(
∂

∂Q
+ F

)
. (13.38)

This part is responsible for the diffusion and friction which affect internal con-
figurations of dumbbells, and it drives the system to the unique equilibrium
state,



380 13 Slow Invariant Manifolds for Open Systems

Ψeq = c−1 exp(−φ(Q2)) ,

where c =
∫

exp(−φ) dQ is the normalization constant.
The second part, Jh, describes the hydrodynamic drag of the beads in the

flowing solvent:

Jh = − ∂

∂Q
· k̂ · Q . (13.39)

The dissipative nature of the operator Jd is reflected by its spectrum. We
assume that this spectrum consists of real-valued nonpositive eigenvalues,
and that the zero eigenvalue is not degenerated. In the sequel, the following
scalar product will be useful:

〈g, h〉s =
∫
Ψ−1

eq ghdQ .

The operator Jd is symmetric and nonpositive definite in this scalar product:

〈Jdg, h〉s = 〈g, Jdh〉s, and 〈Jdg, g〉s ≤ 0 . (13.40)

Since
〈Jdg, g〉s = −

∫
Ψ−1

eq (∂g/∂Q) · ΨeqD · (∂g/∂Q) dQ ,

the above inequality is valid if the diffusion matrix D is positive semidefinite.
This happens if D = DI (13.36) but is not generally valid in the presence of
the hydrodynamic interaction (13.37). Let us split the operator Jd according
to the splitting of the diffusion matrix D:

Jd = J I
d − κJH

d , where J I,H
d = ∂/∂Q · DI,H · (∂/∂Q + F ) .

Both the operators J I
d and JH

d have nondegenerated eigenvalue 0 which cor-
responds to their common eigenfunction Ψeq: J

I,H
d Ψeq = 0, while the rest of

the spectrum of both operators belongs to the nonpositive real semi-axis.
Then the spectrum of the operator Jd = J I

d − κJH
d remains nonpositive for

sufficiently small values of the parameter κ. The spectral properties of both
operators J I,H

d depend only on the choice of the spring force F . Thus, in the
sequel we assume that the hydrodynamic interaction parameter κ is suffi-
ciently small so that the thermodynamic stability property (13.40) holds.

We note that the scalar product 〈•, •〉s coincides with the second differ-
ential D2

ΨS
∣∣
Ψeq

of an entropy functional S[Ψ ]:

〈•, •〉s = −D2
ΨS
∣∣
Ψeq

[•, •] ,

where the entropy has the form:

S[Ψ ] = −
∫
Ψ ln

(
Ψ

Ψeq

)
dQ = −

〈
ln
(

Ψ

Ψeq

)〉
. (13.41)
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The entropy S grows in the course of dissipation:

DΨS[JdΨ ] ≥ 0 .

This inequality, similar to inequality (13.40), is satisfied for sufficiently small
κ. Symmetry and nonpositiveness of operator Jd in the scalar product defined
by the second differential of the entropy is a common property of linear
dissipative systems.

Statement of the Problem

Given the kinetic equation (13.29), we aim at deriving differential equations
for the stress tensor τ (13.31). The latter includes the moments 〈FQ〉 =∫

FQΨ dQ.
In general, when the diffusion matrix is non-isotropic and/or the spring

force is nonlinear, closed equations for these moments are not available, and
approximations are required. With this, any derivation should be consistent
with the three requirements:

(i) Dissipativity or thermodynamic stability: The macroscopic dynamics
should be dissipative in the absence of the flow.

(ii) Slowness: The macroscopic equations should represent the slow degrees
of freedom of the kinetic equation.

(iii) Material frame indifference: The form of equations for the stresses should
be invariant with respect to the Eucluidian, time dependent transforma-
tions of the reference frame [151,360].

While these three requirements should be met by any approximate deriva-
tion, the validity of our approach will be restricted by two additional assump-
tions:

(a) Let us denote θ1 the inertial time of the flow, which we define via the
characteristic value of the gradient of the flow velocity: θ1 = |∇v|−1, and θ2
the characteristic time of the variation of the flow velocity. We assume that
the characteristic relaxation time of the molecular configuration θr is small
as compared to both the characteristic times θ1 and θ2:

θr � θ1 and θr � θ2 . (13.42)

(b) In the absence of the flow, the initial deviation of the distribution
function from the equilibrium is small so that the linear approximation is
valid.

While the assumption (b) is merely of a technical nature, and it is in-
tended to simplify the treatment of the dissipative part of the Fokker–Planck
operator (13.38) for elastic forces of a complicated form, the assumption (a) is
crucial for taking into account the flow in an adequate way. We have assumed
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that the two parameters characterizing the composed system ‘relaxing poly-
mer configuration + flowing solvent’ should be small: These two parameters
are:

ε1 = θr/θ1 � 1 , ε2 = θr/θ2 � 1 . (13.43)

The characteristic relaxation time of the polymeric configuration is de-
fined via the coefficient λr: θr = cλr, where c is some positive dimension-
less constant which is estimated by the absolute value of the lowest nonzero
eigenvalue of the operator Jd. The first parameter ε1 is usually termed the
Weissenberg number while the second one ε2 is the Deborah number ([361],
Sect. 7.2).

13.5.2 The Method of Invariant Manifold
for Weakly Driven Systems

The Newton Iteration Scheme

In this section we introduce an extension of the method of invariant manifold
[11] onto systems coupled with external fields. We consider a class of dynamic
systems of the form

dΨ
dt

= JdΨ + Jex(α)Ψ , (13.44)

where Jd is a linear operator representing the dissipative part of the dynamic
vector field, while Jex(α) is a linear operator which represents an external
flux and depends on a set of external fields α = {α1, . . . , αk}. Parameters
α are either known functions of the time, α = α(t), or they obey a set of
equations,

dα
dt

= Φ(Ψ, α) . (13.45)

Without any restriction, parameters α are adjusted in such a way that
Jex(α = 0) ≡ 0. Kinetic equation (13.30) has the form (13.44), and gen-
eral results of this section will be applied to the dumbbell models below in a
straightforward way.

We assume that the vector field JdΨ has the same dissipative properties as
the Fokker–Planck operator (13.38). Namely there exists the globally convex
entropy function S which obeys: DΨS[JdΨ ] ≥ 0, and the operator Jd is
symmetric and nonpositive in the scalar product 〈•, •〉s defined by the second
differential of the entropy: 〈g, h〉s = −D2

ΨS[g, h]. Thus, the vector field JdΨ
drives the system irreversibly to the unique equilibrium state Ψeq.

We consider a set of n real-valued functionals, M∗
i [Ψ ] (macroscopic vari-

ables), in the phase space F of the system (13.44). A macroscopic description
is obtained once we have derived a closed set of equations for the variables
M∗

i .
Our approach is based on constructing a relevant invariant manifold in

the phase space F . This manifold is thought as a finite-parametric set of
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solutions Ψ(M) to equations (13.44) which depends on time implicitly via
the n variables Mi[Ψ ]. The latter may differ from the macroscopic variables
M∗

i . For systems with external fluxes (13.44), we assume that the invariant
manifold depends also on the parameters α, and on their time derivatives
taken to arbitrary order: Ψ(M,A), where A = {α, α(1), . . .} is the set of time
derivatives α(k) = dkα/dtk. It is convenient to consider time derivatives of α
as independent parameters. This assumption is important because then we
do not need an explicit form of (13.45) in the course of construction of the
invariant manifold.

By the definition, the dynamic invariance postulates the equality of the
“macroscopic” and the “microscopic” time derivatives:

JΨ(M,A) =
n∑

i=1

∂Ψ(M,A)
∂Mi

dMi

dt
+

∞∑
n=0

k∑
j=1

∂Ψ(M,A)

∂α
(n)
j

α
(n+1)
j , (13.46)

where J = Jd + Jex(α). The time derivatives of the macroscopic variables,
dMi/dt, are calculated as follows:

dMi

dt
= DΨMi[JΨ(M,A)] , (13.47)

where DΨMi stands for differentials of the functionals Mi.
Let us introduce the projector operator associated with the parameteri-

zation of the manifold Ψ(M,A) by the values of the functionals Mi[Ψ ].:

PM =
n∑

i=1

∂Ψ(M,A)
∂Mi

DΨMi[•] (13.48)

It projects vector fields from the phase space F onto the tangent space
TΨ(M,A) of the manifold Ψ(M,A). Then (13.46) is rewritten as the in-
variance equation:

(1 − PM )JΨ(M,A) =
∞∑

n=0

k∑
j=1

∂Ψ

∂α
(n)
j

α
(n+1)
j , (13.49)

which has the invariant manifolds as its solutions.
Furthermore, we assume the following: (i). The external flux Jex(α)Ψ is

small in comparison to the dissipative part JdΨ , i.e. with respect to some
norm we require:

‖Jex(α)Ψ‖ � ‖JdΨ‖ .
This allows us to introduce a small parameter ε1, and to replace the operator
Jex with ε1Jex in (13.44). Parameter ε1 is proportional to the characteris-
tic value of the external variables α. (ii). The characteristic time θα of the
variation of the external fields α is large in comparison to the characteristic
relaxation time θr, and the second small parameter is ε2 = θr/θα � 1. The
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parameter ε2 does not enter the vector field J explicitly but it shows up in
the invariance equation. Indeed, with a substitution, α(i) → εi

2α
(i), the in-

variance equation (13.46) is rewritten in a form which incorporates both the
parameters ε1 and ε2:

(1 − PM ){Jd + ε1Jex}Ψ = ε2
∑

i

k∑
j=1

∂Ψ

∂α
(i)
j

α
(i+1)
j (13.50)

We develop a modified Newton scheme for solution of this equation. Let us
assume that we have some initial approximation to desired manifold Ψ(0). We
seek the correction of the form Ψ(1) = Ψ(0) + Ψ1. Substituting this expression
into (13.50), we derive:

(1 − P
(0)
M ){Jd + ε1Jex}Ψ1 − ε2

∑
i

k∑
j=1

∂Ψ1

∂α
(i)
j

α
(i+1)
j =

−(1 − P
(0)
M )JΨ(0) + ε2

∑
i

k∑
j=1

∂Ψ(0)

∂α
(i)
j

α
(i+1)
j . (13.51)

Here P (0)
M is a projector onto tangent bundle of the manifold Ψ(0). Further, we

neglect two terms in the left hand side of this equation, which are multiplied
by parameters ε1 and ε2, regarding them small in comparison to the first
term. In the result we arrive at the equation,

(1 − P
(0)
M )JdΨ1 = −(1 − P

(0)
M )JΨ(0) + ε2

∑
i

k∑
j=1

∂Ψ(0)

∂α
(i)
j

α
(i+1)
j . (13.52)

For (n+ 1)-th iteration we obtain:

(1 − P
(n)
M )JdΨn+1 = −(1 − P

(0)
M )JΨ(n) + ε2

∑
i

k∑
j=1

∂Ψ(n)

∂α
(i)
j

α
(i+1)
j , (13.53)

where Ψ(n) =
∑n

i=0 Ψi is the approximation of n-th order and P
(n)
M is the

projector onto its tangent bundle.
It should be noted that deriving equations (13.52) and (13.53) we have not

varied the projector PM with respect to yet unknown term Ψn+1, i.e. we have
kept PM = P

(n)
M and have neglected the contribution from the term Ψn+1.

