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results about them. The function field K(X) is a subfield of K(X/Y ); one of the
important questions is: when are K(X) and K(X/Y ) equal, in other words, when
can all formal-rational functions on X/Y be extended to X? Many of the theorems
state suitable conditions on X and Y under which K(X) = K(X/Y ).

The other chapters in the second part deal with selected topics from formal
geometry such as Lefschetz theory, formal functions on homogeneous spaces and
quasi-lines on projective varieties.

The stated prerequisite is [1] or a similar text, but otherwise the book is self-
contained. It is suitable for advanced graduate students or researchers in algebraic
geometry or complex geometry.

Reference

1. R. Hartshorne, Algebraic geometry, corr. 3rd printing, Graduate Texts in Mathematics 52
(Springer, New York/Heidelberg/Berlin, 1983).

University of Manchester Gábor Megyesi
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1. Introduction

Statistical mechanics is the branch of theoretical physics which endeavours to
explain the macroscopic behaviour of natural systems in terms of the microscopic
interactions between their fundamentals constituents. It comes in two major flavors:
equilibrium and non-equilibrium. At equilibrium, only time-asymptotic states are
relevant to the macroscopic description, and consequently the time-evolution of the
system plays no role. As a result, many elegant and general results can be estab-
lished, which place equilibrium statistical mechanics on a very solid foundational
and operational basis. Non-equilibrium statistical mechanics, especially for systems
far-off equilibrium, tells a fairly different story. For such systems, the dynamics does
play a vital role, and the task of establishing general principles is consequently a
much harder and way less accomplished one. One of the few powerful and general
ideas which help to unravel the complexities of non-equilibrium systems is the notion
of a separation between ‘slow’ and ‘fast’ degrees of freedom. Loosely speaking,
the former describe the large-scale, macroscopic dynamics, whereas the latter are
associated with microscopic fluctuations around the slow modes. Of course, the
‘slow/fast’ dichotomy is a rather fuzzy notion, and one which necessitates quantitat-
ive specification in order to acquire genuine scientific status. One such quantitative
underpinning is provided by the theory of slow invariant manifolds, that is,
submanifolds of the system phase-space which act as attractors of the long-time
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dynamics of the system. Providing criteria to identify, construct and classify the
slow invariant manifolds of complex systems, thereby offering a quantitative tool
for the investigation of non-equilibrium statistical systems, is a task of the utmost
importance in modern non-equilibrium statistical mechanics. This task makes up
the central core of the very remarkable monograph by Gorban and Karlin.

2. Finding the manifold: the invariance condition

Let us consider a dynamical system described by a state variable x belonging to a
generic N -dimensional phase-space U . Let the evolution of the system be described
by the following first-order initial value problem:

dx

dt
= J(x); (1)

x(0) = x0. (2)

The vector field J(x) generates the motion in a phase space U . For many
(dissipative) systems, this motion is such that after a rapid transient, and regardless
of the initial position x0, the trajectory x(t) ‘lands’ into a lower-dimensional
manifold Ω ∈ U , never to quit it again for the rest of its lifetime.

The latter ‘land-and-stay’ condition is precisely what defines the invariance of
the manifold Ω. This very qualitative description alone already highlights the
fundamental importance of low-dimensional invariant manifolds: they permit us
to describe the time-evolution of complex systems in terms of many fewer variables
than those needed to characterize the full phase-space U . In other words, the
manifold is where the system spends most of its time, and is consequently where
relevant things happen. It is a general and profound trait of complex dynamical
systems that relevant phenomena take place only in a very minute portion of
the complete phase-space available to them. Spotting that tiny relevant portion
is therefore a task of the utmost importance.

