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Preface

Even a cursory inspection of the content of the well-known on-line free ency-
clopedia Wikipedia reveals a simple classification and model typology that is
frequently encountered in a wide spectrum of scientific disciplines. In partic-
ular, different types of models have traditionally been classified according to
the following well-known categorization criteria [1]:

1. Linear vs. nonlinear: If the objective functions and constraints are repre-
sented entirely by linear equations, then the model is known as a linear
model. If one or more of the objective functions or constraints are repre-
sented with a nonlinear equation, then the model is known as a nonlinear
model.

2. Deterministic vs. probabilistic (stochastic): A deterministic model per-
forms the same way for a given set of initial conditions, while in a sto-
chastic model, randomness is present, even when given an identical set of
initial conditions.

3. Static vs. dynamic: A static model does not account for the element of
time, while a dynamic model does. Dynamic models typically are repre-
sented with difference equations or differential equations.

4. Lumped parameters vs. distributed parameters: If the model is homoge-
neous (consistent state throughout the entire system) the parameters are
lumped. If the model is heterogeneous (varying state within the system),
then the parameters are distributed. Distributed parameters are typically
represented with partial differential equations.

The above point of view of model classification and typology, while ele-
mentary, remains methodologically important and educationally quite useful.
However, these elementary prototype models bear the same relation to mod-
ern science and technology, as an elementary wheel-drive and gear-box does to
the level of sophistication of a modern car; at a higher level of integration of
the various system components, complexity and structural integrity naturally
emerge, calling for a new paradigm in systems modeling. Indeed, in order to
develop a working model of a realistic and complex physical or engineering
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system (or process) we need a “model factory” with a new “technology” for
multi-level model construction. The realization of the above ambitious goal
will probably follow the methodological path that has served the scientific
community rather well over the years: first, elementary fundamental models
will continue to be generated with an increasing degree of scientific accuracy
and conformity to the fundamental laws of physics, chemistry and biology.
On the basis of such elementary models, researchers will continue to build
models at the “second level of descriptive power”, such as various legacy
codes and computational codes of elementary processes and systems. How-
ever, confronted with the challenges of complexity inherent in real systems
and processes members of the scientific community are constantly motivated
to develop models at an even higher level of descriptive power and accu-
racy, possibly through a smart combination/utilization of the models (building
blocks) developed at lower levels of modeling. The procedural ascent to higher
levels of modeling accuracy and complexity will continue to be necessitated by
the need for the pursuit of scientific and technological breakthroughs, being
limited only by the inevitable intellectual and technical capacity constraints.
It is envisaged that the above intellectual and research efforts will eventually
define and characterize a new scientific discipline that could be named “Model
Engineering” [2].

In the present volume, two main thematic directions in the development
of this newly emerging discipline are traced, namely Model Reduction and
Invariance, as well as Coarse-Graining. For dynamical models describing the
behavior of large-scale complex systems, one of the most powerful and rig-
orous approaches to model reduction is based on the notion of the system’s
slow invariant manifold. The theory of invariant manifolds was introduced
more than a century ago through the work of two legendary figures of math-
ematics, Lyapunov and Poincaré [3, 4]. It experienced intense development
during the 20th century and is currently being vigorously revisited and re-
examined as an important and powerful tool in applied mathematics used
for mathematical modeling and model reduction purposes. Coarse-Graining
is also a one-hundred-year-old idea. Its first appearance in the physics com-
munity occurred through the seminal work of the Ehrenfests [5] (but the role
of Boltzmann, Gibbs and Einstein was also important) and, moreover, fur-
ther development of the original ideas in the 20th century led to explicit and
transparent connections to all branches of statistical physics, kinetics and ther-
modynamics. Even though these insightful connections remain quite popular
today [6], Coarse-Graining has evolved further, now reaching a much broader
field of applications, and becoming an important universal tool for modeling.

It should be pointed out that the problem of multiscale modeling and the
physically meaningful “coupling” of models of different levels poses essential
difficulties and challenges in model construction. Indeed, non-elementary mod-
els are always multiscale ones. Recently, however, a notable scientific break-
through has occurred in the form of the so-called “equation-free approach,”
which aims to address some of the above challenges by systematically facili-
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tating the development and guiding the integration of models of a higher level
of descriptive power with given legacy codes and other computational models
at lower levels of modeling [7].

