
3 Invariance Equation in Differential Form

Definition of invariance in terms of motions and trajectories assumes, at least,
existence and uniqueness theorems for solutions of the original dynamical
system. This prerequisite causes difficulties when one studies equations rel-
evant to physical and chemical kinetics, such as, for example, equations of
hydrodynamics. Nevertheless, there exists a necessary differential condition
of invariance: The vector field of the original dynamic system touches the
manifold at every point. Let us write down this condition in order to set up
the notation.

Let E be a linear space, U (the phase space) be a domain in E, and let a
vector field J : U → E be defined in U . This vector field defines the original
dynamical system,

dx
dt

= J(x), x ∈ U . (3.1)

In the sequel, we consider submanifolds in U which are parameterized by
a given set of parameters. Let a linear space of parameters L be defined, and
let W be a domain in L. We consider differentiable maps, F : W → U , such
that, for every y ∈ W , the differential of F , DyF : L → E, is an isomorphism
of L on a subspace of E. That is, F are the manifolds, immersed in the phase
space of the dynamical system (3.1), and parametrized by the parameter set
W .

Remark: One never discusses the choice of norms and topologies is such a
general setting. It is assumed that the corresponding choice is made appro-
priately in each specific case.

We denote Ty the tangent space at point y, Ty = (DyF )(L). The differ-
ential condition of invariance has the following form: For every y ∈ W ,

J(F (y)) ∈ Ty . (3.2)

Let us rewrite the differential condition of invariance (3.2) in the form of a
differential equation. In order to achieve this, one needs to define a projector
Py : E → Ty for every y ∈ W . Once a projector Py is defined, then condition
(3.2) takes the form:

∆y = (1 − Py)J(F (y)) = 0 . (3.3)
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Obviously, by P 2
y = Py we have, Py∆y = 0. We refer to the function ∆y as the

defect of invariance at point y. The defect of invariance will be encountered
often in what follows.

Equation (3.3) is the first-order differential equation for the function F (y).
Projectors Py should be tailored to the specific physical features of the prob-
lem at hand, and separate chapter below will be devoted to their construction.
There we shall demonstrate how to construct a projector, P (x, T ) : E → T ,
given a point x ∈ U and a specified subspace T . We then set Py = P (F (y), Ty)
in equation (3.3)1.

There are two possible meanings of the notion “approximate solution of
the invariance equations” (3.3):

1. Approximation of the solution;
2. The map F with small defect of invariance (the right hand side approxi-

mation).

The approximation of the first kind requires theorems about existence
of solutions for the initial system (3.1). In order to find this approximation
one should estimate the deviations of exact solutions of (3.1) from the ap-
proximate invariant manifold. The second kind of approximations does not
require the existence of solutions. Moreover, the manifold with sufficiently
small defect of invariance can serve as a slow manifold by itself. The defect
of invariance should be small in comparison with the initial vector field J .

So, we shall accept the concept of approximate invariant manifold (the
manifold with small defect of invariance) instead of the approximation of
the invariant manifold (see also [25,349] and other works about approximate
inertial manifolds). Sometime these approximate invariant manifolds provide
approximations of the invariant manifolds, sometimes not, but it is additional
and often difficult problem to make a distinction between these situations.
In addition to the defect of invariance, Jacobians, the differentials of J(x),
play the key role in the analysis of motion separation into fast and slow.
Some estimations of errors of this separation will be presented below in the
subsection devoted to post-processing.

1 One of the main routes to define the field of projectors P (x, T ) is to make use of
a Riemannian structure. To this end, one defines a scalar product in E for every
point x ∈ U , that is, a bilinear form 〈p|q〉x with a positive definite quadratic form,
〈p|p〉x > 0, if p �= 0. A good candidate for such a scalar product is the bilinear
form defined by the negative second differential of the entropy at the point x,
−D2S(x). As we demonstrate later in this book, close to equilibrium this choice
is essentially the only correct one. However, far from equilibrium, a refinement
is required in order to guarantee the thermodymamicity condition, ker Py ⊂
ker(DxS)x=F (y), for the field of projectors, P (x, T ), defined for any x and T , if
T �⊂ ker DxS. The thermodymamicity condition provides the preservation of the
type of dynamics: if dS/ dt > 0 for initial vector field (3.1) at point x = F (y),
then dS/ dt > 0 at this point x for the projected vector field Py(J(F (y))), too.
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Our discussion is focused on nonperturbative methods for computing in-
variant manifolds, but it should be mentioned that in many applications, the
Taylor series expansion is in use, and sometimes works quite well. The main
idea is the continuation of the slow manifold with respect to a small parame-
ter: Let our system depend on the parameter ε, and let a manifold of steady
states and fibers of motions towards these steady states exist for ε = 0, for
example

ẋ = εf(x, y); ẏ = g(x, y) . (3.4)

For ε = 0, the value of the (vector) variable x is a vector of conserved quan-
tities. Let for every x the equation of fast motion, ẏ = g(x, y), be globally
stable: Its solution y(t) tends to the unique (for given x) stable fixed point yx.
If the function g(x, y) meets the conditions of the implicit function theorem,
then the graph of the map x �→ yx forms a manifold Ω0 = {(x, yx)} of steady
states. For small ε > 0 we can look for the slow manifold in a form of a series
in powers of ε:

Ωε = {(x, y(x, ε)}, y(x, ε) = yx + εy1(x) + ε2y2(x) + . . . .

The fibers of fast motions can be constructed in a form of a power series too
(the zero term is the fast motion ẏ = g(x, y) in the affine planes x = const).
This analytic continuation with respect to the parameter ε for small ε > 0 is
studied in the Fenichel’s “Geometric singular perturbation theory” [352,353]
(recent applications to chemical kinetics see in [95]). As it was mentioned
above, the first successful application of such an approach for the construction
of a slow invariant manifold in the form of Taylor series expansion in powers
of small parameter ε was the Chapman-Enskog expansion [70].

It is wellknown in various applications that there are many different ways
to introduce a small parameter into a system, there are many ways to include
a given system in a one-parametric family. Different ways of specification of
such a parameter result in different definitions of slowness of positively in-
variant manifold. Therefore it is desirable to study the notion of separation of
motions without such an artificial specification. The notion of slow positively
invariant manifold should be intrinsic. At least we should try to invent such
a notion.


	3 Invariance Equation in Differential Form



