
1 Introduction

1.1 Ideas and References

In this book, we present a collection of constructive methods to study slow
(stable) positively invariant manifolds of dynamic systems. The main objects
of our study are dissipative dynamic systems (finite or infinite) which arise
in various problems of kinetics. Some of the results and methods presented
herein may have a more general applicability, and can be useful not only for
dissipative systems but also, for example, for conservative systems.

Nonequilibrium statistical physics is a collection of ideas and methods
for the extraction of slow invariant manifolds. Reduction of description for
dissipative systems assumes (explicitly or implicitly) the following picture:
There exists a manifold of slow motions in the phase space of the system.
From the initial conditions the system goes quickly in a small neighborhood
of the manifold, and after that moves slowly along this manifold (see, for
example, [1]). The manifold of slow motion (slow manifold, for short) must
be positively invariant: if a motion starts on the manifold at t0, then it stays
on the manifold at t > t0. The frequently used wording “invariant manifold”
is not really precise: for dissipative systems, the possibility of extending the
solutions (in a meaningful way) backwards in time is limited. So, in nonequi-
librium statistical physics we study positively invariant (or inward invariant)
slow manifolds. The necessary invariance condition can be written explicitly
as the differential equation for the manifold immersed into the phase space.
This picture is directly applicable to dissipative systems.

Time separation for conservative systems and the way from the reversible
mechanics (for example, from the Liouville equation) to dissipative systems
(for example, to the Boltzmann equation) requires some additional ideas and
steps. For any conservative system, a restriction of its dynamics onto any
invariant manifold is conservative again. We should represent a dynamics
of a large conservative system as a result of dynamics in its small subsys-
tems, and it is necessary to take into account that a macroscopically small
interval of time can be considered as an infinitely large interval for a small
subsystem, i.e. microscopically. It allows us to represent the relaxation of
such large systems as an ensemble of indivisible events (for example, colli-
sions). The Bogolyubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy
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Fig. 1.1. The stairs of reduction, step by step

and Bogolyubov’s method of derivation of the Boltzmann equation give us
the unexcelled realization of this approach [2].

The “stairs of reduction” (Fig. 1.1) lead from the reversible microdynam-
ics to irreversible macrokinetics. The most mysterious is the first step: the
emergence of irreversibility. We discuss this problem in Chap. 12, but the
main focus of our attention in the book is the model reduction for dissipative
systems.

For dissipative systems, we always keep in mind the following picture
(Fig. 1.2). The vector field J(x) generates the motion on the phase space U :
dx/dt = J(x). An ansatz manifold Ω is given, it is the current approximation
to the invariant manifold. This manifold Ω is described as the image of the
map F : W → U . The choice of the space of macroscopic variables W is the
important step of the model reduction: all corrections of the current ansatz
manifold are described as images of various F for given W .

The projected vector field PJ(x) belongs to the tangent space Tx, and
the equation dx/dt = PJ(x) describes the motion along the ansatz manifold
Ω (if the initial state belongs to Ω). The induced dynamics on the space W
is generated by the vector field

dy
dt

= (DyF )−1PJ(F (y)) .
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Fig. 1.2. The main geometrical structures of model reduction: U is the phase
space, J(x) is the vector field of the system under consideration: dx/dt = J(x), Ω
is an ansatz manifold, W is the space of macroscopic variables (coordinates on the
manifold), the map F : W → U maps any point y ∈ W into the corresponding
point x = F (y) on the manifold Ω, Tx is the tangent space to the manifold Ω
at the point x, PJ(x) is the projection of the vector J(x) onto tangent space Tx,
the vector field dy/dt describes the induced dynamics on the space of parameters,
∆ = (1 − P )J(x) is the defect of invariance, the affine subspace x + ker P is the
plain of fast motions, and ∆ ∈ ker P

Here the inverse linear operator (DyF )−1 is defined on the tangent space
TF (y), because the map F is assumed to be immersion, that is the differential
(DyF ) is the isomorphism onto the tangent space TF (y).

The main focus of our analysis is the invariance equation1:

∆ = (1 − P )J = 0 ,

the defect of invariance ∆ should vanish. It is a differential equation for an
unknown map F : W → U . Solutions of this equation are invariant in the
sense that the vector field J(x) is tangent to the manifold Ω = F (W ) for

1 A.M. Lyapunov studied analytical solutions of similar equations near a fixed
point [3]. He found these solutions in a form of the Taylor series expansion and
proved the convergency of those power series near the non-resonant fixed point
(the Lyapunov auxiliary theorem). In 1960s the invariance equations approach
was developed, first of all, in the context of the Kolmogorov–Arnold–Moser the-
ory for invariant tori computation [4–6], as a special analytical perturbation
theory [7,8]. Recently, the main task is to develop constructive non-perturbative
methods, because the series of perturbations theory diverge and, moreover, the
high–order terms loose the physical sense for most interesting applications. The
seminal Kolmogorov’s idea was to use Newton’s method for solution of the invari-
ance equation (instead of the Taylor series expansion) [4]. In this book we discuss
the methods for invariant manifold construction that exploit the thermodynamic
properties of the kinetic equations.
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each point x ∈ Ω. But this condition says nothing about the slowness of the
manifold Ω.

How to choose the projector P? Another form of this question is: how to
define the plain of fast motions x + kerP? The choice of the projector P is
ambiguous, from the formal point of view, but the second law of thermody-
namics gives a good hint [9]: the entropy should grow in the fast motion, and
the point x should be the point of entropy maximum on the plane of fast
motion x+ kerP . That is, the subspace kerP should belong to the kernel of
the entropy differential:

kerPx ⊂ kerDxS .

