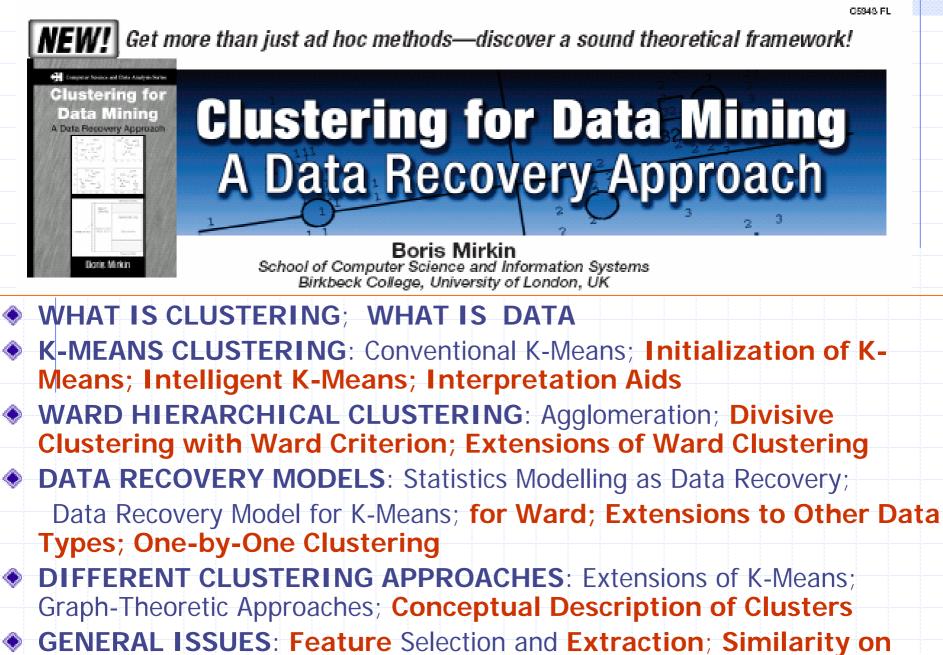
Iterative Extraction (ITEX SEFIT (1990)): Extensions of Principal Component Analysis

Boris Mirkin School of Computer Science

Birkbeck College

University of London

Special Issue: The Computer Journal, **Profiling Expertise and Behaviour**: Deadline 15 Nov. 2006



Subsets and Partitions; Validity and Reliability

Talk's outline

Data model and Pythagorean decomposition Principal component analysis as a data model Extension of PCA to clustering and K-Means Principal cluster analysis for clustering General ITEX strategy Examples of ITEX: hierarchical clustering, additive clustering, box clustering, contingency data aggregation

Pythagorean framework for data analysis methods

Type of Data

- Similarity
- Temporal
- Entity-to-feature
- Co-occurrence
- Model:

Data = Model_Data + Residual *Pythagoras:*

 $Data^2 = Model_Data^2 + Residual^2$

- Type of Model
 - Regression
 - Principal components
 - Clusters

Pearson's PCA: measuring talent

• Given: marks $X_{i\nu}$ (i – student, v – subject)

• Find: talent score z_i and subject loading c_{ν}

•
$$X_{iv} = C_v Z_i + e_{iv}$$
 $L^2 = \sum_{i \in I} \sum_{v \in V} e^{2}_{iv} = \sum_{i \in I} \sum_{v \in V} (x_{iv} - c_v Z_i)^2$

• Solution: $X^T z^* = \mu c^*$, $X c^* = \mu z^*$, max μ

 $\mathbf{P1}$: \mathbf{Z}^* is lc of X columns

• P2: $T(X) = \mu^2 + L^2$, $T(X) = \sum x_{iv}^2 - data scatter$

PCA as a data model

K

 $y_{iv} = \sum c_{kv} z_{ik} + e_{iv},$

Data Model:

minimising L^2 over c and z k=1

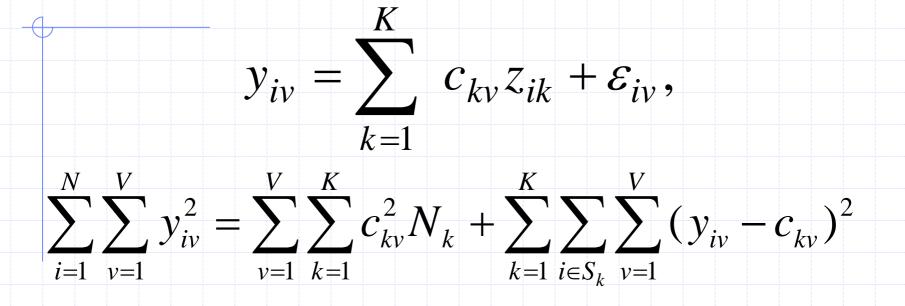
Properties:

[Z, M, C]=svd(Y),

- Thus z and c are lc of X
- Can be done sequentially, one by one

•
$$T(Y) = \mu_1^2 + \mu_2^2 + \dots + \mu_K^2 + L^2$$

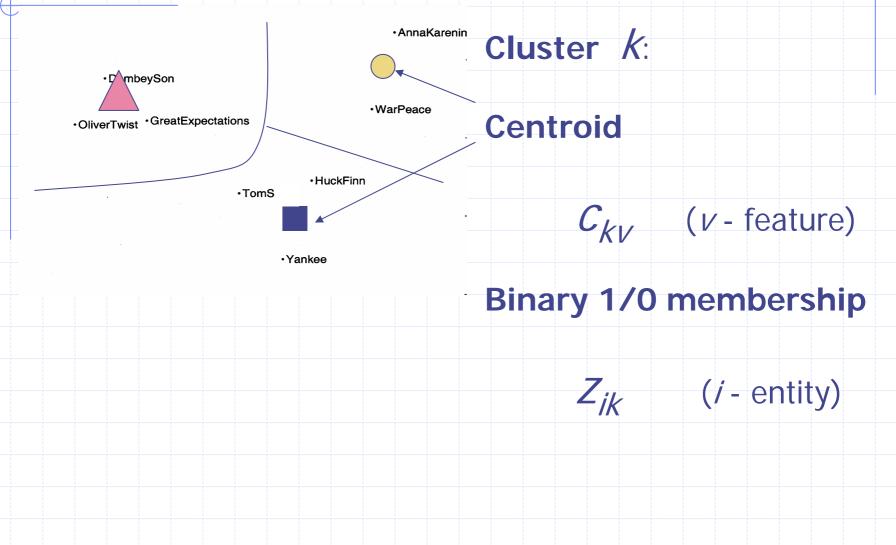
Extension of PCA to clustering



- y data entry, z 1/0 membership
- c cluster centroid, N cardinality

i - entity, *v* - feature /category, *k* - cluster

Representing a partition

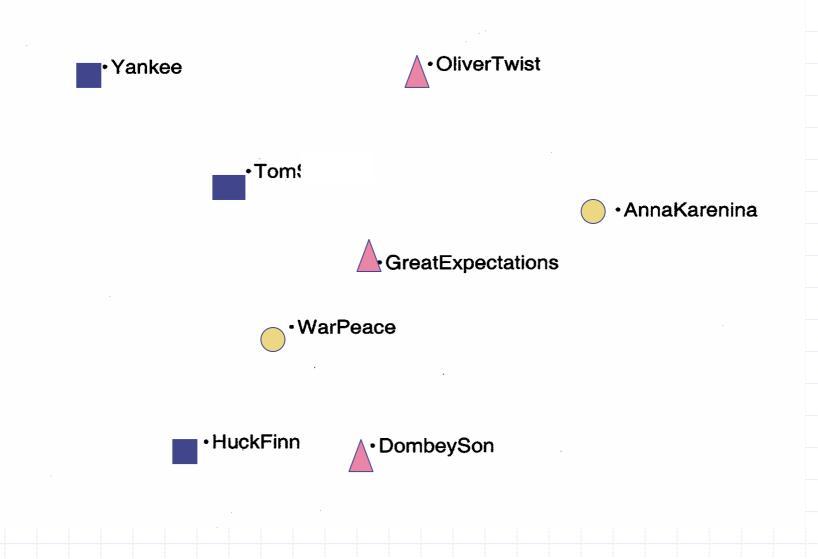


Standardisation of features

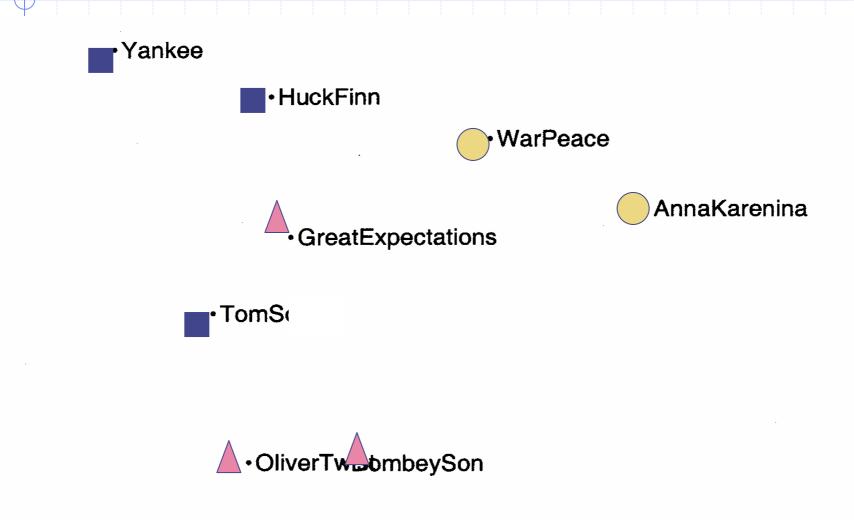
$$\bullet Y_{ik} = (X_{ik} - A_k) / B_k$$