The motivation for this action comes from the original paper [11], where
it was shown that such modification generates iteration schemes properly
converging to slow invariant manifold.

In order to gain the solvability of (13.53) an additional condition is re-
quired:

P
(n)
M Ψn+1 = 0 . (13.54)
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This condition is sufficient to provide the existence of the solution to linear
system (13.53), while the additional restriction onto the choice of the pro-
jector is required in order to guarantee the uniqueness of the solution. This
condition is

ker[(1 − P
(n)
M )Jd] ∩ kerP (n)

M = 0 . (13.55)

Here ker denotes a null space of the corresponding operator. How this condi-
tion can be met is discussed in the next subsection.

It is natural to begin the iteration procedure (13.53) starting from the
invariant manifold of the non-driven system. In other words, we choose the
initial approximation Ψ(0) as the solution of the invariance equation (13.50)
corresponding to ε1 = 0 and ε2 = 0:

(1 − P
(0)
M )JdΨ(0) = 0 . (13.56)

We shall return to the question how to construct solutions to this equation
in the subsection “Linear zero-order equations”.

The above recurrent equations (13.53), (13.54) present the Newton method
for the solution of invariance equation (13.50), which involves the small para-
meters. A similar procedure for the Grad equations of the Boltzmann kinetic
theory was used recently in [21]. When these parameters are not small, one
should proceed directly with equations (13.51).

Above, we have focused our attention on how to organize the iterations to
construct invariant manifolds of weakly driven systems. The only question we
have not yet answered is how to choose the projectors in iterative equations in
a consistent way. In the next subsection we discuss the problem of derivation
of the reduced dynamics and its relation to the problem of the choice of the
projector.

Projector and Reduced Dynamics

Below we suggest the projector which is equally applicable for constructing
invariant manifolds by the iteration method (13.53), (13.54) and for generat-
ing macroscopic equations on a given manifold.

Let us discuss the problem of constructing closed equations for macropa-
rameters. Having some approximation to the invariant manifold, we never-
theless deal with a non-invariant manifold and we face the problem how to
construct the dynamics on it. If the n-dimensional manifold Ψ̃ is found then
the macroscopic dynamics is induced by a projector P onto the tangent bun-
dle of Ψ̃ as follows [11]:

dM∗
i

dt
= DΨM

∗
i

∣∣
Ψ̃

[
PJΨ̃

]
. (13.57)

In order to specify the projector we apply the two above mentioned principles:
dissipativity and slowness. The dissipativity is required to have the unique
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and stable equilibrium solution for macroscopic equations when the external
fields are absent (α = 0). The slowness condition requires the induced vector
field PJΨ to match the slow modes of the original vector field JΨ .

Let us consider the parameterization of the manifold Ψ̃(M) by the para-
meters Mi[Ψ ]. This parameterization generates associated projector P = PM

by (13.48). This leads us to look for the admissible parameterization of this
manifold, where by admissibility we understand the concordance with the
dissipativity and the slowness requirements. We solve the problem of the ad-
missible parameterization in the following way. Let us define the functionals
Mi i = 1, . . . , n by the set of the eigenvectors ϕi of the operator Jd:

Mi[Ψ̃ ] = 〈ϕi, Ψ̃〉s ,

where Jdϕi = λiϕi. The eigenvectors ϕ1, . . . , ϕn are taken as a union of
orthonormal basises in the eigenspaces corresponding to the eigenvalues with
smallest absolute values: 0 < |λ1| ≤ |λ2| ≤ . . . ≤ |λn|, 〈ϕi, ϕj〉s = δij . Since
the function Ψeq is the eigenvector corresponding to the eigenvalue zero, we
have: Mi[Ψeq] = 〈ϕi, Ψeq〉s = 0.

The associated projector PM ,

PM =
n∑

i=1

∂Ψ̃

∂Mi
〈ϕi, •〉s , (13.58)

generates the equations of the macroscopic dynamics in terms of the para-
meters Mi:

dMi/dt = 〈ϕiPMJΨ̃〉s = 〈ϕiJΨ̃〉s .
Their explicit form is

dMi

dt
= λiMi + 〈J+

ex(α)gi, Ψ̃(M)〉s , (13.59)

where the J+
ex is the adjoint to operator Jex with respect to the scalar product

〈•, •〉s.
Apparently, in the absence of forcing (α ≡ 0) the macroscopic equations

dMi/dt = λiMi are thermodynamically stable. They represent the dynamics
of the slowest eigenmodes the of the equation dΨ/dt = JdΨ . Thus, the pro-
jector (13.58) complies with the requirements of dissipativity and slowness in
the absence the external flow.

In order to rewrite the macroscopic equations (13.59) in terms of the
required set of macroparameters, M∗

i [Ψ ] = 〈m∗
i , Ψ〉s, we use the formula

(13.57) which is equivalent to the change of variables {M} → {M∗(M)},
M∗

i = 〈m∗
i , Ψ̃(M)〉s in the equations (13.59). Indeed, this is seen from the

relation:
DΨM

∗
i

∣∣
Ψ̃

[
PMJΨ̃

]
=
∑

j

∂M∗
i

∂Mj
DΨMj

∣∣
Ψ̃
[JΨ̃ ] .
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We have constructed the dynamics with the help of the projector PM

associated with the lowest eigenvectors of the operator Jd. It is directly ver-
ified that such projector (13.58) fulfills the condition (13.54) for arbitrary
manifold Ψ(n) = Ψ̃ . For this reason it is natural to use the projector (13.58)
for both procedures, constructing the invariant manifold, and deriving the
macroscopic equations.

We note that the above approach to defining the dynamics via the spectral
projector is a specification of the concept of “thermodynamic parameteriza-
tion” proposed in [9, 11].

13.5.3 Linear Zero-Order Equations

In this section we focus our attention on the solution of the zero-order invari-
ance equation (13.56). We seek the linear invariant manifold of the form

Ψ(0)(a) = Ψeq +
n∑

i=1

aimi , (13.60)

where ai are coordinates on this manifold. This manifold can be considered
as an expansion of the relevant slow manifold near the equilibrium state. This
limits the domain of validity of the manifolds (13.60) because they may be not
positively definite. This remark indicates that nonlinear invariant manifolds
should be considered for large deviations from the equilibrium but this goes
beyond the scope of this Example.

The linear n-dimensional manifold representing the slow motion for the
linear dissipative system (13.44) is associated with the n slowest eigenmodes.
This manifold should be built up as the linear hull of the eigenvectors ϕi of
the operator Jd, corresponding to the lower part of its spectrum. Thus we
choose mi = ϕi.

Dynamic equations for the macroscopic variables M∗ are derived in two
steps. First, following the subsection, “Projector and reduced dynamics”,
we parameterize the linear manifold Ψ(0) with the values of the moments
Mi[Ψ ] = 〈ϕi, Ψ〉s. We obtain the parameterization of the manifold (13.60) in
terms of ai = Mi,

Ψ(0)(M) = Ψeq +
n∑

i=1

Miϕi ,

The reduced dynamics in terms of variables Mi reads:

dMi

dt
= λiMi +

∑
j

〈J+
exϕi, ϕj〉sMj + 〈J+

exϕi, Ψeq〉s , (13.61)

where λi = 〈ϕi, Jdϕi〉s are eigenvalues which correspond to eigenfunctions
ϕi.
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Second, we switch from the variables Mi to the variables M∗
i (M) =

〈m∗
i , Ψ(0)(M)〉s in (13.61). Resulting equations for the variables M∗ are also

linear:

dM∗
i

dt
=
∑
jkl

(B−1)ijΛjkBkl∆M
∗
l +

∑
jk

(B−1)ij〈J+
exϕj , ϕk〉s∆M∗

k

+
∑

j

(B−1)ij〈J+
exϕj , Ψeq〉s . (13.62)

Here, ∆M∗
i = M∗

i −M∗
eq|i is the deviation of the variable M∗

i from its equi-
librium value M∗

eq|i, and Bij = 〈m∗
i , ϕj〉, and Λij = λiδij .

13.5.4 Auxiliary Formulas. 1. Approximations
to Eigenfunctions of the Fokker–Planck Operator

In this subsection we discuss the question how to find the lowest eigenvectors

Ψeqm0(Q2) and Ψeqm1(Q2)
◦

QQ of the operator Jd (13.38) in the classes of

functions of the form: w0(Q) and w1(Q)
◦

QQ. The results presented in this
subsection will be used below in the subsections: “Constitutive equations”
and “Tests on the FENE dumbbell model”.

It is directly verified that:

Jdw0 = Gh
0w0 ,

Jdw1

◦
QQ=

(
Gh

1w1

) ◦
QQ ,

where the operators Gh
0 and Gh

1 are given by:

Gh
0 = G0 − κH0 , Gh

1 = G1 − κH1 . (13.63)

The operators G0,1 and H0,1 act in the space of isotropic functions (i.e.
dependent only on Q = (Q · Q)1/2) as follows:

G0 =
1
2

(
∂2

∂Q2
− fQ

∂

∂Q
+

2
Q

∂

∂Q

)
, (13.64)

G1 =
1
2

(
∂2

∂Q2
− fQ

∂

∂Q
+

6
Q

∂

∂Q
− 2f

)
, (13.65)

H0 =
2
Q

(
∂2

∂Q2
− fQ

∂

∂Q
+

2
Q

∂

∂Q

)
, (13.66)

H1 =
2
Q

(
∂2

∂Q2
− fQ

∂

∂Q
+

5
Q

∂

∂Q
− 2f +

1
Q2

)
. (13.67)

The following two properties of the operators Gh
0,1 are important for our

analysis: Let us define two scalar products 〈•, •〉0 and 〈•, •〉1:
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〈y, x〉0 = 〈xy〉e ,

〈y, x〉1 = 〈xyQ4〉e .
Here, 〈•〉e is the equilibrium average as defined in (13.80). For sufficiently
small κ the operators Gh

0 and Gh
1 are symmetric and nonpositive in the

scalar products 〈•, •〉0 and 〈•, •〉1 respectively. Thus, for obtaining the de-
sired eigenvectors of the operator Jd we need to find the eigenfunctions m0

and m1 related to the lowest nonzero eigenvalues of the operators Gh
0,1.