Of course, this rule is valid for closed systems with entropy, but it can be also
extended onto open systems: the projection of the “thermodynamic part” of
J(x) onto Tx should have the positive entropy production. If this thermo-
dynamic requirement is valid for any ansatz manifold not tangent to the
entropy levels and for any thermodynamic vector field, then the thermody-
namic projector is unique [10]. Let us describe this projector P for given point
x, subspace Tx = imP, differential DxS of the entropy S at the point x and
the second differential of the entropy at the point x, the bilinear functional
(D2

xS)x. We need the positively definite bilinear form 〈z|p〉x = −(D2
xS)x(z, p)

(the entropic scalar product). There exists a unique vector g such that
〈g|p〉x = DxS(p). It is the Riesz representation of the linear functional DxS
with respect to entropic scalar product. If g �= 0 then the thermodynamic
projector is

P (J) = P⊥(J) +
g‖

〈g‖|g‖〉x
〈g⊥|J〉x ,

where P⊥ is the orthogonal projector onto Tx with respect the entropic scalar
product, and the vector g is splitted onto tangent and orthogonal components:

g = g‖ + g⊥; g‖ = P⊥g; g⊥ = (1 − P⊥)g .

This projector is defined if g‖ �= 0.
If g = 0 (the equilibrium point) then P (J) = P⊥(J).
For given Tx, the thermodynamic projector (5.25) depends on the point

x through the x-dependence of the scalar product 〈|〉x, and also through the
differential of S in x.

A dissipative system may have many closed positively invariant sets. For
example, for every set of initial conditions K, union of all the trajectories
{x(t), t ≥ 0} with initial conditions x(0) ∈ K is positively invariant. Thus,
the selection of the slow (stable) positively invariant manifolds becomes an
important problem2.

2 Nevertheless, there exists a different point of view: “Non–uniqueness, when it
arises, is irrelevant for modeling” [13], because the differences between the pos-
sible manifolds are of the same order as the differences we set out to ignore in
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One of the difficulties in the problem of reducing the description is due to
the fact that there exists no commonly accepted formal definition of a slow
(and stable) positively invariant manifold. This difficulty is resolved in Chap.
4 of our book in the following way: First, we consider manifolds immersed
into a phase space and study their motion along trajectories. Second, we sub-
tract from this motion the motion of immersed manifolds along themselves,
and obtain a new equation for dynamics of manifolds in the phase space:
the manifold Ω moves by the vector field ∆. It is the film extension of the
dynamics:

dFt(y)
dt

= ∆ ,

where the defect of invariance, ∆ = (1−P )J , depends on the point x = F (y)
and on the tangent space to the manifold Ω = F (W ) at this point. Invariant
manifolds are fixed points for this extended dynamics, and slow invariant
manifolds are Lyapunov stable fixed points.

The main body of this book is about how to actually compute the slow
invariant manifold. We present three approaches to constructing slow (stable)
positively invariant manifolds.

– Iteration method for solution of the invariance equation (Newton method
subject to incomplete linearization);

– Relaxation methods based on the film extension of the original dynamic
system;

– The method of natural projector that projects not the vector fields, but
rather finite segments of trajectories.

The Newton method (with incomplete linearization) is the iteration
method for solving the invariance equation. On each iteration we linearize
the invariance equation and solve obtained linear equation. In the defect of
invariance ∆ = (1 − P )J(x) both the vector field J(x) = J(F (y)) (y ∈ W )
and the projector P depend on the unknown map F (P depends on the point
x ∈ W and on the tangent space Tx = imDyF ). On each iteration we use for
J(F (y)) the first-order (linear in F ) approximation, and for P only the zero-
order (constant) one. The iteration method with this incomplete linearization
leads to the slowest invariant manifold [11]. The Newton method (with in-
complete linearization) is convenient for obtaining the explicit formulas –
even one iteration can give a good approximation.

Relaxation methods are directed more towards the numerical implemen-
tation. Nevertheless, several first steps also can give appropriate analytical
approximations, competitive with other methods. These methods are based
on the stepwise solution of the differential equation dF (y)/dt = ∆ (the film
extension of the dynamics).

establishing the low-dimensional model. We do not share this viewpoint because
it may be relevant only if there exists a small parameter, and, moreover, only
asymptotically when this small parameter tends to zero.
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Finally, the natural projector method constructs not the manifold itself
but a projection of slow dynamics onto some set of variables. This method is
the successor of two important methods: the Ehrenfests’ coarse-graining [15]
and the Hilbert method for solution of the Boltzmann equation [16]. It can
by applied to reversible and irreversible systems, and allows us to make the
first step of reduction (see Fig. 1.1) as well as the following steps.

The Newton method subject to incomplete linearization was developed
for the construction of slow (stable) positively invariant manifolds in the
following problems:

– Derivation of the post–Navier–Stokes hydrodynamics from the Boltzmann
equation [11,12,14,17].

– Description of the dynamics of polymers solutions [12,106].
– Correction of the moment equations [12,21].
– Reduced description for chemical kinetics [12,22,23,105].

Relaxation methods based on the film extension of the original dynamic
system were applied to the Fokker–Planck equation [12, 24]. Applications of
these methods in the theory of the Boltzmann equation can benefit from the
estimations, obtained in the papers [26,27].