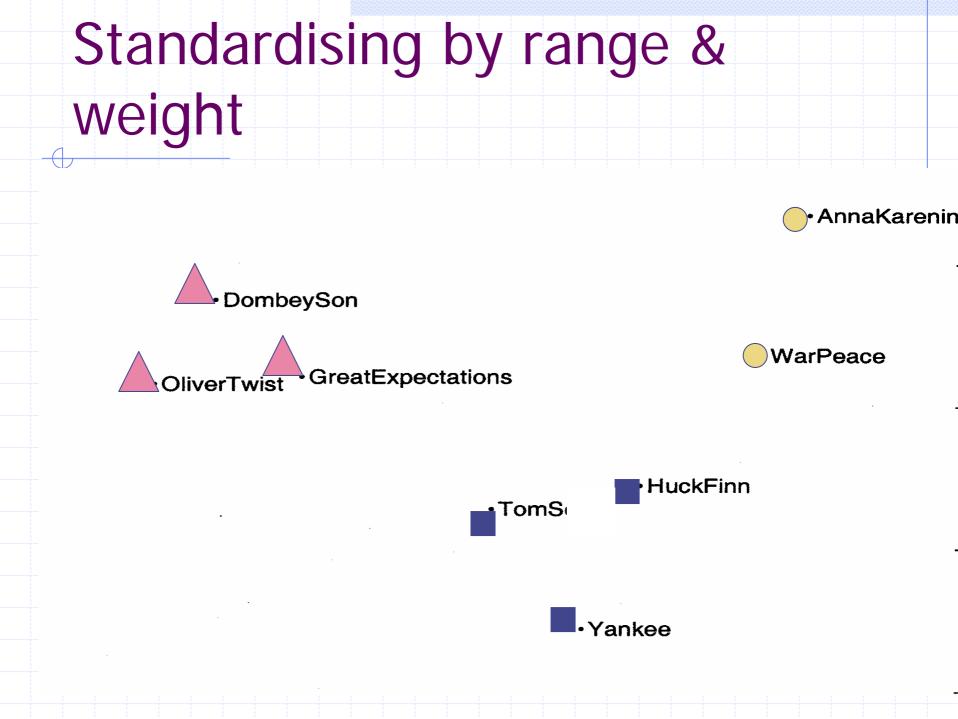
- X original data
- Y standardised data
- i entities
- k features
- A_k shift of the origin, typically, the **average**
- B_k rescaling factor, traditionally the standard deviation, but range seems better in clustering

No standardisation



Z-scoring (scaling by std)





Fitting the model with Straight K-Means Partitioning

Start:

- * Presenting cases as multidimensional points
- * Putting initial centroids (seeds)
- **Reiterated until no change:**
- * Collecting points into clusters around centroids
- * Recalculating centroids as cluster prototypes

Advantages of K-Means

Conventional:

- Models typology building
- Computationally effective
- Can be incremental, `on-line'

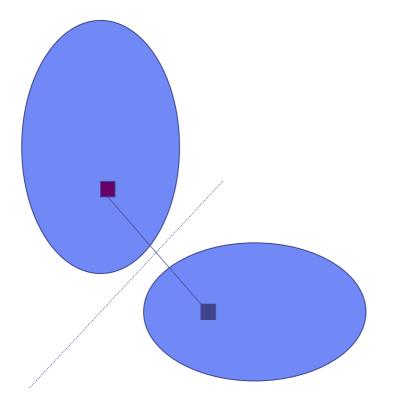
Unconventional:

- Associates feature salience with feature scales and correlation/association
- Applicable to mixed scale data