Since we regard the parameter κ small it is convenient, first, to find the
lowest eigenfunctions g0,1 of the operators G0,1 and, second, to use the stan-
dard perturbation technique in order to obtain m0,1. For the first-order per-
turbation one finds [367]:

m0 = g0 + κh0 , h0 = −g0
〈g0H0G0g0〉0

〈g0, g0〉0
−G0H0g0 ;

m1 = g1 + κh1 , h1 = −g1
〈g1H1G1g1〉1

〈g1, g1〉1
−G1H1g1 . (13.68)

For the rest of this subsection we describe one recurrent procedure for
obtaining the functions m0 and m1 in a constructive way. Let us solve this
problem by minimizing the functionals Lambda0,1:

Λ0,1[m0,1] = −
〈m0,1, G

h
0,1m0,1〉0,1

〈m0,1,m0,1〉0,1
−→ min , (13.69)

by means of the gradient descent method.
Let us denote e0,1 the eigenfunctions of the zero eigenvalues of the op-

erators Gh
0,1, e0 = 1 and e1 = 0. Let the initial approximations m(0)

0,1 to the

lowest eigenfunctions m0,1 be so chosen that 〈m(0)
0,1, e0,1〉0,1 = 0. We define

the variational derivative δΛ0,1/δm0,1 and look for the correction in the form:

m
(1)
0,1 = m

(0)
0,1 + δm

(0)
0,1 , δm

(0)
0,1 = α

δΛ0,1

δm0,1
, (13.70)

where scalar parameter α < 0 is found from the condition:

∂Λ0,1[m
(1)
0,1(α)]

∂α
= 0 .

In the explicit form the result reads:

δm
(0)
0,1 = α

(0)
0,1∆

(0)
0,1 ,

where
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∆
(0)
0,1 =

2

〈m(0)
0,1,m

(0)
0,1〉0,1

(
m

(0)
0,1λ

(0)
0,1 −Gh

0,1m
(0)
0,1

)
, (13.71)

λ
(0)
0,1 =

〈m(0)
0,1, G

h
0,1m

(0)
0,1〉0,1

〈m(0)
0,1,m

(0)
0,1〉0,1

,

α
(0)
0,1 = q0,1 −

√√√√q20,1 +
〈m(0)

0,1,m
(0)
0,1〉0,1

〈∆(0)
0,1,∆

(0)
0,1〉0,1

,

q0,1 =
1

〈∆(0)
0,1,∆

(0)
0,1〉0,1

(
〈m(0)

0,1, G
h
0,1m

(0)
0,1〉0,1

〈m(0)
0,1,m

(0)
0,1〉0,1

−
〈∆(0)

0,1, G
h
0,1∆

(0)
0,1〉0,1

〈∆(0)
0,1,∆

(0)
0,1〉0,1

)
.

With the new correction m
(1)
0,1, we can repeat the procedure and even-

tually generate recurrence scheme. Since by the construction all iterative
approximations m

(n)
0,1 remain orthogonal to the zero eigenfunctions e0,1,

〈m(n)
0,1 , e0,1〉0,1 = 0 we avoid the convergence of this recurrence procedure

to the eigenfunctions e0,1. (Note that this method resembles the relaxation
method, Chap. 9.)

The quantities δ(n)
0,1 :

δ
(n)
0,1 =

〈∆(n)
0,1 ,∆

(n)
0,1 〉0,1

〈m(n)
0,1 ,m

(n)
0,1 〉0,1

can serve as a relative error for controlling the convergence of the iteration
procedure (13.70).

13.5.5 Auxiliary Formulas. 2. Integral Relations

Let Ω be a sphere in R3 centered at the origin, or the entire space R3. For
any function s(x2), where x2 = x · x, x ∈ R3, and any 3× 3 matrices A, B,
C independent of x, the following integral relations are valid:

∫
Ω

s(x2)
◦

xx (
◦

xx : A) dx =
2
15

◦
A
∫

Ω

sx4 dx ;
∫

Ω

s(x2)
◦

xx (
◦

xx : A)(
◦

xx : B) dx =
4

105

◦
(A · B + B · A)

∫
Ω

sx6 dx ;
∫

Ω

s(x2)
◦

xx (
◦

xx : A)(
◦

xx : B)(
◦

xx : C) dx =

4
315

{
◦
A (B : C)+

◦
B (A : C)+

◦
C (A : B)

}∫
Ω

sx8 dx .
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13.5.6 Microscopic Derivation of Constitutive Equations

Iteration Scheme

In this section we apply the above developed formalism to the elastic dumb-
bell model (13.30). External field variables α are the components of the
tensor k̂.

Since we aim at constructing a closed description for the stress tensor τ
(13.31) with the six independent components, the relevant manifold in the
problem should be six-dimensional. Moreover, we allow a dependence of the

manifold on the material derivatives of the tensor k̂: k̂
(i)

= Dik/Dti. Let

Ψ∗(M,K) K = {k̂, k̂
(1)
, . . .} be the desired manifold parameterized by the

six variables Mi i = 1, . . . , 6 and the independent components (maximum

eight for each k̂
(l)

) of the tensors k̂
(l)

. Small parameters ε1 and ε2, introduced
in the section: “The problem of reduced description in polymer dynamics”,
are established by (13.43). We then write the invariance equation:

(1 − PM )(Jd + ε1Jh)Ψ = ε2

∞∑
i=0

∑
lm

∂Ψ

∂k̂
(i)
lm

k̂
(i+1)
lm , (13.72)

where PM = (∂Ψ/∂Mi)DΨMi[•] is the projector associated with chosen pa-
rameterization and summation indexes l,m run only eight independent com-
ponents of tensor k̂.

Following the further steps of the procedure we obtain the recurrent equa-
tions:

(1 − P
(n)
M )JdΨn+1 = −(1 − P

(n)
M )[Jd + ε1Jh]Ψ(n) + ε2

∑
i

∑
lm

∂Ψ(n)

∂k̂
(i)
lm

k̂
(i+1)
lm ,

(13.73)

P
(n)
M Ψn+1 = 0 , (13.74)

where Ψn+1 is the correction to the manifold Ψ(n) =
∑n

i=0 Ψi.
The zero-order manifold is found as the relevant solution to the equation:

(1 − P
(0)
M )JdΨ(0) = 0 (13.75)

We construct zero-order manifold Ψ(0) in the subsection, “Zero-order consti-
tutive equation”.

The Dynamics in the General Form

Let us assume that some approximation to invariant manifold Ψ̃(a,K) is
found (here a = {a1, . . . , a6} are some coordinates on this manifold). The
next step is the constructing of the macroscopic dynamic equations.
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In order to comply with dissipativity and slowness by means of the recipe
from the previous section, we need to find six lowest eigenvectors of the
operator Jd. We shall always assume in the sequel that the hydrodynamic
interaction parameter κ is small enough so that the dissipativity of Jd (13.40)
is not violated.

Let us consider two classes of functions: C1 = {w0(Q2)} and C2 =

{w1(Q2)
◦

QQ}, where w0,1 are functions of Q2 and the notation ◦ indicates
the traceless part, e.g. for the dyad QQ:

(
◦

QQ)ij = QiQj −
1
3
δijQ

2 .

Since the sets C1 and C2 are invariant with respect to operator Jd, i.e. JdC1 ⊂
C1 and JdC2 ⊂ C2, and densities FQ = f

◦
QQ +(1/3)1fQ2 of the moments

comprising the stress tensor τ p (13.32) belong to the space C1 ⊕ C2, we shall
seek the desired eigenvectors in the classes C1 and C2. Namely, we intend to
find one lowest isotropic eigenvector Ψeqm0(Q2) of the eigenvalue −λ0 (λ0 >

0) and five nonisotropic eigenvectors mij = Ψeqm1(Q2)(
◦

QQ)ij corresponding
to another eigenvalue −λ1 (λ1 > 0). The method of derivation and analytic
evaluation of these eigenvalues were discussed in the subsection “Auxiliary
formulas, 1”. For now we assume that these eigenvectors are known.

In the next step we parameterize the given manifold Ψ̃ by the values of
the functionals:

M0 = 〈Ψeqm0, Ψ̃〉s =
∫
m0Ψ̃ dQ ,

◦
M= 〈Ψeqm1

◦
QQ, Ψ̃〉s =

∫
m1

◦
QQ Ψ̃ dQ . (13.76)

Once the desired parameterization Ψ̃(M0,
◦
M,K) is obtained, the dynamic

equations are found as:

DM0

Dt̂
+ λ0M0 =

〈
(ˆ̇γ :

◦
QQ)m′

0

〉
(13.77)

◦
M[1] +λ1

◦
M = −1

3
1ˆ̇γ :

◦
M −1

3
ˆ̇γ
〈
m1Q

2
〉

+
〈

◦
QQ (ˆ̇γ :

◦
QQ)m′

1

〉
,

where all averages are calculated with the distribution function Ψ̃ , i.e. 〈•〉 =∫
•Ψ̃ dQ, m′

0,1 = dm0,1(Q2)/d(Q2) and the subscript [1] represents the upper
convective derivative of a tensor:

Λ[1] =
DΛ
Dt̂

−
{
k̂ · Λ + Λ · k̂

†}
.