The method of natural projector was originally applied to derivation of the
dissipative equations of macroscopic dynamics from the conservative equa-
tions of the microscopic dynamics [12,29–35]. Using this method, new equa-
tions were obtained for the post–Navier–Stokes hydrodynamics, equations of
plasma hydrodynamics and others [30, 34]. This short-memory approxima-
tion was applied to the Wigner formulation of quantum mechanics [36–38].
The dissipative dynamics of a single quantum particle in a confining external
potential is shown to take the form of a damped oscillator whose effective
frequency and damping coefficients depend on the shape of the quantum-
mechanical potential [35]. Further examples of the coarse-graining quantum
fields dynamics can be found in [39]. The natural projector method can also
be applied effectively to dissipative systems: instead of the Chapman–Enskog
method in theory of the Boltzmann equation, for example.

The most natural initial approximation for the methods under considera-
tion is a quasiequilibrium manifold. It is the manifold of conditional maxima
of the entropy. The majority of works on nonequilibrium thermodynamics
deal with corrections to quasi-equilibrium approximations, or with applica-
tions of these approximations (with or without corrections). The construction
of the quasi-equilibrium allows for the following generalization: almost every
manifold can be represented as a set of minimizers of the entropy under lin-
ear constraints. However, in contrast to the standard quasiequilibrium, these
linear constraints will depend on the point on the manifold. We describe the
quasiequilibrium manifold and the quasiequilibrium projector on the tan-
gent space of this manifold. This projector is orthogonal with respect to the
entropic scalar product (the bilinear form defined by the negative second dif-
ferential of the entropy). We construct the thermodynamical projector, which
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transforms the arbitrary vector field equipped with the given Lyapunov func-
tion (the entropy) into a vector field with the same Lyapunov function for an
arbitrary anzatz manifold which is not tangent to the level of the Lyapunov
function. The uniqueness of this construction is demonstrated.

Here, a comment on the status of most of the statements in this book
is in order. Just like the absolute majority of claims concerning such things
as general solutions of the Navier–Stokes or the Boltzmann equation, they
have the status of being plausible. They can become theorems only if one
restricts essentially the set of the objects under consideration. Among such
restrictions we should mention cases of the exact reduction, for example, exact
derivation of hydrodynamics from kinetics [40, 42]. In these (still infinite-
dimensional) examples one can compare different methods, for example, the
Newton method with the methods of series summation in the perturbation
theory [42,43].

Also, it is necessary to stress here, that even if in the limit all the methods
lead to the same results, they can give rather different approximations “on
the way”.

The rigorous foundation of the constructive methods of invariant mani-
folds should, in particular, include theorems about persistence of invariant
manifolds under perturbations. For instance, the compact normally hyperbolic
invariant manifolds persist under small perturbations for finite-dimensional
dynamical systems [46, 47]. The most well-known result of this type is the
Kolmogorov–Arnold–Moser theory about persistence of almost all invariant
tori of completely integrable system under small perturbations [4–6].

Such theorems exist for some classes of infinite dimensional dissipative
systems too [48]. Unfortunately, it is not proven until now that many impor-
tant systems (the Boltzmann equation, the three-dimensional Navier–Stokes
equations, the Grad equations, etc.) belong to these classes. So, it is necessary
to act with these systems without a rigorous basis.

The new quantum field theory formulation of the problem of persistence of
invariant tori in perturbed completely integrable systems was obtained [68],
and a new proof of the KAM theorem for analytic Hamiltonians based on
the renormalization group method was given.

Two approaches to the construction of the invariant manifolds are widely
used: the Taylor series expansion for the solution of the invariance equa-
tion [3, 50–52] and the method of renormalization group [53, 54, 56–59]. The
advantages and disadvantages of the Taylor series expansion are well-known:
constructivity versus the absence of physical meaning for the high-order terms
(often), and divergence in the most interesting cases (often).

In the paper [56], a geometrical formulation of the renormalization group
method for global analysis was given. It was shown that the renormalization
group equation can be interpreted as an envelope equation. Recently [57] the
renormalization group method was formulated in terms of invariant mani-
folds. This method was applied to derive kinetic and transport equations from
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the respective microscopic equations [58]. The derived equations include the
Boltzmann equation in classical mechanics (see also the paper [55], where it
was shown for the first time that kinetic equations such as the Boltzmann
equation can be understood naturally as renormalization group equations),
the Fokker–Planck equation, a rate equation in a quantum field theoretical
model.

From the point of view of the authors of the paper [55], the relation of
renormalization group theory and reductive perturbation theory has simul-
taneously been recognized: renormalization group equations are actually the
slow-motion equations which are usually obtained by reductive perturbation
methods.

The renormalization group approach was applied to the stochastic Navier–
Stokes equation in order to model fully developed fluid turbulence [60–62].
For the evaluation of the relevant degrees of freedom the renormalization
group technique was revised for discrete systems in the recent paper [59].

The kinetic theory approach to subgrid modeling of fluid turbulence be-
came more popular recently. [63–66]. A mean-field approach (filtering out
subgrid scales) was applied to the Boltzmann equation in order to derive a
subgrid turbulence model based on kinetic theory. It was demonstrated [66]
that the only Smagorinsky type model which survives in the hydrodynamic
limit on the viscosity time scale is the so-called tensor-diffusivity model [67].