Most of the contribution to the present volume are based on selected
talks/presentations given at the workshop entitled “Model Reduction and
Coarse-Graining Approaches for Multiscale Phenomena” at the University of
Leicester, Leicester, UK, August 24-26, 2005.1

The theme of the workshop was deliberately broad in scope and aimed at
promoting an informal exchange of new ideas and fresh methodological per-
spectives in the increasingly important area of Model Reduction and Coarse-
Graining for multiscale phenomena.

The main thematic areas of the workshop, which were structured around
recently developed theoretical and computational approaches, were:

1. Invariance and model reduction (invariant manifolds for ODEs and PDEs,
perturbation theory and applications of new model reduction techniques);

2. Coarse-graining approaches;
3. Accuracy estimation and post-processing algorithms.

Specific areas of study represented at the workshop included dynamical sys-
tems, non-equilibrium statistical mechanics, kinetic theory, hydrodynamics
and mechanics of continuous media, (bio)chemical kinetics, particulate sys-
tems, nonlinear dynamics, nonlinear control and nonlinear estimation.

The goals of this initiative were to assemble a group of people with a wide
variety of expertise reflecting the thematically interdisciplinary nature of the
workshop, to organize a series of presentations and to encourage discussions
in an informal, casual and “interactive” format that fostered and facilitated
a fruitful dialogue across disciplines.

It was strongly felt by all participants that the generic nature and power
of the pertinent conceptual, analytical and computational frameworks helped
eliminate some of the traditional language barriers that, unnecessarily some-
times, impede scientific cooperation, development of a dialogue, as well as in-
teraction among researchers across disciplinary boundaries between physics,
chemistry, biology, applied mathematics and engineering.

Motivated by the excellent response, enthusiasm and level of participation,
we strongly believe that this book will help not only to disseminate some of the
new knowledge and research experience already accumulated in the emerging
field of Model Engineering, but most importantly, to encourage other people
who would like to study and further develop it in a fruitful dialogue and
cooperation.

1 The workshop was financially supported by EPSRC and LMS, and the authors
gratefully acknowledge this support.
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A New Model Reduction Method
for Nonlinear Dynamical Systems

Using Singular PDE Theory

N. Kazantzis1 and C. Kravaris2

1 Department of Chemical Engineering, Worcester Polytechnic Institute,
Worcester, MA 01609, USA, nikolas@wpi.edu

2 Department of Chemical Engineering, University of Patras, Patras GR-2000,
Greece, kravaris@upatras.gr

Summary. In the present research study a new approach to the problem of model-
reduction for nonlinear dynamical systems is proposed. The formulation of the prob-
lem is conveniently realized through a system of singular quasi-linear invariance
PDEs, and an explicit set of conditions for solvability is derived. In particular, within
the class of real analytic solutions, the aforementioned set of conditions is shown to
guarantee the existence and uniqueness of a locally analytic solution, which is then
proven to represent the slow invariant manifold of the nonlinear dynamical system
under consideration. As a result, an exact reduced-order model for the nonlinear sys-
tem dynamics is obtained through the restriction of the original system dynamics on
the aforementioned slow manifold. The local analyticity property of the solution’s
graph that corresponds to the system’s slow invariant manifold enables the develop-
ment of a series solution method, which allows the polynomial approximation of the
“slow” system dynamics on the slow manifold up to the desired degree of accuracy.

1 Introduction

The natural world is dominated by physical and chemical processes that ex-
hibit nonlinear behavior and are typically modeled by systems of nonlinear or-
dinary (ODEs) or partial differential equations (PDEs) [3, 14, 30]. Despite the
fact that the dynamic behavior of linear systems can be mathematically ana-
lyzed and insightfully characterized with rigor and elegance [1, 3, 14, 15, 30],
it still represents a rather challenging task for nonlinear systems and un-
boubtedly induces considerable research effort. Among the most notable re-
search objectives in nonlinear systems analysis is certainly the existence of
invariant manifolds and the associated problem of finding/computing them
[1, 3, 14, 15, 30]. In particular, the problem under consideration has been tra-
ditionally motivated by efforts to develop systematic methods for the simplifi-
cation of the analysis of the behavior of nonlinear dynamical systems through