The next question is: how do we identify the invariant manifolds associated with
the dynamical system defined by the equation (1)? To this purpose, let us, for
any point x of Ω, split the phase-space onto the Ω-tangent space, TΩ, and its
complement. Any velocity vector J is hence split into a parallel component, J‖,
running along TΩ, and J⊥, spanning the complementary subspace. This splitting is
formally performed via a projection operator P , such that:

J‖ = PJ, J⊥ = QJ,

where Q = 1 − P is the co-projector. By acting with P,Q on both sides of 1, we
obtain a reduced vector field tangent to manifold PJ(x) and a vector field that is
transversal to manifold QJ(x). The ‘land-and-stay’ condition implies that should
a point x belong to a manifold at a certain time t0 > 0, it will stay thus at any
subsequent time t > t0. This requires its time derivative to be identically zero at
all times; that is:

∆(x) ≡ QJ(x) = 0, (3)

where ∆(x) is the so-called defect of invariance, a self-explanatory name indeed.
Thus, the condition ∆(x) = 0 defines the invariant manifold. Equation (3) provides
a nice mathematical formulation of the invariance property, and yet a purely formal
one, until an operational procedure is supplied to construct the projector P . On
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the way towards this constructive task, it is convenient to formulate the problem
in differential form. To this purpose, let us parameterize the manifold Ω through a
set of coordinates y ∈ W , such that each point x on the manifold is an image of
some y ∈ W . The coordinate mapping F is assumed to be an immersion, meaning
by this that its differential DF is an isomorphism onto TΩ. Application of the chain
rule to dx‖/dt = PJ(x) provides the induced dynamics in W ; that is:

dy

dt
= (DF )−1 PJ(F (y)), (4)

where DF denotes the Jacobian of J at point x. Its inverse (DF )−1 is then defined
on the tangent space Tx=F (y), the fiber bundle associated with the manifold Ω.

The standard procedure for identifying lower-dimensional invariant manifolds is
to perform a spectral analysis of this inverse Jacobian operator (simple eigenvectors
corresponding to one-dimensional manifolds).

This is where the fascinating and remarkable story of this book takes off.
Indeed, besides spectral analysis, the book discloses a whole array of powerful

non-perturbative techniques to solve the invariance equation, often with no need
to perform any spectral analysis at all. Besides its conceptual appeal, this is far
from being a purely academic achievement, since it is well known that computing
eigenvalues/vectors in high-dimensional spaces is a very intensive task, which holds
back many important applications in modern science and engineering. The book
presents three general classes of methods:

(i) iteration methods,
(ii) relaxation methods, and
(iii) natural projector methods,

upon which we now briefly comment.

2.1. Iteration methods

Iteration methods tackle the solution of the invariance equation QJ(x) = 0
by Newton iterations. Both the vector field J(F (y)) and the co-projector Q =
1−P (F (y)) depend on the unknown map F , so that one is faced with a non-linear
functional problem. At each iteration, the first-order (linear in F ) approximation for
J(F (y)) is used, whereas P is taken at zero-th order (constant). This incomplete
linearization leads to the slowest invariant manifold, namely the asymptotically
stable fixed-point of the film extension. This is a highly non-trivial generalization of
the standard notion of linear manifolds associated with leading non-zero eigenvalues
of the Jacobian. As is always the case with Newton’s method, convergence hinges
on the smoothness and regularity of the inverse Jacobian, but practice shows that
very often just a few iterations suffice to provide a fairly acceptable approximation.

2.2. Relaxation methods

Relaxation methods work in the spirit of ‘false-transient’ or ‘fictitious-time’
dynamics. These methods are based on the step-wise solution of the differential
equation dF (y)/dt = ∆(y), the so-called film-extension of the dynamics. These
methods are very well suited to numerical implementations. In fact, since only the
steady-state condition ∆ = 0 is of interest, there is no need for them to converge
along a realistic physical trajectory. As a result, fictitious dynamics can be designed
and efficiently simulated on a computer, typically by marching towards their
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attractor in much larger steps than those allowed along the physical trajectory,
on account of stability constraints. This type of procedure has become quite
popular in modern computational statistical mechanics, two notable examples
being the Car–Parrinello method for quantum molecular systems, and the lattice
Boltzmann method for classical fluid flows.