The first systematic and successful method of constructing invariant man-
ifolds for dissipative systems was the celebrated Chapman-Enskog method [70]
for the Boltzmann kinetic equation. The Chapman–Enskog method results
in a series development of the so-called normal solution (the notion intro-
duced by Hilbert [16]) where the one-body distribution function depends on
time and space only through its locally conserved moments. To the first ap-
proximation, the Chapman–Enskog method leads to hydrodynamic equations
with transport coefficients expressed in terms of molecular scattering cross-
sections. However, the higher order terms of the Chapman–Enskog expansion
bring in the “ultra-violet catastrophe” (noticed first by Bobylev [72]) and
negative viscosity. This drawback pertinent to the Taylor series expansion
disappears as soon as the Newton method is used to construct the invariant
manifold [11].

The Chapman–Enskog method was generalized many times [76] and gave
rise to a host of subsequent works and methods, such as the famous method
of the quasi-steady state in chemical kinetics, pioneered by Bodenstein and
Semenov and explored in considerable detail by many authors (see, for ex-
ample, [22, 77–81]), and the theory of singularly perturbed differential equa-
tions [77,82–87].

There exists a set of methods to construct an ansatz for the invariant
manifold based on the spectral decomposition of the Jacobian. The idea to
use the spectral decomposition of Jacobian fields in the problem of separating
the motions into fast and slow originates from analysis of stiff systems [88],
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and from methods of sensitivity analysis in control theory [89, 90]. One of
the currently most popular methods based on the spectral decomposition of
Jacobian fields is the construction of the so-called intrinsic low-dimensional
manifold (ILDM) [93].

These methods were thoroughly analyzed in two papers [94, 95]. It was
shown that the successive applications of the Computational Singular Per-
turbation (CSP) algorithm (developed in [90]) generate, order by order, the
asymptotic expansion of a slow manifold, and the manifold identified by the
ILDM technique (developed in [93]) agrees with the invariant manifold to
some order. An explicit algorithm based on the CSP method is designed for
the integration of stiff systems of PDEs by means of explicit schemes [91].
The CSP analysis of time scales and manifolds in a transient flame-vortex
interaction was presented in [92].

The theory of inertial manifold is based on the special linear dominance in
higher dimensions. Let an infinite-dimensional system have a form: u̇+Au =
R(u), where A is self-adjoint, and has a discrete spectrum λi → ∞ with
sufficiently big gaps between λi, and let R(u) be continuous. One can build
the slow manifold as the graph over a root space of A [96]. The textbook [100]
provides an exhaustive introduction to the main ideas and methods of this
theory. Systems with linear dominance have limited utility in kinetics. Often
there are no big spectral gaps between λi, and even the sequence λi → ∞
might be bounded (for example, this is the case for the model Bhatnagar–
Gross–Krook (BGK) equations, or for the Grad equations). Nevertheless, the
concept of the inertial attracting manifold has wider field of applications than
the theory, based on the linear dominance assumption.

The Newton method with incomplete linearization and the relaxation
method allow us to find an approximate slow invariant manifolds without
Jacobian field spectral decomposition. Moreover, a necessary slow invariant
subspace of the Jacobian at the equilibrium point appears as a by-product
of the Newton iterations (with incomplete linearization), or of the relaxation
method.

It is of importance to search for minimal (or subminimal) sets of natural
parameters that uniquely determine the long-time behaviour of a system. This
problem was first discussed by Foias and Prodi [97] and by Ladyzhenskaya [98]
for the two-dimensional Navier–Stokes equations. They have proved that the
long-time behaviour of solutions is completely determined by the dynamics
of sufficiently large number of Fourier modes. A general approach to the
problem on the existence of a finite number of determining parameters has
been discussed [99,100].

The past decade has witnessed a rapid development of the so-called set
oriented numerical methods [101]. The purpose of these methods is to com-
pute attractors, invariant manifolds (often, computation of stable and un-
stable manifolds in hyperbolic systems [102–104]). Also, one of the central
tasks of these methods is to gain statistical information, i. e. computations
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of physically observable invariant measures. The distinguished feature of the
modern set-oriented methods of numerical dynamics is the use of ensembles
of trajectories within a relatively short propagation time instead of a long
time single trajectory.

In this book we systematically consider a discrete analog of the slow (sta-
ble) positively invariant manifolds for dissipative systems, invariant grids.
These invariant grids were introduced in [22]. Here we shall describe the New-
ton method subject to incomplete linearization and the relaxation methods
for the invariant grids [105].

It is worth mentioning that the problem of the grid correction is fully
decomposed into the tasks of the grid’s nodes correction. The edges between
the nodes appear only in the calculation of the tangent spaces at the nodes.
This fact determines the high computational efficiency of the invariant grids
method.

Let the (approximate) slow invariant manifold for a dissipative system be
found. Why have we constructed it? One important part of the answer to this
question is: We have constructed it to create models of open system dynamics
in the neighborhood of this manifold. Different approaches for this modeling
are described.

We apply these methods to the problem of reduced description in poly-
mer dynamics and derive the universal limit in dynamics of dilute polymeric
solutions. It is represented by the revised Oldroyd 8 constants constitutive
equation [106] for the polymeric stress tensor. Coefficients of this constitu-
tive equation are expressed in terms of the microscopic parameters. This
limit of dynamics of dilute polymeric solutions is universal, and any phys-
ically consistent equation should contain the obtained equation as a limit,
or one should explain why it is not achieved. Such universal limit equations
are well-known in various fields of physics. For example, the Navier–Stokes
equation in fluid dynamics is an universal limit for dynamics of simple gas
described by the Boltzmann equation, the Korteweg–De-Vries equation is
universal in the description of the dispersive dissipative nonlinear waves, etc.