4 N. Kazantzis and C. Kravaris

an effective reduction of the dimensionality of the original problem, and the ex-
plicit computation of a reduced-order, yet accurate, description of the system
dynamics [2, 5, 7, 8, 12, 13, 14, 17, 18, 19, 22, 24, 25, 26, 27, 28, 29, 31, 32]
Two distinct categories of available approaches in the literature rely either
on the classical quasi-steady-state (QSS) approximation method and certain
variants, or on methods and results from singular perturbation (SP) theory
[3, 14, 20, 21, 30, 31]. Notice however, that in both cases, appropriate a priori
information is needed for their practical application. Indeed, the QSS method
presupposes the explicit physical identification of the system’s “fast” state
variables, whereas the standard SP approach presupposes the explicit physi-
cal identification of a function of the system’s parameters which is considered
to be “small” (in a certain sense), and its “smallness” is responsible for the
underlying time-scale multiplicity or the manifestation of a distinct spectral
gap. Please notice that in addition to relying on the above a priori knowl-
edge, both QSS and SP methods are inherently inexact, in the sense that
they do not follow exactly the system’s slow invariant manifold, thus result-
ing in long-term inaccuracies in the dynamic response of the reduced-order
system/model. On the other hand, a mathematically meaningful and rigorous
treatment of the model-reduction problem for nonlinear dynamical systems
has to rely on the explicit computation/construction of the system’s exact
slow invariant manifold, and this is certainly non-trivial [1, 13, 14, 30]. Within
the above framework however, the restriction of the system dynamics on the
slow invariant manifold results in a reduced-order description of the system
dynamics which is exact, in the sense that it generates the actual system tra-
jectory on the slow manifold once the fast transients die out and the system
crosses the above manifold (upon which it is bound to evolve for all future
times).

The present research study proposes a new systematic approach to the
problem of explicitly calculating the system’s slow invariant manifold and con-
structing an exact reduced-order model for the nonlinear system dynamics.
The latter represents the restriction of the original system dynamics on the
aforementioned slow manifold. From a mathematical standpoint, the above
objective is attained by focusing on the study of the invariance PDE and the
derivation of a specific set of conditions that ensure the existence and unique-
ness of a solution that correspond’s exactly to the system’s slow manifold.

The present paper is organized as follows: Section 2 contains some math-
ematical preliminaries that are necessary for the ensuing theoretical devel-
opments. The paper’s main results are presented in Section 3, accompanied
by remarks and comments on the use of the proposed approach and method
for model-reduction purposes of nonlinear dynamical systems. Finally, a few
concluding remarks are provided in Section 5.
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2 Mathematical Preliminaries

A nonlinear dynamical system is considered:

dx
dt

= f(x) (1)

where x ∈ Rn is the state vector. It is assumed that f(x) is a real ana-
lytic vector function, and without loss of generality, let the origin x0 = 0 be
an equilibrium point of (1): f(0) = 0. Furthermore, it is assumed that the

Jacobian matrix A =
∂f

∂x
(0) is Hurwitz (having eigenvalues with negative

real parts), and specifically, its eigenspectrum σ(A) consists of two distinct
subsets of the “fast” eigenvalues σf (A) and the “slow” eigenvalues σs(A):
σ(A) = σf (A) ∪ σs(A). It is implicitly assumed that the real parts of the
“fast” eigenvalues are a few orders of magnitude larger than the real parts (in
absolute value) of the “slow” eigenvalues. Under the above assumptions and
within the context of model reduction, the primary objective of the present
study is the explicit construction of the system’s slow manifold and the associ-
ated reduced order dynamic system that represents the restriction of the flow
of (1) on the aforementioned slow manifold (thus effectively circumventing the
effect of the fast dynamic modes).

The following definition is essential for the ensuing theoretical develop-
ments.

Definition 1 [1, 30]: A set

Ω = {x ∈ Rn|φ(x) = 0} (2)

where φ : Rn → Rm is a map with φ(0) = 0, is said to be invariant under
the flow of dynamics (1), if for each φ(x(0)) ∈ Ω, the integral curve {x(t}
of (1) satisfying x(t = 0) = x(0), is such that φ(x(t)) ∈ Ω for all t ∈ R+.
An invariant set Ω ⊂ Rn passing through the origin x0 = 0 is said to be a
real analytic local invariant manifold, if φ is real analytic and Ω has the local
topological structure of an analytic manifold around the origin.