Drawbacks of K-Means

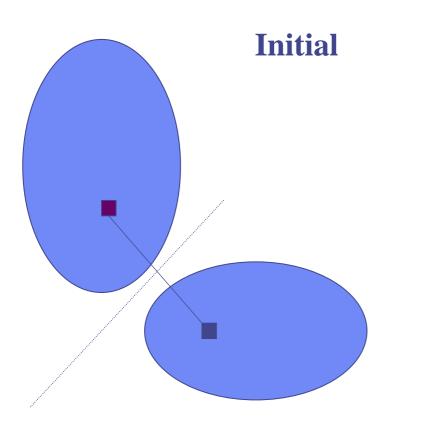
- •No advice on:
 - •Data pre-processing
 - •Number of clusters
 - •Initial setting
- •Instability of results
- •Criterion can be inadequate
- •Insufficient interpretation aids

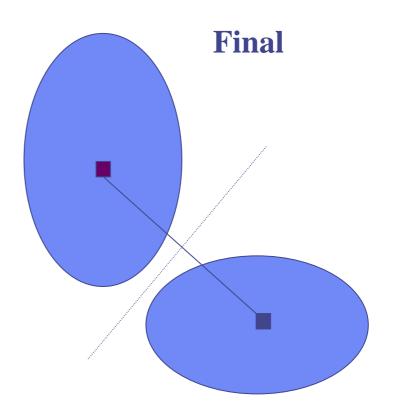
Initial Centroids: Correct



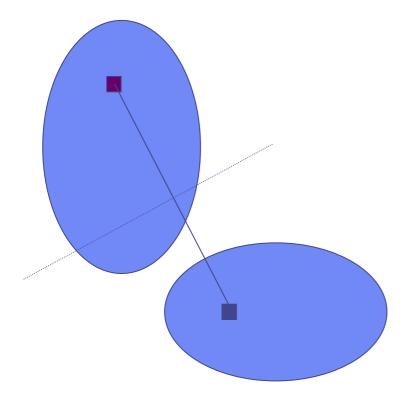
Two cluster case

Initial Centroids: Correct

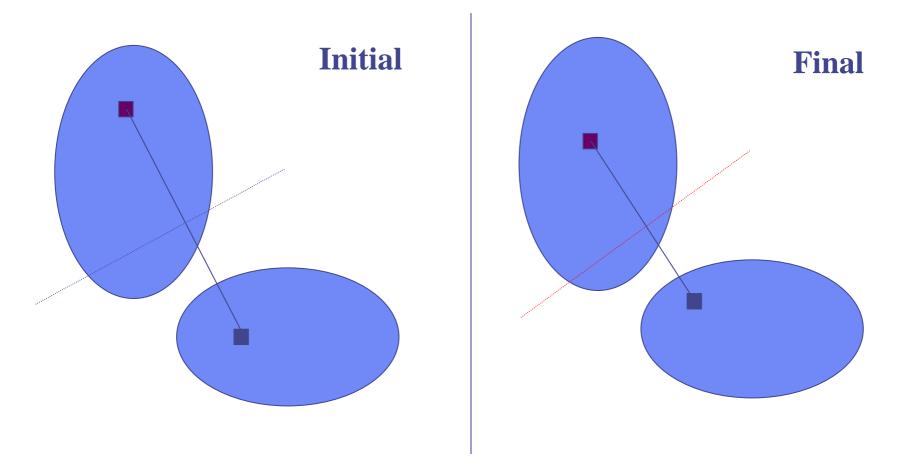




Different Initial Centroids



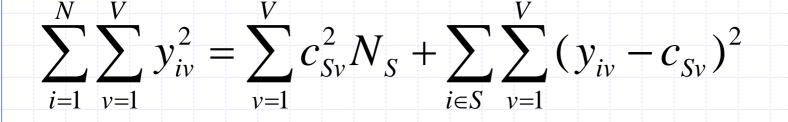
Different Initial Centroids: Wrong, even though in different clusters



Principal Cluster Analysis: One cluster at a time

$$y_{iv} = c_v z_i + e_{iv}$$

where $z_i = 1$ if $i \in S$, $z_i = 0$ if $i \notin S$ With Euclidean distance squared $\sum_{V}^{N} \sum_{V}^{V} y_{iv}^{2} = \sum_{V}^{V} c_{Sv}^{2} N_{S} + \sum_{V}^{V} \sum_{V}^{V} (y_{iv} - c_{Sv})^{2}$ i=1 v=1 v=1 $i\in S$ v=1 $\sum d(i,0) = d(c_{s},0)N_{s} + \sum d(i,c_{s})$ $c_{s}^{i=1}$ must be **anomalous**, that is, interesting Principal Cluster Analysis: One cluster at a time