The phenomenon of invariant manifold explosion in driven open systems
is demonstrated on the example of dumbbell models of dilute polymeric so-
lutions [109]. This explosion gives us a possible mechanism of drag reduction
in dilute polymeric solutions [110].

Suppose that for the kinetic system the approximate invariant manifold
has been constructed and the slow motion equations have been derived. Sup-
pose that we have solved the slow motion system and obtained xsl(t). We
consider the following two questions:

– How well does this solution approximate the true solution x(t) given the
same initial conditions?

– How is it possible to use the solution xsl(t) for its refinement without
solving the slow motion system (or its modifications) again?
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These two questions are interconnected. The first question states the prob-
lem of the accuracy estimation. The second one states the problem of post-
processing [348–351]. We propose various algorithms for post-processing and
accuracy estimation, and give an example of application.

Our collection of methods and algorithms can be incorporated into re-
cently developed technologies of computer-aided multiscale analysis which
enable “level jumping” between microscopic and macroscopic (system) lev-
els. It is possible both for the traditional technique based on transition from
microscopic equations to macroscopic equations and for the “equation-free”
approach [107]. This approach developed in recent work [108], when success-
ful, can bypass the derivation of the macroscopic evolution equations when
these equations conceptually exist but are not available in closed form. The
mathematics-assisted development of a computational superstructure may
enable alternative descriptions of the problem physics (e.g. Lattice Boltzmann
(LB), kinetic Monte- Carlo (KMC) or Molecular Dynamics (MD) microscopic
simulators, executed over relatively short time and space scales) to perform
systems level tasks (integration over relatively large time and space scales,
coarse bifurcation analysis, optimization, and control) directly. It is possible
to use macroscopic invariant manifolds in this environment without explicit
equations.

1.2 Content and Reading Approaches

The present book comprises sections of two kinds. The first includes the sec-
tions that contain basic notions, methods and algorithms. Another group of
sections entitled “Examples” contain various case studies where the meth-
ods are applied to specific equations. Exposition in the “Examples” sections
is not as consequent as in the basic sections. Most of the examples can be
read more or less independently. Logical connections between chapters are
presented in Fig. 1.3.

The main results and notions presented in the book are as follows. In this
Chap. 1 we present the main ideas, references, abstracts of chapters, and the
possible reading plans.

Chapter 2 is the second introduction, it introduces the main equations
of kinetics: the Boltzmann equation, equations of chemical kinetics, and the
Fokker–Planck equation. The main methods of reduction for these equations
are also discussed: from the Chapman–Enskog and Hilbert methods to qua-
siequilibrium and quasi-steady state approximations.

In Chap. 3 we write down the invariance equation in the differential form.
This equation gives the necessary conditions of invariance of a manifold im-
mersed into the phase space of a dynamical system. In order to estimate
the discrepancy of an ansatz manifold, the defect of invariance if defined.
The introduction of this defect of invariance requires a projector field. These
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Fig. 1.3. Logical connections between chapters. All the chapters depend on
Chap. 3. For understanding examples and problems it may be useful (but not
always necessary) to read Chap. 2

notions, defect of invariance and projector field, as well as the invariance
equation play the central role in the whole book.

Chapter 4 is devoted to the definition of slowness of a positively invariant
manifold. The equation of motion of the manifold (the “film”) immersed into
the phase space of the dynamical system is discussed (equation for the film
motion). A slow positively invariant manifold is defined as a stable fixed point
for this motion. The projector field introduced in Chap. 3 is crucial for the
definition of the stability.

The main thermodynamic structures, the entropy, the entropic scalar
product, quasiequilibrium, and the thermodynamic projector, are introduced
in Chap. 5. The quasiequilibrium manifold is the manifold of conditional en-
tropy maxima for given values of macroscopic variables. These values para-
metrize this manifold. Most of the works on nonequilibrium thermodynamics
deal with corrections to quasiequilibrium approximations, or with applica-
tions of these approximations (with or without corrections). This viewpoint
is not the only possible, but it proves very efficient for the construction of a
variety of useful models, approximations and equations, as well as methods
to solve them.

The entropic scalar product is generated by the second differential of the
entropy. It endows the space of states by the unique distinguished Riemannian
structure. The thermodynamic projector is the operator which transforms
the arbitrary vector field equipped with the given Lyapunov function into a
vector field with the same Lyapunov function. Uniqueness of such projector
is proved.
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In Chap. 5 we start the series of examples for the Boltzmann equations.
First, we analyze the defect of invariance for the Local Maxwellian manifold:
the manifold of the locally equilibrium distributions. Second, we present the
quasi-equilibrium closure hierarchies for the Boltzmann equation. In 1949,
Harold Grad [201] extended the basic assumption behind the Hilbert and
Chapman–Enskog methods (the space and time dependence of the normal
solutions is mediated by the five hydrodynamic moments). A physical ratio-
nale behind the Grad moment method is an assumption of the decomposition
of motion. (i) During the time of order τ , a set of distinguished moments M ′

(which include the hydrodynamic moments and a subset of higher-order mo-
ment) does not change significantly as compared to the rest of the moments
M ′′ (the fast evolution). (ii) Towards the end of the fast evolution, the values
of the moments M ′′ become unambiguously determined by the values of the
distinguished moments M ′. (iii) On the time of order θ 	 τ , dynamics of
the distribution function is determined by the dynamics of the distinguished
moments while the rest of the moments remains to be determined by the
distinguished moments (the slow evolution period).