The parameters λ0,1, which are the absolute values of eigenvalues of the
operator Jd, are calculated from the formulas (for the definition of operators
G1 and G2 see subsection “Auxiliary formulas, 1”):
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λ0 = −〈m0G0m0〉e
〈m0m0〉e

> 0 , (13.78)

λ1 = −〈Q4m1G1m1〉e
〈m1m1Q4〉e

> 0 , (13.79)

where we have introduced the notation for the equilibrium average:

〈y〉e =
∫
Ψeqy dQ . (13.80)

Equations for the components of the polymeric stress tensor τ p (13.32)

are constructed as a change of variables {M0,
◦
M} → τ p. The use of the

projector P̃ makes this operation straightforward:

Dτ p

Dt̂
= −nkBT

∫
FQP̃ JΨ̃(M0(τ p,K),

◦
M (τ p,K),K) dQ . (13.81)

Here, the projector P̃ is associated with the parameterization by the variables

M0 and
◦
M:

P̃ =
∂Ψ̃

∂M0
〈Ψeqm0, •〉s +

∑
kl

∂Ψ̃

∂
◦
Mkl

〈Ψeqm1(
◦

QQ)kl, •〉s . (13.82)

We note that sometimes it is easier to make a transition to the variables
τ p after solving the equations (13.77) rather than to construct explicitly and
solve equations in terms of τ p. This allows to avoid inverting the functions

τ p(M0,
◦
M) and to deal with simpler equations.

Zero-Order Constitutive Equation

In this subsection we derive the closed constitutive equations based on the
zero-order manifold Ψ(0) found as the appropriate solution to (13.75). Follow-
ing the approach described in subsection, “Linear zero-order equations”, we
construct such a solution as the linear expansion near the equilibrium state

Ψeq (13.60). After parameterization by the values of the variables M0 and
◦
M

associated with the eigenvectors Ψeqm0 and Ψeqm1

◦
QQ we find:

Ψ(0) = Ψeq

(
1 +M0

m0

〈m0m0〉e
+

15
2

◦
M:

◦
QQ

m1

〈m1m1Q4〉e

)
. (13.83)

With the help of the projector (13.82):

P
(0)
M = Ψeq

{
m0

〈m0m0〉e
〈m0, •〉e +

15
2

m1

〈m1m1Q4〉e
◦

QQ : 〈m1

◦
QQ, •〉e

}

(13.84)



394 13 Slow Invariant Manifolds for Open Systems

and using the formula (13.81) we obtain:

Dtrτ p

Dt̂
+ λ0trτ p = a0

( ◦
τ p : ˆ̇γ

)
, (13.85)

◦
τ p[1] +λ0

◦
τ p = b0

[ ◦
τ p · ˆ̇γ + ˆ̇γ · ◦

τ p

]
− 1

3
1(

◦
τ p : ˆ̇γ) + (b1trτ p − b2nkBT )ˆ̇γ ,

where the constants bi, a0 are defined by the following equilibrium averages:

a0 =
〈fm0Q

2〉e〈m0m1Q
4m′

1〉e
〈fm0Q4〉e 〈m2

0〉e
,

b0 =
2
7
〈m1m

′
2Q

6〉e
〈m2

1Q
4〉e

,

b1 =
1
15

〈fm1Q
4〉e

〈fm0Q2〉e

{
2

〈
m0m

′
2Q

4
〉
e

〈m2
1Q

4〉e
+ 5

〈
m0m1Q

2
〉
e

〈m1m1Q4〉e

}
,

b2 =
1
15

〈
fm1Q

4
〉
e

〈m1m1Q4〉e
{
2
〈
m′

2Q
4
〉
e
+ 5

〈
m1Q

2
〉
e

}
. (13.86)

We remind that m′
0,1 = ∂m0,1/∂(Q2). These formulas were obtained using

the auxiliary results from subsection “Auxiliary formulas, 2”.

Revised Oldroyd 8 Constant Constitutive Equation for the Stress

It is remarkable that when rewritten in terms of the full stresses, τ = −νsγ̇ +
τ p, the dynamic system (13.85) takes the form:

τ + c1τ [1] + c3 {γ̇ · τ + τ · γ̇} + c5(trτ )γ̇ + 1 (c6τ : γ̇ + c8trτ )

= −ν
{

γ̇ + c2γ̇[1] + c4γ̇ · γ̇ + c7(γ̇ : γ̇)1
}
, (13.87)

where the parameters ν, ci are given by the following relationships:

ν = λrνsµ , µ = 1 + nkBTλ1b2/νs ,

c1 = λr/λ1 , c2 = λr/(µλ1) ,
c3 = −b0λr/λ0 , c4 = −2b0λr/(µλ1) ,

c5 =
λr

3λ1
(2b0 − 3b1 − 1) , c6 =

λr

λ1
(2b0 + 1 − a0) ,

c7 =
λr

λ1µ
(2b0 + 1 − a0) , c8 =

1
3
(λ0/λ1 − 1) . (13.88)

In the last two formulas we returned to the original dimensional quantities:
time t and gradient of velocity tensor k = ∇v, and at the same time we kept
the notations for the dimensional convective derivative, Λ[1] = DΛ/Dt− k ·
Λ − Λ · k†.
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Note that all the parameters (13.88) are related to the entropic spring
law f due to (13.86). Thus, the constitutive relation for the stress τ (13.87)
is fully derived from the microscopic kinetic model.

If the constant c8 were equal to zero, then (13.87) would be recognized
as the Oldroyd 8 constant model [362], proposed by Oldroyd about 40 years
ago on a phenomenological basis. Nonzero value of c8 indicates a difference
between λr/λ0 and λr/λ1 which are the relaxation times of trace tr τ and of
the traceless components

◦
τ of the stress tensor τ .

Higher-Order Constitutive Equations

In this subsection we discuss some properties of corrections to the revised Ol-
droyd 8 constant constitutive equation (that is, the zero-order model) (13.87).
Let P (0)

M (13.84) be the projector onto the zero-order manifold Ψ(0) (13.83).
The invariance equation (13.73) for the first-order correction Ψ(1) = Ψ(0) +Ψ1

takes the form:

LΨ1 = −
(
1 − P

(0)
M

)
(Jd + Jh)Ψ(0) (13.89)

P
(0)
M Ψ1 = 0

where L = (1 − P
(0)
M )Jd(1 − P

(0)
M ) is the symmetric operator. If the man-

ifold Ψ(0) is parameterized by the functionals M0 =
∫
g0Ψ(0) dQ and

◦
M=∫

m1

◦
QQ Ψ(0) dQ, where Ψeqm0 and Ψeq

◦
QQ m1 are lowest eigenvectors of

Jd, then the general form of the solution is given by:

Ψ1 = Ψeq

{
z0M0(γ̇ :

◦
QQ) + z1(

◦
M:

◦
QQ)(γ̇ :

◦
QQ)

+z2{γ̇·
◦
M +

◦
M ·γ̇} :

◦
QQ +z3γ̇ :

◦
M +

1
2
γ̇ :

◦
QQ

}
. (13.90)

The terms z0 through z3 are the functions of Q2 found as the solutions to
some linear differential equations.

We observe two features of the new manifold:

– first, it remains linear in variables M0 and
◦
M;

– second, it contains the dependence on the rate of strain tensor γ̇.

As the consequence, the transition to variables τ is given by the linear rela-
tions:

−
◦
τ p

nkBT
= r0

◦
M +r1M0γ̇ + r2{

◦

γ̇·
◦
M +

◦
M ·γ̇} + r3

◦
γ̇ · γ̇ , (13.91)

− trτ p

nkBT
= p0M0 + p1γ̇ :

◦
M ,
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where ri and pi are some constants. Finally, the equations in terms of τ should
be also linear. It can be shown that the first-order correction to the modified
Oldroyd 8 constants model (13.87) will be transformed into the equations of
the following general structure:

τ + c1τ [1] +
{

Γ 1 · τ · Γ 2 + Γ †
2 · τ · Γ †

1

}
+Γ 3(trτ ) + Γ 4(Γ 5 : τ ) = −ν0Γ 6 , (13.92)

where Γ 1 through Γ 6 are tensors dependent on the rate-of-strain tensor γ̇
and its first convective derivative γ̇[1], constant c1 is the same as in (13.88)
and ν0 is a positive constant.

Because the explicit form of the tensors Γ i is quite extensive we do not
present them here. Instead we offer several general remarks about the struc-
ture of the first- and higher-order corrections:

1. Since the manifold (13.90) does not depend on the vorticity tensor ω = k−
k†, the latter enters the equations (13.92) only via convective derivatives
of τ and γ̇. This is sufficient to acquire the frame indifference, since all
the tensorial quantities in dynamic equations are indifferent in any time
dependent reference frame [361].

2. When k = 0, the first order equations (13.92) as well as equations for any
order reduce to linear relaxation dynamics of slow modes:

D
◦
τ

Dt
+
λ1

λr

◦
τ = 0 ,

Dtrτ
Dt

+
λ0

λr
trτ = 0,

which is obviously concordant with the dissipativity and the slowness re-
quirements.

3. In all higher-order corrections one will be always left with linear manifolds

if the projector associated with functionals M0[Ψ ] and
◦
M [Ψ ] is used in

every step. It follows that the resulting constitutive equations will always
take a linear form (13.92), where all tensors Γ i depend on higher order
convective derivatives of γ̇ (the highest possible order is limited by the
order of the correction). Similarly to the first and zero orders the frame
indifference is guaranteed if the manifold does not depend on the vorticity
tensor unless the latter is incorporated in any frame invariant time deriv-
atives. It is reasonable to eliminate the dependence on vorticity (if any)
at the stage of constructing the solution to iteration equations (13.73).

4. When the force F is linear, F = Q, we are led to Oldroyd-B model ((13.87)
with ci = 0 for i = 3, . . . , 8). This follows from the fact that the spectrum
of the corresponding operator Jd is more degenerated, in particular λ0 =
λ1 = 1 and the corresponding lowest eigenvectors correspond to the simple
dyad ΨeqQQ.
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13.5.7 Tests on the FENE Dumbbell Model

In this section we specify the choice of the force law as the FENE spring
(13.35), and present results of test calculations for the revised Oldroyd 8
constants (13.85) equations on the examples of two simple viscometric flows.

We introduce the extensibility parameter of FENE dumbbell model b:

b = Q̂
2

0 =
HQ2

0

kBT
. (13.93)

It was estimated [151] that b is proportional to the length of polymeric mole-
cule and has a meaningful variation interval 50–1000. The limit b → ∞
corresponds to the Hookean case and therefore to the Oldroyd-B constitutive
equation.