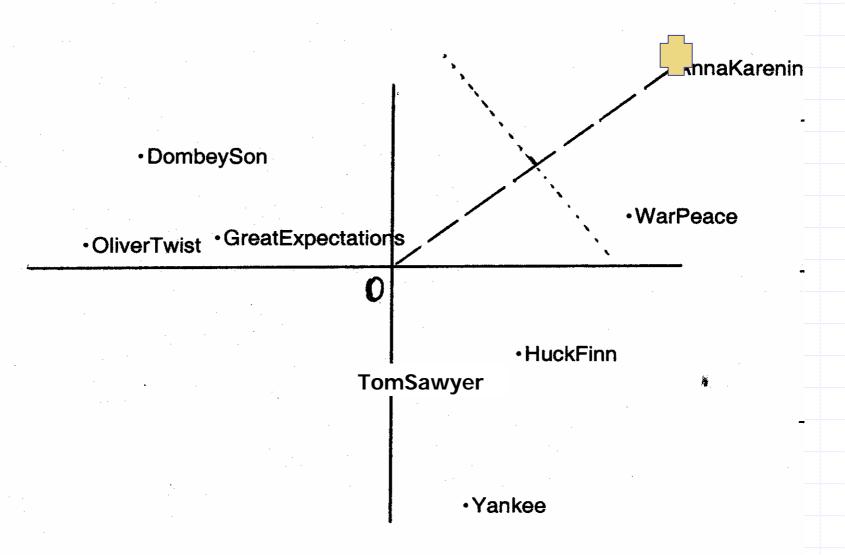


Or, with Euclidean distance squared d(,)

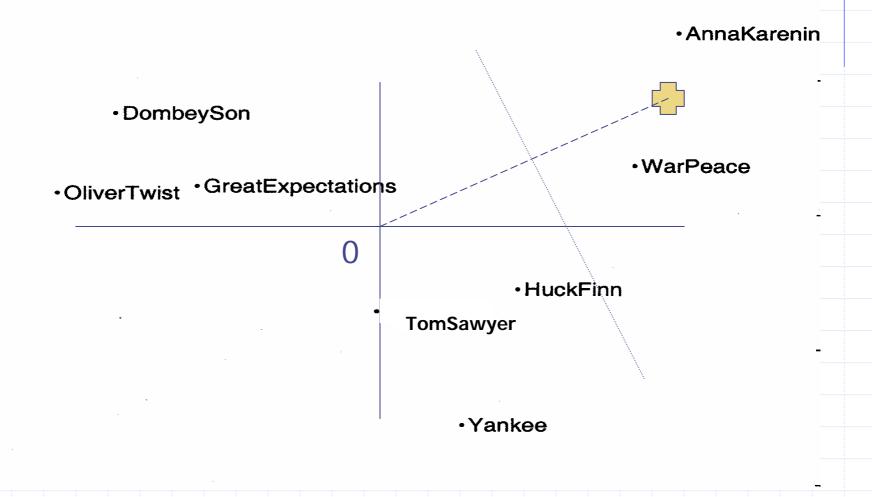
N

$$\sum_{i=1}^{N} d(i,0) = d(c_s,0)N_s + \sum_{i\in S} d(i,c_s)$$

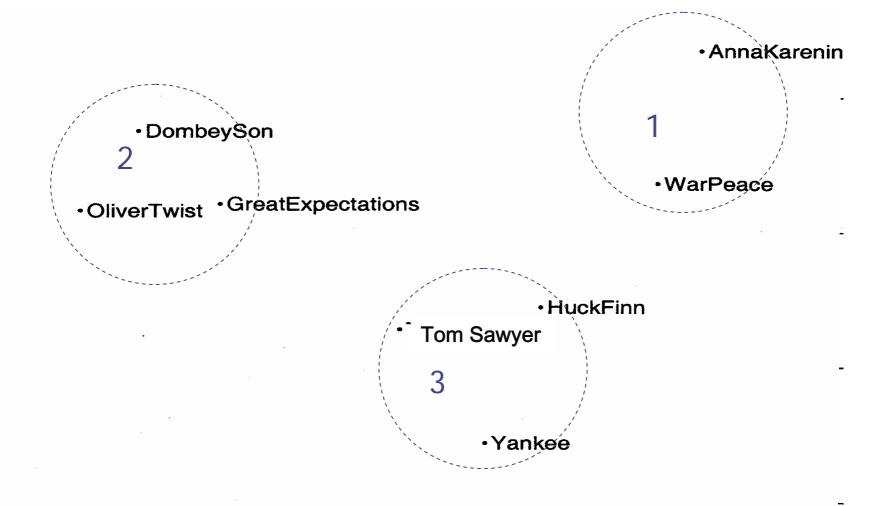
Initial setting with Anomalous Pattern (AP) clustering