An important generalization of the Grad moment method is the con-
cept of quasiequilibrium approximations. The quasiequilibrium distribution
function for a set of distinguished moments M ′ maximizes the entropy den-
sity S for fixed M ′. The quasiequilibrium manifold is the collection of the
quasiequilibrium distribution functions for all admissible values of M . The
quasiequilibrium approximation is the simplest and very useful (not only in
the kinetic theory itself) implementation of the hypothesis about time sepa-
ration.

The quasiequilibrium approximation does not exist if the highest order
moment is an odd polynomial of velocity (therefore, there exists no quasi-
equilibrium for thirteen Grad’s moments). The Grad moment approxima-
tion is the first-order expansion of the quasiequilibrium around the local
Maxwellian. An explicit method of constructing of approximations (the Tri-
angle Entropy Method) is developed for strongly nonequilibrium problems
of Boltzmann–type kinetics, i.e. when standard moment variables are insuffi-
cient. This method enables one to treat any complicated nonlinear functionals
that fit the physics of a problem (such as, for example, rates of processes) as
new independent variables.

The method is applied to the problem of derivation of hydrodynamics
from the Boltzmann equation. New macroscopic variables are introduced
(moments of the Boltzmann collision integral, or collision moments). They
are treated as independent variables rather than as infinite moment series.
This approach gives the complete account of the rates of scattering processes.
Transport equations for scattering rates are obtained (the second hydrody-
namic chain), similar to the usual moment chain (the first hydrodynamic
chain). Using the triangle entropy method, three different types of macro-
scopic description are considered. The first type involves only moments of



14 1 Introduction

distribution functions, and the results coincide with those of the Grad method
in the Maximum Entropy version. The second type of description involves
only collision moments. Finally, the third type involves both the moments
and the collision moments (the mixed description). The second and the mixed
hydrodynamics are sensitive to the choice of the collision model. The second
hydrodynamics is equivalent to the first hydrodynamics only for Maxwell
molecules, and the mixed hydrodynamics exists for all types of collision mod-
els excluding Maxwell molecules. Various examples of the closure of the first,
of the second, and of the mixed hydrodynamic chains are considered for the
hard spheres model. It is shown, in particular, that the complete account of
scattering processes leads to a renormalization of transport coefficients.

We apply the developed method to a classical problem: determination of
molecular dimensions (as diameters of equivalent hard spheres) from experi-
mental viscosity data. It is the third example in Chap. 5.

The first non-perturbative method for solution of the invariance equation
is developed in Chap. 6. It is the Newton method with incomplete lineariza-
tion. The incomplete linearization means that in the Newton–type iteration
for the invariance equation we do not use the whole differential of the right-
hand side of the invariance equation: the differential of the projector field
is excluded. This modification of the Newton method leads to selection of
the slowest invariant manifold. The series of examples for the Boltzmann
equations is continued in this chapter. The non-perturbative correction to
the Local Maxwellian manifold is constructed, and the equations of the high-
order (the post–Navier–Stokes) hydrodynamics are obtained.

In Chap. 5 we use the second law of thermodynamics – existence of the
entropy – in order to equip the problem of constructing slow invariant man-
ifolds with a geometric structure. The requirement of the entropy growth
(universally, for all the reduced models) significantly restricts the form of the
thermodynamic projectors. In Chap. 7 we introduce a different but equally
important argument – the micro-reversibility (T -invariance), and its macro-
scopic consequences, the Onsager reciprocity relations. The main idea in this
chapter is to use the reciprocity relations for the fast motions. In order to ap-
preciate this idea, we should mention that the decomposition of motions into
fast and slow is not unique. Requirement of the Onsager reciprocity relations
for any equilibrium point of fast motions implies the selection (filtration) of
the fast motions. We term this the Onsager filter. Equilibrium points of fast
motions are all the points on manifolds of slow motions. The formalism of
the quasi-chemical representation is one of the most developed means of mod-
elling, it makes it possible to “assemble” complex processes out of elementary
processes. This formalism is very natural for representation of the reciprocity
relations. And again, the Example to this chapter continues the “Boltzmann
series”. It is the quasi-chemical representation and the self-adjoint (i.e. On-
sager) linearization of the Boltzmann collision operator in the slow, but not
obligatory equilibrium states.
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In Chap. 8 a new class of exactly solvable problems in nonequilibrium
statistical physics is described. The systems that allow the exact solution of
the reduction problem are presented. Up to now, the problem of the exact
relationship between kinetics and hydrodynamics remains unsolved. All the
methods used to establish this relationship are not rigorous, and involve ap-
proximations. In this chapter, we consider situations where hydrodynamics is
the exact consequence of kinetics, and in that respect, a new class of exactly
solvable models of statistical physics has been established. The Chapman–
Enskog method is treated as the Taylor series expansion approach to solving
the appropriate invariance equation. A detailed treatment of the classical
Chapman–Enskog derivation of hydrodynamics is given in the framework of
Grad’s moment equations. Grad’s systems are considered as the minimal ki-
netic models where the Chapman–Enskog method can be studied exactly,
thereby providing the basis to compare various approximations in extend-
ing the hydrodynamic description beyond the Navier–Stokes approximation.
Various techniques, such as the method of partial summation, the Padé ap-
proximants, and the invariance principle are compared both in linear and
nonlinear situations.