Of course, here too, things can go wrong if one gets too eager and makes the
fictitious dynamics depart too drastically from the physical dynamics. A powerful
remedy against these problems, and one for which the authors deserve wide credit,
is the discovery, development and application of system-tailored entropies which
secure the stability of the fictitious dynamics under quite general conditions. Among
others, this has produced the entropic lattice Bolzmann method, possibly the most
powerful family of lattice Boltzmann methods to date.

2.3. Natural projection methods

Finally, the natural projector method is based on the idea of projecting the
dynamics, not on the manifold itself, but rather in terms of a pre-assigned subset of
coarse-grained macroscopic variables X = Pnx, where Pn is the natural projector.
Typical examples are the density, velocity and temperature of a fluid flow, as
obtained by integration of the Boltzmann distribution function f(r, v, t) over the
suitable velocity degrees of freedom. The choice of the subset of natural observables
is usually dictated by physical intuition in the first place, mathematical back-up —
for all its importance — coming only in a second stage. Typical examples in point
are Ehrenfest’s coarse-graining, and the Hilbert method for solving the Boltzmann
equation. The success of this approach depends crucially on a ‘good’ choice of the
coarse-grained variables, where ‘good’ means maximal insensitivity to the back-
reaction of the decimated degrees of freedom (the ‘fast ones’). This insensitivity is
a direct measure of the robustness/persistence of the invariant manifold, and plays
a paramount role in all practical applications of the method.

Each of three methods discussed above opens up countless fascinating connections
with many hot topics of modern statistical mechanics and applied mathematics,
such as the renormalization group versus Taylor (or Padé) series expansions for
the solution of the invariance equation, entropy minimization methods, and many
others. It is obviously impossible to to justice to so much beautiful (and thorough)
material in just a few pages; thus we shall move on to the second part of the book.

3. What to do with the manifold: ideas in action

The second part of the book is devoted to a very practical and crucial question:
once the manifold has been identified, what do we do with it? Again, the book
provides quite a neat answer: develop models of open systems living in the vicinity
of the manifold. The reader is then exposed to a wide series of modern techniques
and algorithms to estimate and improve the accuracy of the manifold representation
towards the true solution x(t). Among others, this takes her/him into the forefront
of some of the hottest areas of modern applied mathematics, such as computer-aided
multiscale analysis of complex systems and the equation-free approach to coarse-
graining. The great strength and unique feature of the book is the amazing wealth
of practical and concrete examples which truly show ‘ideas in action’ ! Systems as
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diverse as hydrodynamic turbulence, chemical reactions, polymer flows, and even
quantum systems in Wigner’s representation, are all embraced by by the powerful
spectrum of constructive methods presented in the book.

4. Some (friendly) criticism

As noted above, one the most impressive features of this work is its combination
of conceptual depth and practical breadth. Just because of this, it may come as
a slight disappointment that the authors did not try to address quantum many-
body problems and the whole world of (bio)-chemical applications behind them. For
instance, can we use the constructive methods described in this book to advance our
current capabilities to compute the ground state of large molecules, and possibly
their excited states as well? Can we predict transition rates between metastable
states in rugged high-dimensional energy-landscapes such as those associated with
large bio-molecules? Despite their quantum nature, all of these problems can be
cast in the general form of the equation (1), so that an affirmative answer appears
to be plausible. However, rather than a criticism, this is in fact a suggestion for a
new book . . . .

5. Conclusions

The authors are highly regarded experts in the field, and their remarkable mono-
graph makes a very valuable and timely contribution to modern non-equilibrium
statistical mechanics at large. It will be a very useful and enjoyable addition to the
library of graduate students and professionals in the very many disciplines — such
as applied math, physics, chemistry and biology — that share non-equilibrium
statistical mechanics as a common conceptual background for modeling complex
system dynamics at large. In this regard, there is no question that the authors have
truly honored their own definition of the subject as ‘model engineering’. Lucky is
the country where engineers can be trained at such a high level!
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This book supplies a thorough and compact account of the more mathematical
aspects of the theory of extreme values and rare events. It is a revised and greatly
extended version (from 282 pages to 376 pages) of a book first published in 1994.
That first edition was based on lectures given at a 1991 conference on ‘Laws of