It follows easily that for Ω to be rendered invariant under the flow of (1),
the map φ needs to satisfy the following invariance PDE:

∂φ

∂x
(x)f(x) = 0 (3)

Notice, that the above invariance PDE condition is satisfied by all possible in-
variant manifolds of dynamics (1), and therefore, it admits multiple solutions.
The key issue that the present study aims at addressing, is the development
of a systematic method that allows the specific construction of the system’s
slow manifold out of the above multitude of invariant manifolds. Equivalently,
a method that allows the explicit mathematical characterization of the sys-
tem’s motion that corresponds to the “slow” eigenmodes, as it evolves on the
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slow manifold embedded in state space. Consequently, the restriction of the
system dynamics (1) on the above slow manifold represents a reduced-order
description of the original nonlinear dynamics (1).

3 Main Results

Before embarking on the presentation of the present study’s main results, it
would be methodologically appropriate to first examine the application of the
proposed ideas and methods to linear systems, thus paving the way for the
development of the proposed method for nonlinear dynamical systems.

Consider a linear dynamical system:

dx
dt

= Ax (4)

where A is a constant matrix of appropriate dimensions whose eigenspectrum
satisfies the assumptions stated in the previous section. The invariance con-
dition (3) for a linear manifold:

Ω = {x ∈ Rn|Φx = 0} (5)

to be rendered invariant under the flow of (4) becomes:

ΦAx = 0 (6)

for all x ∈ Ω, where Φ is a constant matrix. In order to explicitly compute the
particular invariant manifold that corresponds to the system’s slow manifold,
a standard linear coordinate transformation is employed that can transform
the original system (4) into the following block-triangular form [30]:

dxs
dt

= Asxs

dxf
dt

= Afsxs +Afxf (7)

where xf , xs are the “fast” and “slow” state vectors respectively, with σ(As)
and σ(Af ) being exactly the “fast” and “slow” eigenspectra, i.e the sets of
“fast” and “slow” eigenmodes of system (4). One can easily show that:

Ω = {(xf , xs) ∈ Rn|xf − Txs = 0} (8)

where matrix T is the unique solution to the Lyapunov-Sylvester equation [9]:

TAs −AfT = Afs (9)

represents the requested slow manifold. Indeed, let: Φ = [−T |I] and A =[
As 0
Afs Af

]
. Then:
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ΦA = [−TAs +Afs|Af ] = [−AfT |Af ] = AfΦ (10)

and ΦAx = AfΦx = 0 for all x ∈ Ω. Therefore, Ω is an invariant manifold
for system (7). Furthermore, consider the “off-the-manifold” coordinate: z =
xf − Txs, which evolves as follows:

dz
dt

= Afsxs +Afxf − TAsxs = Afxf −AfTxs =

= Afz (11)

The above equation shows that the “off-the-manifold” coordinate z decays
according to the system’s “fast” eigenvalues, and therefore, Ω represents the
requested slow manifold.

Let us now examine how the above ideas can be generalized to account
for nonlinear dynamical systems. First, a special class of nonlinear systems
will be considered, namely systems that exhibit the exact triangular structure
shown below:

dxs
dt

= Fs(xs)

dxf
dt

= Ff (xs, xf ) (12)

where the first dynamic equation describes the “slow” motion and the second
the “fast” one. Notice that the second dynamic equation may correspond to
a process whose own dynamics is driven by:

(i) either a “slowly” varying input/disturbance dynamics mathematically
realized by the first dynamic equation (where input or disturbance changes are
modeled and generated as “outputs” of the autonomous nonlinear dynamics
of the first equation) [19], or

(ii) a time-varying process parameter vector xs(t) that follows the “slow”
dynamics of the first equation and models phenomena such as catalyst de-
activation, enzymatic thermal deactivation, heat-transfer coefficient changes,
time-varying (bio)chemical kinetic parameters, etc. [19], or

(iii) by an upstream nonlinear process with slow dynamics modeled
through the first dynamic equation in (12). It is useful to remind the reader,
that as indicated in the previous section, Ff (xs, wf ) and Fs(xs) are assumed
to be real analytic vector functions with: Ff (0, 0) = 0 and Fs(0) = 0.