In Chap. 9 the “large stepping” relaxation method for solution of the
invariance equation is developed. The relaxation method is an alternative to
the Newton iteration method described in Chap. 6: The initial approximation
to the invariant manifold is moved with the film extension of the dynamics
described in Chap. 4. The proposed step in time for the stepwise solution
of the film extension equation is the maximal possible step that does not
violate the thermodynamic conditions. In the examples, the idea of the large
stepping is applied to the Fokker–Planck equation and to the initial layer
problem for the Boltzmann equation. The obtained approximate solutions of
the initial layer problem are compared to the exact solutions.

How can we represent invariant manifolds numerically? How can we use
the numerical representation in all the methods for invariant manifold re-
finement? Chapter 10 is devoted to answering these questions. A grid-based
version of the method of invariant manifold is developed. The most essential
element of this chapter is the systematic consideration of a discrete analogue
of the slow (stable) positively invariant manifolds for dissipative systems, in-
variant grids. The invariant grid is defined as a mapping of finite-dimensional
grids into the phase space of a dynamic system. We define the differential op-
erators on the grid as difference operators, hence, it is possible to define
the tangent space at each point of the grid mapped into the phase space. If
the tangent space is constructed, then the invariance equation can be writ-
ten down. We describe the Newton method and the relaxation method for
solution of this discrete analogue of the invariance equation. Examples for
this chapter are taken from the chemical kinetics. One attractive feature of
two-dimensional invariant grids is the possibility to use them as a screen, on
which one can display different functions and dynamic of the system.
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P. and T. Ehrenfest suggested in 1911 a model of dynamics with a coarse-
graining of the original conservative system in order to introduce irreversibil-
ity [15]. The Ehrenfests considered a partition of the phase space into small
cells, and they have suggested combining the motions of the phase space en-
semble due to the Liouville equation with coarse-graining “shaking” steps –
averaging of the density of the ensemble over the phase cells. This general-
izes to the following: combination of the motion of the phase ensemble due
to microscopic equations with returns to the quasiequilibrium manifold while
preserving the values of the macroscopic variables. In Chap. 11 we develop the
method of natural projector, a formalism of nonequilibrium thermodynamics
based on this generalization.

The method of natural projector can be considered as a development of
the ideas of the Hilbert method from the theory of the Boltzmann equation.
The main new element in the method of natural projector with respect to the
Hilbert method is the construction of the macroscopic equations from the
microscopic equations, not just a “normal solution” to a microscopic equation.
The obtained macroscopic equations contain one unknown parameter, the
time between coarse-graining (shaking) steps (τ). This parameter can be
obtained from the experimental data, or from independent microscopic or
phenomenological consideration.

In the first example to this chapter the microscopic dynamics is given
by the one-particle Liouville equation. The set of macroscopic variables is
density, momentum density, and the density of average kinetic energy. The
correspondent quasiequilibrium distribution is the local Maxwell distribu-
tion. For the hydrodynamic equations, the zeroth (quasiequilibrium) approx-
imation is given by the Euler equations of compressible nonviscous fluid.
The next order approximation gives the Navier–Stokes equations which have
dissipative terms. Higher-order approximations to the hydrodynamic equa-
tions, when they are derived from the Boltzmann kinetic equation by the
Chapman–Enskog expansion (so-called Burnett approximation), are prone
to various difficulties, in particular, they exhibit instability of sound waves at
sufficiently short wave length (see Chap. 8). Here we demonstrate how model
hydrodynamic equations, including the post–Navier–Stokes approximations,
can be derived on the basis of the coarse-graining idea, and find that the
resulting equations are stable, contrary to the Burnett equation.

In the second example the fluctuation-dissipation formula is derived by
the method of natural projector and is illustrated by the explicit computation
for the exactly solvable McKean kinetic model [285]. It is demonstrated that
the result is identical, on the one hand, to the sum of the Chapman–Enskog
expansion, and, on the other hand, to the exact solution of the invariance
equation.

In Chap. 12 the general geometrical framework of nonequilibrium ther-
modynamics is developed. It is the generalization of the method of natural
projector (Chap. 11) to large steps in time. The notion of macroscopically
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definable ensembles is introduced. The thesis about macroscopically defin-
able ensembles is suggested. This thesis should play the same role in the
nonequilibrium thermodynamics, as the Church–Turing thesis in the theory
of computability. The primitive macroscopically definable ensembles are de-
scribed. These are ensembles with macroscopically prepared initial states.

The method for computing trajectories of primitive macroscopically de-
finable nonequilibrium ensembles is elaborated. These trajectories are repre-
sented as sequences of deformed equilibrium ensembles and simple quadratic
models between them. The primitive macroscopically definable ensembles
form a manifold in the space of ensembles. We call this manifold the film of
nonequilibrium states. The equation for the film and the equation for the en-
semble motion on the film are written down. The notion of the invariant film
of non-equilibrium states, and the method of its approximate construction
transform the problem of nonequilibrium kinetics into a series of problems of
equilibrium statistical physics. The developed methods allow us to solve the
problem of macro-kinetics even when there are no autonomous equations of
macro-kinetics.