In our test calculations we compare our results with the Brownian dy-
namic (BD) simulation data made on FENE dumbbell equations [363], and
also with one popular approximation to the FENE model known as FENE-P
(FENE-Peterelin) model [151, 364, 365]. The latter is obtained by selfconsis-
tent approximation to the FENE force:

F =
1

1 −
〈
Q2
〉
/b

Q . (13.94)

This force law, like the Hookean case, allows the exact moment closure leading
to nonlinear constitutive equations [151,365]. Specifically, we use the modified
variant of the FENE-P model, which matches the dynamics of the original
FENE near equilibrium better than the classical variant. This is achieved by
a slight modification of Kramers definition of the stress tensor:

τ p = nkBT (1 − θb)1 − 〈FQ〉 . (13.95)

The case θ = 0 gives the classical definition of FENE-P, while a more thor-
ough estimation [354,365] is θ = (b(b+ 2))−1.

Constants

The specific feature of the FENE model is that the length of dumbbells Q can
vary only in a bounded domain of R3, namely inside a sphere Sb =

{
Q2 ≤ b

}
.

The sphere Sb defines the domain of integration for averages 〈•〉e =
∫

Sb
Ψeq •

dQ, where the equilibrium distribution reads Ψeq = c−1
(
1 −Q2/b

)b/2, c =∫
Sb

(
1 −Q2/b

)b/2 dQ.
In order to find constants for the zero-order model (13.85) we do the fol-

lowing: First, we analytically compute the lowest eigenfunctions of operator

Jd: g1(Q2)
◦

QQ and g0(Q2) without hydrodynamic interaction (κ = 0). The
functions g0 and g1 were computed by a procedure presented in Subsect.
“Auxiliary formulas, 1” with the help of the Maple V.3 [366]. Second, we
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calculate the perturbations terms h0,1 by formulas (13.68) introducing the
account of hydrodynamic interaction. Table 13.1 presents the constants λ0,1,
ai, bi (13.79) (13.86) of the zero-order model (13.85) without hydrodynamic
interaction (κ = 0) for several values of extensibility parameter b. The rel-
ative error δ0,1 (see Subsect. “Auxiliary formulas, 1”) of approximation for
these calculations did not exceed the value 0.02. Table 13.2 shows the lin-
ear correction terms for constants from Table 13.1 which take into account
the hydrodynamic interaction: λh

0,1 = λ0,1(1 + κ(δλ0,1)), ah
i = ai(1 + κ(δai)),

bhi = bi(1 + κ(δbi)). The latter are calculated by substituting the perturbed
functions m0,1 = g0,1 + κh0,1 into (13.79) and (13.86), and expanding them
up to first-order in κ. One can observe, since κ > 0, the effect of hydrody-
namic interaction results in the reduction of the relaxation times.

Table 13.1. Values of constants to the revised Oldroyd 8 constants model computed
on the base of the FENE dumbbells model

b λ0 λ1 b0 b1 b2 a0

20 1.498 1.329 −0.0742 0.221 1.019 0.927
50 1.198 1.135 −0.0326 0.279 1.024 0.982
100 1.099 1.068 −0.0179 0.303 1.015 0.990
200 1.050 1.035 0.000053 0.328 1.0097 1.014
∞ 1 1 0 1/3 1 1

Table 13.2. Corrections due to hydrodynamic interaction to the constants of the
revised Oldroyd 8 constants model based on FENE force

b δλ0 δλ1 δb0 δb1 δb2 δa0

20 −0.076 −0.101 0.257 −0.080 −0.0487 −0.0664
50 −0.0618 −0.109 −0.365 0.0885 −0.0205 −0.0691
100 −0.0574 −0.111 −1.020 0.109 −0.020 −0.0603

Dynamic Problems

The rest of this section concerns the computations for two particular flows.
The shear flow is defined by

k(t) = γ̇(t)


 0 1 0

0 0 0
0 0 0


 , (13.96)

where γ̇(t) is the shear rate, and the elongation flow corresponds to the choice:
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k(t) = ε̇(t)


 1 0 0

0 −1/2 0
0 0 −1/2


 , (13.97)

where ε̇(t) is the elongation rate.
In test computations we look at viscometric material functions defined

through the components of the polymeric part of the stress tensor τ p. Namely,
for shear flow they are the shear viscosity ν, the first and the second normal
stress coefficients ψ1, ψ2, and for the elongation flow the only function is the
elongation viscosity ν̄. In dimensionless form they are written as:

ν̂ =
ν − νs

nkBTλr
= − τ p,12

γnkBT
, (13.98)

ψ̂1 =
ψ1

nkBTλ2
r

=
τ p,22 − τ p,11

γ2nkBT
, (13.99)

ψ̂2 =
ψ2

nkBTλ2
r

=
τ p,33 − τ p,22

γ2nkBT
, (13.100)

ϑ =
ν̄ − 3νs

nkBTλr
=

τ p,22 − τ p,11

εnkBT
, (13.101)

where γ = γ̇λr and ε = ε̇λr are dimensionless shear and elongation rates.
Characteristic values of the latter parameters γ and ε allow to estimate the
parameter ε1 (13.43). For all flows considered below the second flow parame-
ter (Deborah number) ε2 is equal to zero.

Let us consider the steady state values of viscometric functions in steady
shear and elongation flows: γ̇ = const, ε̇ = const. For the shear flow the
steady values of these functions are found from (13.85) as follows:

ν̂ = b2/(λ1 − cγ2) , ψ̂1 = 2ν̂/λ1 , ψ̂2 = 2b0ν̂/λ1 ,

where c = 2/3(2b20 + 2b0 − 1)/λ1 + 2b1a0/λ0. Estimations for the constants
(see Table I) show that c ≤ 0 for all values of b (case c = 0 corresponds to b =
∞), thus all three functions are monotonically decreasing in absolute value
with the increase of γ, besides the case b = ∞. Although they qualitatively
correctly predict the shear thinning for large shear rates due to a power
law, but the exponent −2 in the limit of large γ deviations from the values
−0.66 for ν̂ and −1.33 for ψ̂1 observed in Brownian dynamic simulations
[363]. It is explained by the fact that slopes of shear thining lie out of the
applicability domain of our model. A comparison with BD simulations and
modified FENE-P model is shown in Fig. 13.1.

The predictions for the second normal stress coefficient indicate one more
difference between the revised Oldroyd 8 constant equation and FENE-P
model. FENE-P model shows zero values for ψ̂2 in any shear flow, either
steady or time dependent, while the model (13.85), as well as BD simulations
(see Fig. 9 in [363]) predict small, but nonvanishing values for this quantity.
Namely, due to the model (13.85) in shear flows the following relation ψ̂2 =
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Fig. 13.1. Dimensionless shear viscosity ν̂ and first normal stress coefficient ψ̂1 vs.
shear rate: ( ) revised Oldroyd 8 constant model; (· · · · · ·) FENE-P model;
(◦ ◦ ◦) BD simulations on the FENE model; (− · − · −) Hookean dumbbell model

b0ψ̂1 is always valid, with proportionality coefficient b0 small and mostly
negative, which leads to small and mostly negative values of ψ̂2.

In the elongation flow the steady state value to ϑ is found as:

ϑ =
3b2

λ1 − 5
6 (2b0 + 1)ε− 7b1a0ε

2/λ0

. (13.102)

The denominator has one root on positive semi-axis

ε∗ = −5λ0(2b0 + 1)
84b1a0

+

((
5λ0(2b0 + 1)

84b1a0

)2

+
λ1λ0

7b1a0

)1/2

, (13.103)

which defines a singularity point for the dependence ϑ(ε). The BD simula-
tions [363] on the FENE dumbbell models shows that there is no divergence
of elongation viscosity for all values of elongation rate (see Fig. 13.2). For
the Hookean spring, ε∗ = 1/2 while in our model (13.85) the singularity
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Table 13.3. Singular values of elongation rate

b 20 50 100 120 200 ∞

ε∗ 0.864 0.632 0.566 0.555 0.520 0.5

10
−1

10
0

10
1

10
2

20

40

60

80

100

120
b=50

ϑ

ε–

Fig. 13.2. Dimensionless elongation viscosity vs. elongation rate: ( ) revised
Oldroyd 8 constant model, (· · · · · ·) FENE-P model, (◦ ◦ ◦) BD simulations on the
FENE model; (− · − · −) Hookean dumbbell model

point shifts to higher values with respect to decreasing values of b as it is
demonstrated in Table 13.3.

The Fig. 13.3 gives an example of dynamic behavior for elongation vis-
cosity in the instant start-up of the elongational flow. Namely, it shows the
evolution of initially vanishing polymeric stresses after instant jump of elon-
gation rate at the time moment t = 0 from the value ε = 0 to the value
ε = 0.3.

It is possible to conclude that the revised Oldroyd 8 constants model
(13.85) with estimations given by (13.86) for small and moderate rates of
strain up to ε1 = λr|γ̇|/(2λ1) ∼ 0.5 yields a good approximation to the
original FENE dynamics. The quality of the approximation in this interval
is the same or better than the one of the nonlinear FENE-P model.

13.5.8 The Main Results of this Example are as Follows:

(i) We have developed a systematic method of constructing constitutive
equations from the kinetic models of polymeric solutions. The method
is free from a’priori assumptions about the form of the spring force and
is consistent with the basic physical requirements: frame invariance and
dissipativity of the internal motions of the fluid. The method extends
the method of invariant manifold onto equations coupled with external
fields. Two characteristic parameters of fluid flows were distinguished
in order to account for the effect of the presence of external fields. The
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Fig. 13.3. Time evolution of elongation viscosity after inception of the elongation
flow with elongation rate ε = 0.3: ( ) revised Oldroyd 8 constant model,
(· · · · · ·) FENE-P model, (− − −) BD simulations on FENE model; (− · − · −)
Hookean dumbbell model

iterative Newton scheme for obtaining a slow invariant manifold of the
system driven by the flow with relatively low values of both characteristic
parameters was developed.

(ii) We demonstrated that the revised phenomenological Oldroyd 8 con-
stants constitutive equations represent the slow dynamics of microscopic
elastic models with any nonlinear spring force in the limit when the rate
of strain and frequency of time variation of the flow are sufficiently small
and microscopic states are taken not far from the equilibrium.

(iii) The corrections to the zero-order manifold lead generally to linear in
stresses equations but with highly nonlinear dependence on the rate of
strain tensor and its convective derivatives.

(iv) The zero-order constitutive equation is compared to the direct Brown-
ian dynamics simulation for FENE dumbbell model as well as to pre-
dictions of FENE-P model. This comparison shows that the zero-order
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constitutive equation gives the correct predictions in the domain of its
validity, but does not exclude qualitative discrepancy occurring out of
this domain, particularly in elongation flows.