AP clustering: Iterate

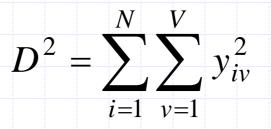


iK-Means with Anomalous Single Clusters



Decomposing Data scatter

The sum of standardised entries squired



The sum of contributions of features

Proportional to the summary variance

Contribution of a feature *F* to a partition

$Contrib(F) = \sum_{v \in F} \sum_{k=1}^{\infty} c_{kv}^2 N_k$

- Proportional to
 - correlation ratio η^2 if F is quantitative
 - a contingency coefficient if F is nominal
 - Pearson chi-square (Poisson normalised)
 - Goodman-Kruskal tau-b (Range normalised)

Contribution of a quantitative feature to a partition

$N\eta^2 = N\sum_{k=1}^{n} (\sigma^2 - p_k \sigma_k^2) / \sigma^2$

Proportional to

• correlation ratio η^2 if F is quantitative

Contribution of a nominal feature to a partition

Proportional to a contingency coefficient
Pearson chi-square (Poisson normalised) $B_j = \sqrt{p_j}$

 $B_{i} = 1$

k=1

Goodman-Kruskal tau-b (Range normalised)

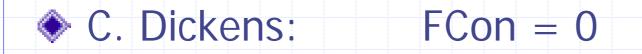
 $NX^{2} = N\sum (p_{ij} - p_{i}p_{j})^{2} / p_{i}B_{j}^{2}$

Pythagorean Decomposition of data scatter for interpretation

ruised as in Table 2.0 according to author based clusters.

Title	LenS	LenD	NChar	FCon	Pers	Obje	Dire	Cntr	Cntr,%
OTwist	-0.18	0.29	0.29	1.46	0.23	0.02	0.10	2.21	6.31
DombyS	0.36	0.06	0	1.46	0.23	0.02	0.10	2.22	6.34
GExpectations	0.08	0.12	0	1.46	-0.14	-0.03	0.10	1.58	4.51
Cl. 1 Cntr	0.26	0.47	0.29	4.38	0.32	0.01	0.29	6.01	17.17
TomSoyer	0.48	0.44	0.58	0.52	-0.03	-0.14	0.10	1.95	5.57
HuckFinn	-0.38	0.83	0	0.52	0.02	0.23	0.10	1.32	3.77
YankeeA	1.22	1.21	0.58	0.52	0.02	0.23	0.10	3.88	11.09
Cl. 2 Cntr	1.31	2.48	1.17	1.58	0.01	0.32	0.29	7.15	20.43
WarPeace	0.14	-0.23	1.31	0.52	0.18	0.18	0.88	2.97	8.49
Akarenina	0.47	1.42	2.62	0.52	0.18	0.18	0.88	6.26	17.89
Cl. 3 Cntr	0.61	1.19	3.94	1.05	0.35	0.35	1.75	9.23	26.37
Explained	2.18	4.14	5.40	7.00	0.67	0.67	2.33	22.39	63.97
Unexplained	4.82	2.86	1.60	0	1.66	1.67	0	12.61	36.03
Total	7.00	7.00	7.00	7.00	2.33	2.33	2.33	35.00	100.00

Contribution based description of clusters



Simulation study of Number-of clusters methods(joint work with Mark Chiang):

• Variance based: Hartigan(HK) Calinski & Harabasz (CH) **Jump Statistic (JS)** • Structure based: Silhouette Width (SW) Consensus based: **Consensus Distribution area (CD) Consensus Distribution mean (DD)** Sequential extraction of APs:

> Least Square (LS) Least Moduli (LM)

Data generation for the experiment

- Gaussian Mixture (6,7,9 clusters) with:
 - •Cluster spatial size:
 - Constant (spherical)
 - k-proportional
 - k²-proportional

Cluster spread (distance between centroids)

		PPCA model				
Spread	Spherical	k-proport.	k ² -proport.			
Large	2 (1)	10 (2)	10 (3)			
Small	0.2 (4)	0.5 (6)	2 (6)			

Evaluation of results: Estimated clustering versus that generated

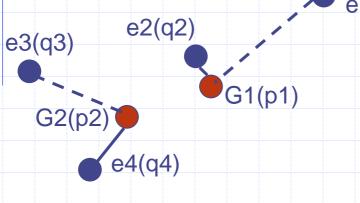
Number of clusters

Distance between centroids

Similarity between partitions

Distance between estimated centroids (o) and those generated (o) **Prime Assignment** e1(q1) e2(q2) e3(q3) G1(p1) g1-----e2 G2(p2) g2-----e4 q3-----e5 e4(q4) e5(q5) G3(p3)