The slow invariant manifold for a closed system has been found. What
next? Chapter 13 gives the answer to this question. The theory of invari-
ant manifolds is developed for weakly open systems. In the first example the
method of invariant manifold for driven systems is developed for a derivation
of a reduced description in kinetic equations of dilute polymeric solutions.
The method applies to any models of polymers and is consistent with basic
physical requirements: frame invariance and dissipativity of resulting consti-
tutive equation. It is demonstrated that this reduced description becomes
universal in the limit of small Deborah and Weissenberg numbers, and it is
represented by the revised Oldroyd 8 constants constitutive equation for the
polymeric stress tensor. This equation differs from the classical Oldroyd 8
constants constitutive equation by one additional term. Coefficients of this
constitutive equation are expressed in terms of the microscopic parameters
of the polymer model. A systematic procedure of corrections to the revised
Oldroyd 8 constants equations is developed. Results are tested with simple
flows.

In the second example in this chapter the derivation of macroscopic equa-
tions from the simplest dumbbell models is revisited. It is demonstrated that
the onset of the macroscopic description is sensitive to the flows. For the
FENE-P model it is shown that there is a possibility of “explosion” of the
Gaussian manifold: with a small initial deviation, solution of the kinetic equa-
tion very quickly deviate from the manifold, and then slowly come back to
the stationary point located on the Gaussian manifold. Nevertheless, the
Gaussian manifold remains invariant. Some consequences of these observa-
tions are discussed. A new class of closures is introduced, the kinetic mul-
tipeak polyhedra. Distributions of this type are expected in kinetic models
with multidimensional instability as universally, as the Gaussian distribution
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appears for stable systems. The number of possible relatively stable states of
a nonequilibrium system grows as 2m, and the number of macroscopic para-
meters is of the order mn, where n is the dimension of configuration space,
and m is the number of independent unstable directions in this space. The
elaborated class of closures and equations pretends to describe the effects of
so-called “molecular individualism”.

How can we prove that all the attractors of a infinite-dimensional system
belong to a finite-dimensional manifold? How can we estimate the dimension
of this manifold? There are two methods for such estimations, discussed in
Chap. 14. First, if we find that k-dimensional volumes are contracted due
to dynamics, then (after some additional technical steps concerning exis-
tence of the positively–invariant bounded set and uniformity of the k-volume
contraction on this set) we can state that the Hausdorff dimension of the
maximal attractor is less, then k. Second, if we find the representation of
our system as a nonlinear kinetic system with conservation of supports of
distributions, then (again, after some additional technical steps) we can state
that the asymptotics is finite-dimensional. This conservation of support has
a quasi-biological interpretation, the inheritance (if a gene is not presented
in an isolated population without mutations, then it cannot appear in time).
The finite-dimensional asymptotics demonstrates the effects of “natural” se-
lection.

The post-processing (Chap. 15) is a very simple, but attractive idea. In
the method of invariant manifold we improve the whole manifold on each
iteration. If we need only one or several solutions, this whole manifold may
be too big for our goals, and we can restrict our activity by refinement of a
given solution: a curve instead of a multi-dimensional manifold. The classical
Picard iteration for a solution of a differential equation gives the simplest
post-processing. Various forms of post-processing are presented. In the ex-
ample to this chapter the method which recognizes the onset and breakdown
of the macroscopic description in microscopic simulations is presented. The
method is based on the invariance of the macroscopic dynamics relative to the
microscopic dynamics, and it is demonstrated for a model of dilute polymeric
solutions where it decides switching between Direct Brownian Dynamics sim-
ulations and integration of constitutive equations.

The list of cited literature is by no means complete although we spent
effort in order to reflect at least the main directions of studies related to
computations of the invariant manifolds. We think that this list is more or
less exhaustive in the second-order approximation.

There are many different roads of reading this book. Chapter 3 is nec-
essary for reading all of the other chapters, as is shown in the flowchart
(Fig. 1.3). Here we propose several possible roads. This is not the exhaustive
list, and everybody can invent his own road.

The short formal road: Chap. 3, Sects.: 4.1, 5.1–5.3, 6.1, 7.1, 9.1, 10.1, 11.1,
13.1–13.4, 15.1. If you are ready to look at the formal ordinary differential
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equation dx
dt = J(x), x ∈ U, and to imagine in this form all the kinetic

equations, from the Boltzmann equation to the Fokker–Planck equation, then
this formal road is the best way to start. After that, you can choose various
examples and chapters. Before reading the examples sections, it may be useful
to look through Chap. 2.

The long formal road: Chaps. 3, 4, Sects.: 5.1–5.3, 6.1, 7.1, 9.1, 10.1, 11.1,
13.1–13.4, 14.1, 14.2, 15.1.

The short Boltzmann road: Chap. 2 (including chemical kinetics), Chap. 3,
Sects. 5.1–5.3, 5.5, 6.1–6.3, Chap. 8. This road gives the invariance equation,
the Newton method with incomplete linearization for solution of this equa-
tion, the theory of Local Maxwellian manifold, and the application of this
method to correction of these manifolds. Chapter 8 adds the exact solutions
of the reduction problem and the test of the developed methods on these
solutions.

The long Boltzmann road: Chap. 2 (including chemical kinetics), Chap. 3,
Sects. 5.1–5.3, 5.5, 5.6, 5.7, Chaps. 6–8, Sects. 4.1, 9.1, 9.3. Exhaustive read-
ing: everything concerning the Boltzmann equation.

The nonequilibrium thermodynamic road: Chap. 2, Chap. 3, Sects. 4.1,
5.1–5.4, 7.1, 9.1, Chaps. 11, 12, 14. This road can be naturally supplemented
by some sections from the Boltzmann roads.

The short Grad road: Chaps. 2, 3, Sects. 5.1–5.6, 6.1, Chap. 8.
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