This discrepancy calls for a further development, in particular, the use of
nonlinear manifolds for derivation of zero-order model. The reason is in the
necessity to provide concordance with the requirement of the positivity of
distribution function. It may lead to nonlinear constitutive equation on any
order of correction.

13.6 Example: Explosion of Invariant Manifold,
Limits of Macroscopic Description
for Polymer Molecules, Molecular Individualism,
and Multimodal Distributions

Derivation of macroscopic equations from the simplest dumbbell models is re-
visited [109]. It is demonstrated that the onset of the macroscopic description
is sensitive to the flows. For the FENE-P model, small deviations from the
Gaussian solution undergo a slow relaxation before the macroscopic descrip-
tion sets on. Some consequences of these observations are discussed. A new
class of closures is discussed, the kinetic multipeak polyhedra. Distributions of
this type are expected in kinetic models with a multidimensional instability
as universally, as the Gaussian distribution appears for stable systems. The
number of possible relatively stable states of a nonequilibrium system grows
as 2m, and the number of macroscopic parameters is in order mn, where n
is the dimension of configuration space, and m is the number of indepen-
dent unstable directions in this space. The elaborated class of closures and
equations describes effects of “molecular individualism”.

13.6.1 Dumbbell Models and the Problem
of the Classical Gaussian Solution Stability

We shall again consider the simplest case of dilute polymer solutions repre-
sented by dumbbell models. The dumbbell model reflects the two features
of real-world macromolecules to be orientable and stretchable by a flowing
solvent [151].

Let us consider the simplest one-dimensional kinetic equation for the con-
figuration distribution function Ψ(q, t), where q is the reduced vector connect-
ing the beads of the dumbbell. This equation is slightly different from the
usual Fokker–Planck equation. It is nonlinear, because of the dependence of
potential energy U on the moment M2[Ψ ] =

∫
q2Ψ(q) dq. This dependence

allows us to get the exact quasiequilibrium equations on M2, but these equa-
tions are not always solving the problem: this quasiequilibrium manifold may
become unstable when the flow is present [109]. Here is this model:
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∂tΨ = −∂q{α(t)qΨ} +
1
2
∂2

qΨ . (13.104)

Here
α(t) = κ(t) − 1

2
f(M2(t)) , (13.105)

κ(t) is the given time-dependent velocity gradient, t is the reduced time,
and the function −fq is the reduced spring force. Function f may depend
on the second moment of the distribution function M2 =

∫
q2Ψ(q, t) dq. In

particular, the case f ≡ 1 corresponds to the linear Hookean spring, while f =
[1 −M2(t)/b]−1 corresponds to the self-consistent finite extension nonlinear
elastic spring (the FENE-P model [365]). The second moment M2 occurs in
the FENE-P force f as the result of the pre-averaging approximation to the
original FENE model (with nonlinear spring force f = [1 − q2/b]−1). The
parameter b changes the characteristics of the force law from Hookean at
small extensions to a confining force for q2 → b. Parameter b is roughly equal
to the number of monomer units represented by the dumbell and should
therefore be a large number. In the limit b → ∞, the Hookean spring is
recovered. Recently, it has been demonstrated that FENE-P model appears as
first approximation within a systematic self-confident expansion of nonlinear
forces [29].

Equation (13.104) describes an ensemble of non-interacting dumbells sub-
ject to a pseudo-elongational flow with fixed kinematics. As is well known,
the Gaussian distribution function,

ΨG(M2) =
1√

2πM2

exp
[
− q2

2M2

]
, (13.106)

solves equation (13.104) provided the second moment M2 satisfies

dM2

dt
= 1 + 2α(t)M2 . (13.107)

Solution (13.106) and (13.107) is the valid macroscopic description if all
other solutions of the equation (13.104) are rapidly attracted to the family
of Gaussian distributions (13.106). In other words [11], the special solution
(13.106) and (13.107) is the macroscopic description if equation (13.106) is
the stable invariant manifold of the kinetic equation (13.104). If not, then the
Gaussian solution is just a member of the family of solutions, and equation
(13.107) has no meaning of the macroscopic equation. Thus, the complete an-
swer to the question of validity of the equation (13.107) as the macroscopic
equation requires a study of dynamics in the neighborhood of the manifold
(13.106). Because of the simplicity of the model (13.104), this is possible to
a satisfactory level even for M2-dependent spring forces.
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13.6.2 Dynamics of the Moments
and Explosion of the Gaussian Manifold

In [109] it was shown, that there is a possibility of “explosion” of the Gaussian
manifold: with the small initial deviation from it, the solutions of the equa-
tion (13.104) are fast going far from the manifold, and then slowly come
back to the stationary point which is located on the Gaussian manifold. The
distribution function Ψ is stretched fast, but looses the Gaussian form, and
after that the Gaussian form recovers slowly with the new value of M2. Let
us describe briefly the results of [109].

Let M2n =
∫
q2nΨ dq denote the even moments (odd moments vanish

by symmetry). We consider deviations µ2n = M2n − MG
2n, where MG

2n =∫
q2nΨG dq are moments of the Gaussian distribution function (13.106). Let

Ψ(q, t0) be the initial condition to (13.104) at time t = t0. Introducing func-
tions,

p2n(t, t0) = exp
[
4n
∫ t

t0

α(t′) dt′
]
, (13.108)

where t ≥ t0, and 2n ≥ 4, the exact time evolution of the deviations µ2n for
2n ≥ 4 reads

µ4(t) = p4(t, t0)µ4(t0) , (13.109)

and

µ2n(t) =
[
µ2n(t0) + 2n(4n− 1)

∫ t

t0

µ2n−2(t′)p−1
2n (t′, t0) dt′

]
p2n(t, t0) ,

(13.110)
for 2n ≥ 6. Equations (13.108), (13.109) and (13.110) describe evolution
near the Gaussian solution for arbitrary initial condition Ψ(q, t0). Notice that
explicit evaluation of the integral in (13.108) requires solution to the moment
equation (13.107) which is not available in the analytical form for the FENE-
P model.

It is straightforward to conclude that any solution with a non-Gaussian
initial condition converges to the Gaussian solution asymptotically as t → ∞
if

lim
t→∞

∫ t

t0

α(t′) dt′ < 0 . (13.111)

However, even if this asymptotic condition is met, deviations from the
Gaussian solution may survive for considerable finite times. For example, if
for some finite time T , the integral in (13.108) is estimated as

∫ t

t0
α(t′) dt′ >

α(t − t0), α > 0, t ≤ T , then the Gaussian solution becomes exponentially
unstable during this time interval. If this is the case, the moment equation
(13.107) cannot be regarded as the macroscopic equation. Let us consider
specific examples.

For the Hookean spring (f ≡ 1) under constant elongation (κ = const),
the Gaussian solution is exponentially stable for κ < 0.5, and it becomes
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Fig. 13.4. Deviations of reduced moments from the Gaussian solution as a function
of reduced time t in pseudo-elongation flow for the FENE-P model. Upper part:
Reduced second moment X = M2/b. Lower part: Reduced deviation of fourth

moment from Gaussian solution Y = −µ
1/2
4 /b. Solid : κ = 2, dash-dot : κ = 1, dash:

κ = 0.75, long dash: κ = 0.5. (The figure from the paper [109], computed by P. Ilg.)

exponentially unstable for κ > 0.5. The exponential instability in this case is
accompanied by the well known breakdown of the solution to (13.107) due to
the infinite stretching of the dumbbell. The situation is much more interesting
for the FENE-P model because this nonlinear spring force does not allow the
infinite stretching of the dumbbell [412,413].

Euations (13.107) and (13.109) were integrated by the 5-th order Runge-
Kutta method with adaptive time step. The FENE-P parameter b was set
equal to 50. The initial condition was Ψ(q, 0) = C(1 − q2/b)b/2, where C
is the normalization (the equilibrium of the FENE model, notoriously close
to the FENE-P equilibrium [363]). For this initial condition, in particular,
µ4(0) = −6b2/[(b + 3)2(b+ 5)] which is about 4% off the value of M4 in the
Gaussian equilibrium for b = 50. In Fig. 13.4 we demonstrate deviation µ4(t)
as a function of time for several values of the flow. Function M2(t) is also
given for comparison. For small enough κ we find an adiabatic regime, that
is µ4 relaxes exponentially to zero. For stronger flows, we observe an initial
fast runaway from the invariant manifold with |µ4| growing over three orders
of magnitude as compared to its initial value. After the maximum deviation
is reached, µ4 relaxes to zero. This relaxation is exponential as soon as the
solution to (13.107) approaches the steady state. However, the time constant
of this exponential relaxation |α∞| is very small. Specifically, for large κ,

α∞ = lim
t→∞

α(t) = − 1
2b

+O(κ−1) . (13.112)
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Thus, the steady state solution is unique and Gaussian but the stronger
is the flow, the larger is the initial runaway from the Gaussian solution,
while the return to it thereafter becomes flow-independent. Our observation
demonstrates that, though the stability condition (13.111) is met, significant
deviations from the Gaussian solution persist over the times when the solution
of (13.107) is already reasonably close to the stationary state. If we accept
the usually quoted physically reasonable minimal value of parameter b of the
order 20 then the minimal relaxation time is of order 40 in the reduced time
units of Fig. 13.4. We should also stress that the two limits, κ → ∞ and
b → ∞, are not commutative, thus it is not surprising that the estimation
(13.112) does not reduce to the above mentioned Hookean result as b →
∞. Finally, peculiarities of convergence to the Gaussian solution are even
furthered if we consider more complicated (in particular, oscillating) flows
κ(t). Further numerical experiments are presented in [110]. The statistics of
FENE-P solutions with random strains was studied recently [368]

13.6.3 Two-Peak Approximation for Polymer Stretching
in Flow and Explosion of the Gaussian Manifold

In accordance with [369], the ansatz for Ψ can be suggested in the following
form:

ΨAn({σ, ς}, q) =
1

2σ
√

2π

(
e−

(q+ς)2

2σ2 + e−
(q−ς)2

2σ2

)
. (13.113)

Natural inner coordinates on this manifold are σ and ς. Note, that now σ2 �=
M2. The value σ2 is a dispersion of one of the Gaussian summands in (13.113),

M2(ΨAn({σ, ς}, q)) = σ2 + ς2 .