Distance between estimated centroids (o) and those generated (o) e1(q1)



Final Assignment

Distance between centroids: quadratic and city-block

g1(p1)-----e1(q1), e2(q2) g2(p2)----e3(q3), e4(q4) g3(p3)----e5(q5) 2. Distancing

d1=(q1*d(g1,e1)+q2*d(g1,e2))/(q1+q2)

d2=(q3*d(g2,e3)+q4*d(g2,e4))/(q3+q4)

d3=(q5*d(g3,e5)/q5

Distance between centroids: quadratic and city-block

p1*d1+p2*d2+p3*d3

2. Distancing

1. Assignment

3. Averaging

Similarity between partitions according to their confusion table

- Relative distance (Mirkin-Cherny 1970)
- Tchouprov coefficient (Cramer 1943)
- Adjusted Rand Index (Arabie-Hubert, 1985)
- Average Overlap (Mirkin 2005)

Results

at 9 clusters, 1000 entities, 20 features generated

	Estimated number of clusters		Distance between Centroids		Adjust Rand Index	
	Large spread	Small spread	Large spread	Small spread	Large spread	Small spread
HK						
СН						
JS						
SW						
CD						
DD						
LS						
LM						

Extending PCA to ITEX

- Iterative Extraction Elements:
 - Data X format: at PCA, entity-to-feature
 - Structure to extract; at t-th step set D(t): at PCA, a pair z and c;
 - Criterion to minimise, $\Phi(\epsilon)$: at PCA, L2
 - Relation between D(t) and D(t+1): at PCA, same
 - Method for minimising, at step t, Φ(|X(t) s|) over s∈D(t) where X(t)=X(t-1)-s(t-1), X(0)=X: at PCA, svd or AP clustering

Result: $X = \Sigma_t s(t) + \varepsilon$, along with Pythagorean decomposition of T(X)

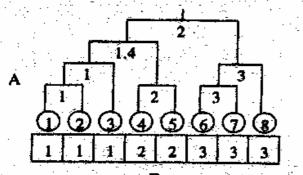
Proof of (finite) convergence (Mirkin (1990, 1998))

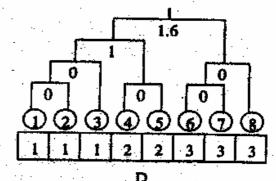
ITEX examples:

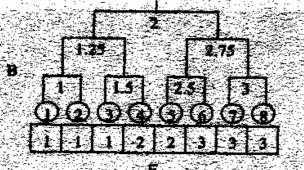
- Hierarchical clustering for conventional and spatial data
- Similarity clustering with additive clustering
- Similarity clustering with boxes ("plaid clustering")
- Contingency data clustering and aggregation

Hierarchical clustering for conventional and spatial data $y_{iv} = \sum c_{kv} z_{ik} + e_{iv},$ Model: Same k=1Cluster structure: 3-valued z's A split S=S1+S2 of a node S in children S1, S2: $Z_i = 0$ if $i \notin S_i = a$ if $i \in S1$ = *-b* if *i*∈S2 If a and b taken to z being centred, the **S**1 node vectors for a hierarchy form orthogonal base (an analogue to SVD)

Hierarchies, Wavelets, Haar base







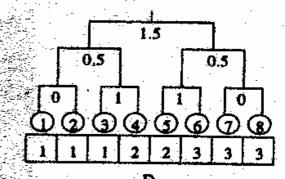


FIGURE 7. Compression and decompression of the boxed data with hierarchies A and B from Figure 6.

Similarity additive (and hierarchical) clustering Observed similarity matrix

Problem: given **B**, find λ s and **z**s to minimize **E**, the differences between **B** and summary clusters $\|\mathbf{E}\|^2 \Rightarrow \min_{\mathbf{A}}$

Additive clusters: ITEX

- **Doubly greedy strategy**
- OUTER LOOP: One cluster at a time
- Find real λ (intensity) and binary *z* (membership) to minimize *L(B, λ,z)*.
- Update $B \leftarrow B \lambda z z^T$; and reiterate!
- After K iterations, clusters $S_{k'}$ of cardinality $N_{k'}$