For system (12), one can easily show that:

Ω = {(xf , xs) ∈ Rn|xf − π(xs) = 0} (13)

represents an invariant manifold, if the map π satisfies the invariance PDE
shown below:

∂π

∂xs
Fs(xs) = Ff (xs, π(xs)) (14)

Notice that the above system of first-order quasi-linear PDEs has a common
principal part [4, 6], which consists of the components of the vector function
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Fs(xs). Moreover, the origin is a characteristic point for the above system
of PDEs (14), since the principal part vanishes at (xs, xf ) = (0, 0) (due to
the equilibrium condition) [4, 6]. Therefore, the above system of PDEs (14)
becomes singular. Notice, that in order to solve the above system of PDEs
(14) in a neighborhood of the characteristic point (xs, xf ) = (0, 0), the exis-
tence and uniqueness conditions of the Cauchy-Kovalevskaya theorem are not
satisfied and the theorem can not be applied [4, 6]. However, for the specific
structure of the above system of singular invariance PDEs (14), Lyapunov’s
auxiliary theorem [23] can be employed to guarantee the existence and
uniqueness of a locally analytic solution.

Lyapunov’s Auxiliary Theorem [23]. Consider the following first-order
system of quasi-linear partial differential equations:

∂w

∂x
φ(x,w) = ψ(x,w) (15)

where: w : Rm −→ Rp is the unknown vector function of (15), and φ(x,w) :
Rm × Rp −→ Rm, ψ(x,w) : Rm × Rp −→ Rp are given analytic vector
functions which satisfy the following conditions:

φ(0, 0) = 0
ψ(0, 0) = 0

∂φ

∂w
(0, 0) = 0 (16)

It is assumed that the eigenvalues ki, (i = 1, ...,m) of the m × m matrix
∂φ

∂x
(0, 0) satisfy the following condition:

0 �∈ CH{k1, k2, ..., km} (17)

and are not related to the eigenvalues λi, (i = 1, ..., p) of the p × p matrix
∂ψ

∂w
(0, 0) through any equation of the type:

m∑
i=1

miki = λj (18)

(j = 1, ..., p), where all the mi are non-negative integers that satisfy the con-
dition:

m∑
i=1

mi > 0 (19)

Then, the above first-order system of PDEs (15), with initial condition w(0) =
0, admits a unique analytic solution w in a neighborhood of x = 0.

Using Lyapunov’s auxiliary theorem one arrives at the following result [19]:
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Theorem 1. Consider the nonlinear dynamic system (12) and let all the
aforementioned assumptions hold true. Moreover, assume that the eigenval-

ues ki of matrix As =
∂Fs
∂xs

(0) are not related to the eigenvalues λi of matrix

Af =
∂Ff
∂xf

(0, 0) through any equations of the type (18,19). Then the set Ω

(13) is a real analytic invariant manifold of (12), where π(xs) is the unique
solution of the singular invariance PDE (14).

Remark 1: Let us now consider the linear case, where: φ(x,w) = Asxs and
ψ(x,w) = Afsxs + Afxf , with As, Af , Afs being constant matrices with ap-
propriate dimensions. Then, the unique solution of (14) is: π = Πx, where Π
is the solution of the following Lyapunov-Sylvester matrix equation [9]:

ΠAs −AfΠ = Afs (20)

As proven in [9], the above matrix equation (20), which coincides with (9) in
the previously examined linear case, admits a unique solution Π , as long as
the As, Af matrices do not have common eigenvalues, and this is guaranteed
by the assumptions of Lyapunov’s auxiliary theorem and the spectral gap
assumption made earlier. Therefore, the linear result is naturally reproduced.

Furthermore, the following Theorem can be proven as well [19]:

Theorem 2. Let all assumptions of Theorem 1 hold true. Furthermore, let
Ω (13) be an invariant manifold of (12), where π(xs) is the unique locally
analytic solution of the invariance PDE (14) and (xs(t), xf (t)) a solution
curve of (12). There exists a neighborhood U0 of the origin and real numbers
M > 0 and K > 0 such that, if (xs(0), xf (0)) ∈ U0, then:

||xf (t)− π(xs(t))||2 ≤M exp(−Kt)||xf (0)− π(xs(0))||2 (21)

Furthermore, the rate of decay of the dynamics of the off-the-manifold co-
ordinate z = xf − π(xs) is governed by the “fast” eigenvalues of matrix

Af =
∂Ff
∂xf

(0, 0).