To build the thermodynamic projector on the manifold (13.113), the thermo-
dynamic Lyapunov function is necessary. It is necessary to emphasize that
equations (13.104) are nonlinear. For such equations, the arbitrarity in the
choice of the thermodynamic Lyapunov function is much smaller than for
the linear Fokker–Planck equation. Nevertheless, such a thermodynamic Lya-
punov function exists. It is the free energy

F = U(M2[Ψ ]) − TS[Ψ ] , (13.114)

where

S[Ψ ] = −
∫
Ψ(lnΨ − 1) dq ,

U(M2[Ψ ]) is the potential energy in the mean field approximation, T is the
temperature (below we assume T = 1).
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Note that the Kullback–form entropy [156] Sk = −
∫
Ψ ln

(
Ψ
Ψ∗

)
dq also

has the form Sk = −F/T :

Ψ∗ = exp(−U) ,

Sk[Ψ ] = −〈U〉 −
∫
Ψ lnΨ dq .

If U(M2[Ψ ]) in the mean field approximation is the convex function of M2,
then the free energy (13.114) is the convex functional too.

For the FENE-P model U = − ln[1 −M2/b].
In accordance with thermodynamics the vector I of the flow of Ψ must

be proportional to the gradient of the corresponding chemical potential µ:

I = −B(Ψ)∇qµ , (13.115)

where µ = δF
δΨ , B ≥ 0. From (13.114) it follows that

µ =
dU(M2)
dM2

· q2 + lnΨ ;

I = −B(Ψ)
[
2
dU

dM2
· q + Ψ−1∇qΨ

]
. (13.116)

If we assume here B = D
2 Ψ , then we get

I = −D
[
dU

dM2
· qΨ +

1
2
∇qΨ

]
;

∂Ψ

∂t
= divqI = D

dU(M2)
dM2

∂q(qΨ) +
D

2
∂2qΨ , (13.117)

When D = 1 this equation coincides with (13.104) in the absence of the flow,
and dF/dt ≤ 0 due to (13.117).

Let us construct the thermodynamic projector with the help of the ther-
modynamic Lyapunov function F (13.114). Corresponding entropic scalar
product at the point Ψ has the form

〈f |g〉Ψ =
d2U

dM2
2

∣∣∣∣
M2=M2[Ψ ]

·
∫
q2f(q)dq ·

∫
q2g(q) dq +

∫
f(q)g(q)
Ψ(q)

dq .

(13.118)
When stuying the ansatz (13.113), the scalar product (13.118) constructed
for the corresponding point of the Gaussian manifold with M2 = σ2 will
be used. This will allow us to investigate the neighborhood of the Gaussian
manifold (and to get all the results analytically):

〈f |g〉σ2 =
d2U

dM2
2

∣∣∣∣
M2=σ2

·
∫
q2f(q) dq ·

∫
q2g(q) dq

+σ
√

2π
∫
e

q2

2σ2 f(q)g(q) dq . (13.119)
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Also we need to know the functional DfF at the point of Gaussian manifold:

DfFσ2(f) =
(
dU(M2)
dM2

∣∣∣∣
M2=σ2

− 1
2σ2

)∫
q2f(q) dq , (13.120)

(subject to the condition
∫
f(q) dq = 0). The point

dU(M2)
dM2

∣∣∣∣
M2=σ2

=
1

2σ2
,

corresponds to the equilibrium.
The tangent space to the manifold (13.113) is spanned by the vectors

fσ =
∂ΨAn

∂(σ2)
; fς =

∂ΨAn

∂(ς2)
; (13.121)

fσ =
1

4σ3
√

2π

[
e−

(q+ς)2

2σ2
(q + ς)2 − σ2

σ2
+ e−

(q−ς)2

2σ2
(q − ς)2 − σ2

σ2

]
;

fς =
1

4σ2ς
√

2π

[
−e−

(q+ς)2

2σ2
q + ς

σ
+ e−

(q−ς)2

2σ2
(q − ς)
σ

]
;

The Gaussian entropy (free energy) production in the directions fσ and fς

(13.120) has a very simple form:

DFσ2(fς) = DFσ2(fσ) =
dU(M2)
dM2

∣∣∣∣
M2=σ2

− 1
2σ2

. (13.122)

The linear subspace kerDFσ2 in lin{fσ, fς} is spanned by the vector fς − fσ.
Let us consider the given vector field dΨ/dt = J(Ψ) at the point Ψ({σ, ς}).

We need to build the projection of J onto the tangent space Tσ,ς at the point
Ψ({σ, ς}):

P th
σ,ς(J) = ϕσfσ + ϕςfς . (13.123)

This equation means that the equations for σ2 and ς2 will have the form

dσ2

dt
= ϕσ ;

dς2

dt
= ϕς . (13.124)

Projection (ϕσ, ϕς) can be found from the following two equations:

ϕσ + ϕς =
∫
q2J(Ψ)(q) dq ;

〈ϕσfσ + ϕςfς |fσ − fς〉σ2 = 〈J(Ψ)|fσ − fς〉σ2 , (13.125)

where 〈f |g〉σ2 = 〈J(Ψ)|fσ−fς〉σ2 , (13.118). First equation of (13.125) means,
that the time derivative dM2/dt is the same for the initial and the re-
duced equations. Due to the formula for the dissipation of the free energy
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(13.120), this equality is equivalent to the persistence of the dissipation in
the neighborhood of the Gaussian manifold. Indeed, in according to (13.120)
dF/dt = A(σ2)

∫
q2J(Ψ)(q) dq = A(σ2)dM2/dt, where A(σ2) does not de-

pend of J . On the other hand, the time derivative of M2 due to projected
equation (13.124) is ϕσ + ϕς , because M2 = σ2 + ς2.

The second equation in (13.125) means, that J is projected orthogonally
on kerDfS

⋂
Tσ,ς . Let us use the orthogonality with respect to the entropic

scalar product (13.119). The solution of equations (13.125) has the form

dσ2

dt
= ϕσ =

〈J |fσ − fς〉σ2 +M2(J)(〈fς |fς〉σ2 − 〈fσ|fς〉σ2)
〈fσ − fς |fσ − fς〉σ2

,

(13.126)
dς2

dt
= ϕς =

−〈J |fσ − fς〉σ2 +M2(J)(〈fσ|fσ〉σ2 − 〈fσ|fς〉σ2)
〈fσ − fς |fσ − fς〉σ2

,

where J = J(Ψ), M2(J) =
∫
q2J(Ψ) dq.

It is easy to check, that the formulas (13.126) are indeed defining the
projector: if fσ (or fς) is substituted instead of the function J , then we get
ϕσ = 1, ϕς = 0 (or ϕσ = 0, ϕς = 1, respectively). Let us substitute the
right part of the initial kinetic equations (13.104), calculated at the point
Ψ(q) = Ψ({σ, ς}, q) (see (13.113)) in (13.126) instead of J . We shall get the
closed system of equations on σ2, ς2 in the neighborhood of the Gaussian
manifold.

This system describes the dynamics of the distribution function Ψ . The
distribution function is represented as the half-sum of two Gaussian distri-
butions with the averages of distribution ±ς and mean-square deviations σ.
All integrals in the right-hand part of (13.126) are possible to calculate ana-
lytically.

The basis (fσ, fς) is convenient to use everywhere except for the points
on the Gaussian manifold, ς = 0, because if ς → 0, then

fσ − fς = O

(
ς2

σ2

)
→ 0 .

Let us analyze the stability of the Gaussian manifold with respect to the
“dissociation” of the Gaussian peak in two peaks (13.113). In order to do
this, it is necessary to find the first nonvanishing term in the Taylor series
expansion in ς2 of the right-hand side of the second equation in the system
(13.126). The denominator has the order of ς4, the numerator has, as it is
easy to see, the order not less, than ς6 (because the Gaussian manifold is
invariant with respect to the initial system).

With the accuracy up to ς4:

1
σ2

dς2

dt
= 2α

ς2

σ2
+ o

(
ς4

σ4

)
, (13.127)
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Fig. 13.5. Phase trajectories for the two-peak approximation, FENE-P model.
The vertical axis (ς = 0) corresponds to the Gaussian manifold. The triangle with
α(M2) > 0 is the domain of exponential instability

where

α = κ− dU(M2)
dM2

∣∣∣∣
M2=σ2

.

Thus, if α > 0, then ς2 grows exponentially (ς ∼ eαt) and the Gaussian
manifold is unstable; if α < 0, then ς2 decreases exponentially and the
Gaussian manifold is stable.

Near the vertical axis dσ2/dt = 1+2ασ2. The form of the phase trajecto-
ries is shown qualitative on Fig. 13.5. Note that this result completely agrees
with equation (13.109).2

For the linear Fokker–Planck equation with a non-linear force law (for
example, with the FENE force) the motion in the presence of the flow can
be represented as the motion in the effective potential well Ũ(q) = U(q) −
1
2κq

2. Different variants of the phase portrait for the FENE potential are
present on Fig. 13.6. Instability and dissociation of the unimodal distribution
functions (“peaks”) for the FPE is the general effect when the flow is present.
The instability occurs when the matrix ∂2Ũ/∂qi∂qj starts to have negative
eigenvalues (Ũ is the effective potential energy, Ũ(q) = U(q)− 1

2

∑
i,j κi,jqiqj).

13.6.4 Polymodal Polyhedron and Molecular Individualism

What are the possible physical consequences of the instability of the Gaussian
manifolds? The discovery of the molecular individualism for dilute polymers

2 Pavel Gorban calculated the projector (13.126) analytically without Taylor ex-
pansion and with the same, but exact result: dς2/dt = 2ας2, dσ2/dt = 1+2ασ2.
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Fig. 13.6. Phase trajectories for the two-peak approximation, FENE model: (a)
A stable equilibrium on the vertical axis, one stable peak; (b) A stable equilibrium
with ς > 0, stable two-peak configuration

in the elongational flow [370] was the challenge to theory from the very
beginning. “Our data should serve as a guide in developing improved mi-
croscopic theories for polymer dynamics”. . . was the concluding sentence of
the paper [370]. P.G. de Gennes invented the notion “molecular individu-
alism” [371]. He stressed that in this case the usual averaging procedures
are not applicable. At the highest strain rates distinct conformation shapes
with different dynamics were observed [370]. Further works for the shear
flow demonstrated not only shape differences, but large temporal fluctua-
tions [372].

Equation for the molecules in a flow are known. These are the Fokker–
Planck equations with external force. The theory of the molecular individu-
alism is hidden inside these equations. Following the logic of model reduction
we should solve two problems: to construct the slow manifold, and to project
the equation on this manifold. The second problem is solved: the thermody-
namic projector is necessary for this projection.