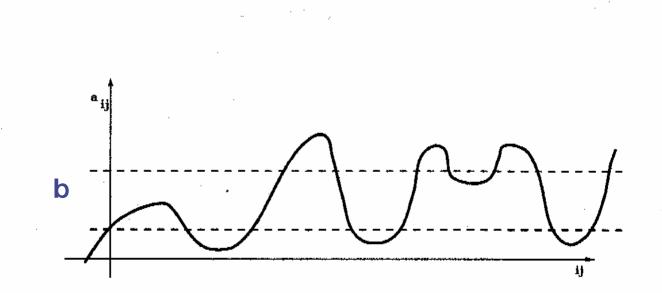
 $T(B) = \lambda_1^2 N_1^2 + \lambda_2^2 N_2^2 + \dots + \lambda_K^2 N_K^2 + L^2 (\bullet)$

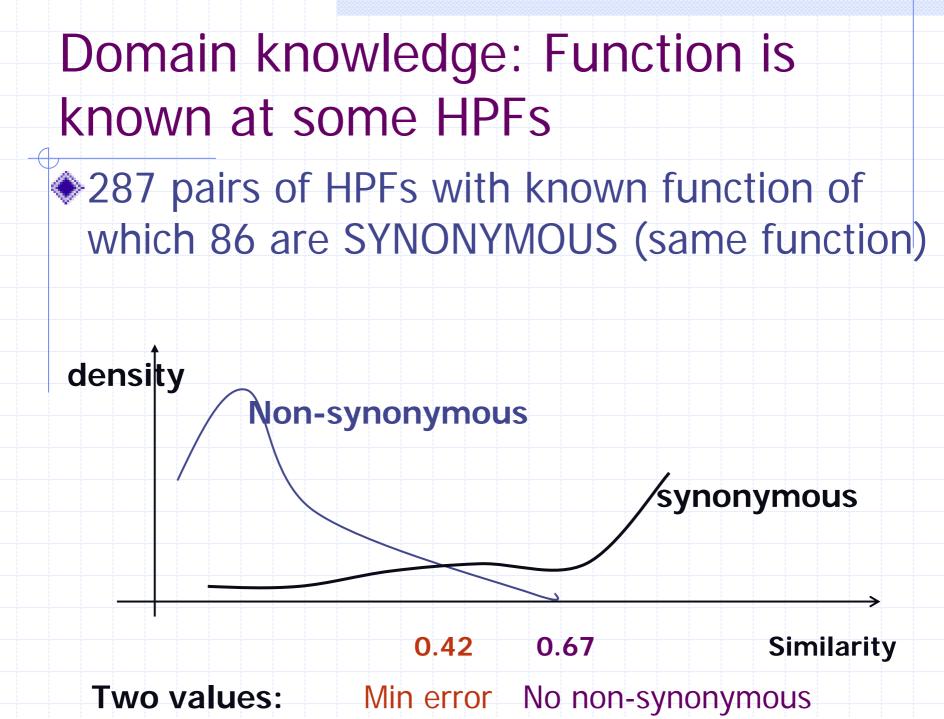
INNER LOOP: maximise $\lambda_k N_k$

Algorithm: ADDI-S (Mirkin JoC 1987),

- a data approximation technique
 - To maximize Contribution to Data Scatter, Average within-cluster similarity λ multiplied by the cluster's size #S
 - Algorithm ADDI-S:
 - Take S={ j } for arbitrary j
 - Given S, find λ =c(S) and similarities b(i,S) to S for all entities i in and out of S;
 - Check the differences b(i,S)-λ /2. If they are consistent, change the state of a most contributing entity. Else, stop and output S.
 - Resulting S: a tightness property.
 - Holzinger (1941) B-coefficient, Arkadiev&Braverman (1964, 1967) Specter, Mirkin (1976, 1987) ADDI family, Ben-Dor, Shamir, Yakhini (1999) CAST

Algorithm: ADDI-S a data approximation techniques Number of clusters: Depends on similarity shift threshold b $b(ij) \leftarrow b(ij) - b$





Hierarchical similarity clusters

Spectral clustering

Similarity clustering with boxes

Plaid clustering

Contingency data clustering and aggregation

 $P(I,J)=(p_{ii})$ non-negative and summable Correspondence Analysis rather than PCA Quetelet coefficients rather than p_{ii} $q_{ij} = p_{ij}/(p_{i+} p_{+j}) - 1 = [p(i/j) - p(i)]/p(i)$ Let A partitions I and B partitions J: P(A,B) by summing up p_{ij} within blocks to approximate q_{ab} by the $p_{i+} \dot{p}_{+i}$ weighted least-squares L²: Pythagorean

$$X^{2}(I,J) = X^{2}(A,B) + L^{2}$$

Conclusion

Looking forward to hear of further ideas for combining clustering and visualisation à la PCA