How to solve the first problem? We can find a hint in previous subsec-
tions. The Gaussian distributions form the invariant manifold for the FENE-P
model of polymer dynamics, but this manifold can become unstable in the
presence of a flow. We propose to model this instability as dissociation of the
Gaussian peak into two peaks. This dissociation describes appearance of an
unstable direction in the configuration space.

In the one-dimensional FENE-P model of the preceding section the poly-
mer molecule is represented by one coordinate: the stretching of the molecule
(the connector vector between the beads). There is a simple mean field gen-
eralized models for multidimensional configuration spaces of molecules. In
these models, dynamics of distribution functions is described by the Fokker–
Planck equation in a quadratic potential well. The matrix of coefficients of
this quadratic potential depends on the matrix of the second order moments
of the distribution function. The Gaussian distributions form the invariant
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manifold for these models, and the first dissociation of the Gaussian peak
after the emergence of the unstable direction in the configuration space has
the same nature and the same description, as for the one-dimensional models
of molecules considered below.

At a higher strain, new unstable directions can appear, and corresponding
dissociations of Gaussian peaks form a cascade of dissociation. For m unsta-
ble directions we get the Gaussian parallelepiped: The distribution function
is represented as a sum of 2m Gaussian peaks located in the vertices of par-
allelepiped:

Ψ(q) =
1

2m(2π)n/2
√

detΣ
(13.128)

×
∑

εi=±1, (i=1,...,m)

exp

(
−1

2

(
Σ−1

(
q +

m∑
i=1

εiςi

)
, q +

m∑
i=1

εiςi

))
,

where n is the dimension of the configurational space, 2ςi is the vector of the
ith edge of the parallelepiped, Σ is the one-peak covariance matrix (in this
model, Σ is the same for all peaks). The macroscopic variables for this model
are:

1. The covariance matrix Σ for a peak;
2. The set of vectors ςi (or the parallelepiped edges).

The stationary polymodal distribution for the Fokker–Planck equation
corresponds to the persistence of several local minima of the function Ũ(q).
The multidimensional case is different from one-dimensional because it has
the huge amount of possible configurations. An attempt to describe this pic-
ture quantitative meet the following obstacle: we do not know the details
of the potential U , on the other hand, the effect of molecular individual-
ism [370–372] seems to be universal in its essence, that is, independent of
details of interactions.

We should find a mechanism that is as general, as the effect. The simplest
dumbbell model which we have discussed in the previous subsection does not
explain the effect, but it gives us a hint: the flow can violate the stability of
unimodal distributions. If we assume that the whole picture is hidden inside a
multidimensional Fokker–Planck equation for a large molecule in a flow, then
we can use this hint in such a way: when the flow strain grows, there appears a
sequence of bifurcations, and for each of them a new unstable direction arises.
For the qualitative description of such a picture we can apply a language of
normal forms [373], subject to a certain modification.

The bifurcation in dimension one with appearance of two point of minima
from one point has the simplest polynomial representation: U(q, α) = q4 +
αq2. If α ≥ 0, then this potential has one minimum, if α < 0, then there
are two points of minima. The normal form of degenerated singularity is
U(q) = q4. Such polynomial forms as q4 +αq2 are very simple, but they have
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inconvenient asymptotic at q → ∞. For our goals it is more appropriate to
use logarithms of convex combinations of Gaussian distributions instead of
polynomials. It is the same class of jets near the bifurcation, but with given
quadratic asymptotic q → ∞. If one needs another class of asymptotic, it
is possible just to change the choice of the basic peak. All normal forms of
the critical form of functions, and families of versal deformations are well
investigated and known [373].

Let us represent the deformation of the probability distribution under
the strain in multidimensional case as a cascade of peak dissociation. The
number of peaks will duplicate on the each step. The possible cascade of peaks
dissociation is presented qualitatively on Fig. 13.7. The important property
of this qualitative picture is the linear complexity of dynamical description
with exponential complexity of geometrical picture. Let m be the number of
bifurcation steps in the cascade. Then

– For description of parallelepiped it is sufficient to describe m edges;
– There are 2m−1 geometrically different conformations associated with 2m

vertex of parallelepiped (central symmetry halved this number).

Fig. 13.7. Cartoon representing the steps of molecular individualism. Black dots
are vertices of Gaussian parallelepiped. Zero, one, and four-dimensional polyhe-
drons are drawn. Presented is also the three-dimensional polyhedron used to draw
the four-dimensional object. Each new dimension of the polyhedron adds as soon
as the corresponding bifurcation occurs. Quasi-stable polymeric conformations are
associated with each vertex. First bifurcation pertinent to the instability of a dumb-
bell model in elongational flow is described in the text
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Another important property is the threshold nature of each dissociation: It
appears in points of stability loss for new directions, in these points the
dimension of unstable direction increases.

Positions of peaks correspond to parallelepiped vertices. Different vertices
in configuration space present different geometric forms. So, it seems plausi-
ble3 that observed different forms (“dumbbels”, “half-dumbbels”, “kinked”,
“folded” and other, not classified forms) correspond to these vertices of par-
allelepiped. Each vertex is a metastable state of a molecule and has its own
basin of attraction. A molecule goes to the vertex which depends strongly on
details of initial conditions.

The simplest multidimensional dynamic model is the Fokker–Planck equa-
tion with quadratic mean field potential. This is direct generalization of the
FENE-P model: the quadratic potential U(q) depends on the tensor of second
moments M2 = 〈qiqj〉 (here the angle brackets denote the averaging). This
dependence should provide the finite extensibility. This may be, for example,
a simple matrix generalization of the FENE-P energy:

U(q) =
∑
ij

Kijqiqj , K = K0 + φ(M2/b), 〈U(q)〉 = tr(KM2/b)

where b is a constant (the limit of extensibility), K0 is a constant matrix,
M2 is the matrix of second moments, and φ is a positive analytical monotone
increasing function of one variable on the interval (0, 1), φ(x) → ∞ for x → 1
(for example, φ(x) = − ln(1 − x)/x, or φ(x) = (1 − x)−1).

For quadratic multidimensional mean field models persists the qualitative
picture of Fig. 13.5: there is non-stationary moleqular individualism for sta-
tionary “molecular collectivism”. The stationary distribution is the Gaussian
distribution, and on the way to this stationary point there exists an unstable
region, where the distribution dissociates onto 2m peaks (m is the number of
unstable degrees of freedom).

Dispersion of individual peak in unstable region increases too. This effect
can deform the observed situation: If some of the peaks have significant inter-
section, then these peaks join into new extended classes of observed molecules.
The stochastic walk of molecules between connected peaks can be observed
as “large non-periodical fluctuations”. This walk can be unexpected fast, be-
cause it can be effectively a motion in a low-dimensional space, for example,
in one-dimensional space (in a neighborhood of a part of one-dimensional
skeleton of the polyhedron).
3 We can not prove it now, and it is necessary to determine the status of proposed

qualitative picture: it is much more general than a specific model, it is the mecha-
nism which acts in a wide class of models. The cascade of instabilities can appear
and, no doubt, it appears for the Fokker–Planck equation for a large molecule in
a flow. But it is not proven yet that the effects observed in well-known experi-
ments have exactly this mechanism. This proof requires quantitative verification
of a specific model. And now we talk not about a proven, but about the plausible
mechanism which typically appears for systems with instabilities.
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We discussed the important example of ansatz: the multipeak models.
Two examples of these type of models demonstrated high efficiency during
decades: the Tamm–Mott-Smith bimodal ansatz for shock waves, and the the
Langer–Bar-on–Miller [374–376] approximation for spinodal decomposition.

The multimodal polyhedron appears every time as an appropriate approx-
imation for distribution functions for systems with instabilities. We create
such an approximation for the Fokker–Planck equation for polymer mole-
cules in a flow. Distributions of this type are expected to appear in each
kinetic model with multidimensional instability as universally, as Gaussian
distribution appears for stable systems. This statement needs a clarification:
everybody knows that the Gaussian distribution is stable with respect to
convolutions, and the appearance of this distribution is supported by cen-
tral limit theorem. Gaussian polyhedra form a stable class: convolution of
two Gaussian polyhedra is a Gaussian polyhedron, convolution of a Gaussian
polyhedron with a Gaussian distribution is a Gaussian polyhedron with the
same number of vertices. On the other hand, a Gaussian distribution in a po-
tential well appears as an exponent of a quadratic form which represents the
simplest stable potential (a normal form of a nondegenerated critical point).
Families of Gaussian parallelepipeds appear as versal deformations with given
asymptotic for systems with cascade of simplest bifurcations.

The usual point of view is: The shape of the polymers in a flow is either
a coiled ball, or a stretched ellipsoid, and the Fokker–Planck equation de-
scribes the stretching from the ball to the ellipsoid. It is not the whole truth,
even for the FENE-P equation, as it was shown in [109, 369]. The Fokker–
Planck equation describes the shape of a probability cloud in the space of
conformations. In the flow with increasing strain this shape changes from the
ball to the ellipsoid, but, after some thresholds, this ellipsoid transforms into
a multimodal distribution which can be modeled as the peak parallelepiped.
The peaks describe the finite number of possible molecule conformations. The
number of this distinct conformations grows for a parallelepiped as 2m with
the number m of independent unstable direction. Each vertex has its own
basin of attraction. A molecule goes to the vertex which depends strongly on
details of initial conditions.

These models pretend to be the kinetic basis for the theory of molecular in-
dividualism. The detailed computations will be presented in following works,
but some of the qualitative features of the models are in agreement with
some of qualitative features of the picture observed in experiment [370–372]:
effect has the threshold character, different observed conformations depend
significantly on the initial conformation and orientation.

Some general questions remain open:

– Of course, appearance of 2m peaks in the Gaussian parallelepiped is pos-
sible, but some of these peaks can join in following dynamics, hence the
first question is: what is the typical number of significantly different peaks
for a m−dimensional instability?
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– How can we decide what scenario is more realistic from the experimental
point of view: the proposed universal kinetic mechanism, or the scenario
with long living metastable states (for example, the relaxation of knoted
molecules in the flow can give an other picture than the relaxation of
unknoted molecules)?

– The analysis of random walk of molecules from peak to peak should be
done, and results of this analysis should be compared with observed large
fluctuations.

The systematic discussion of the difference between the Gaussian elipsoid
(and its generalizations) and the Gaussian multipeak polyhedron (and its
generalizations) seems to be necessary. This polyhedron appears generically
as the effective ansatz for kinetic systems with instabilities.
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