Theorem 2 states that any trajectory of system (12) starting at a point
sufficiently close to the origin, converges to Ω. Therefore, the reduced-order
model:

dxs
dt

= Fs(xs)

xf (t) = π((xs(t))) (22)

is a projection of the motion of the original system (12) on the invariant mani-
fold Ω, as a result of neglecting the fast transients of the motion. Equivalently,
the invariant manifold Ω (13) computed through the system of singular in-
variance PDEs (14) is rendered locally exponentially attractive, and thus, it
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represents the system’s slow manifold. The latter is the cornerstone of the
proposed model-reduction method for nonlinear dynamical systems.

Let us now consider the most generic case where the previously mentioned
exact triangularization of the system dynamics is not feasible. However, one
can always triangularize the linear part of the system dynamics by trans-

forming the system’s Jacobian A =
∂f

∂x
(0) into the block triangular form

considered earlier in the linear case. In particular, one can always employ a

linear coordinate transformation such that the Jacobian A =
∂f

∂x
(0) becomes

transformed into a block triangular form where the eigenvalues of the diagonal
blocks are exactly the “slow” and “fast” eigenvalues of A [30]. As a result,
in the new coordinate system the original system dynamics is represented via
the following form:

dxs
dt

= Fs(xs, xf )

dxf
dt

= Ff (xs, xf ) (23)

where Ff (xs, xf ) and Fs(xs, xf ) are real analytic vector functions with:

Ff (0, 0) = 0, Fs(0, 0) = 0,
∂Fs
∂xf

(0, 0) = 0 and σ(As) = σ(
∂Fs
∂xs

(0, 0),

σ(Af ) = σ(
∂Ff
∂xf

(0, 0) are the set of the “slow” and “fast” eigenvalues of the Ja-

cobian matrix A respectively, as they surface once the block-triangularization
of the system’s linear part is performed. As in the previous case, one can
readily infer that:

Ω = {(xf , xs) ∈ Rn|xf − π(xs) = 0} (24)

represents an invariant manifold for system (23), if the map π satisfies the
quasi-linear invariance PDE below:

∂π

∂xs
Fs(xs, π(xs)) = Ff (xs, π(xs)) (25)

Notice that the above system of invariance PDEs has a common principal
part [4, 6] which consists of the components of the vector function Fs(xs, xf ),
and that the origin represents a characteristic point for the above system
of invariance PDEs (25) (since the principal part vanishes at (xs, xf ) = (0, 0)
due to the equilibrium condition) [4, 6]. As a consequence, and similarly to
the previous case, the above system of PDEs (25) becomes singular and the
Cauchy-Kovalevskaya theorem can not be applied [4, 6]. However, Lyapunov’s
auxiliary theorem can be employed to guarantee the existence and uniqueness
of a locally analytic solution. Indeed, within a similar framework of analysis
as in [19], one can prove the following Theorems:
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Theorem 3. Consider the nonlinear dynamical system (23) and let all the
aforementioned assumptions hold true. Moreover, assume that the eigenvalues

ki of matrix As =
∂Fs
∂xs

(0, 0) are not related to the eigenvalues λi of matrix

Af =
∂Ff
∂xf

(0, 0) through any equations of the type (18,19). Then the set Ω

(24) is a real analytic invariant manifold of (23), where π(xs) is the unique
solution of the singular invariance PDE (25).

Theorem 4. Let all assumptions of Theorem 3 hold true. Furthermore, let
Ω (24) be an invariant manifold of (23), where π(xs) is the unique locally
analytic solution of the invariance PDE (25) and (xs(t), xf (t)) a solution
curve of (23). There exists a neighborhood U0 of the origin and real numbers
M > 0 and K > 0 such that, if (xs(0), xf (0)) ∈ U0, then:

||xf (t)− π(xs(t))||2 ≤M exp(−Kt)||xf (0)− π(xs(0))||2 (26)

Furthermore, the rate of decay of the dynamics of the off-the-manifold co-
ordinate z = xf − π(xs) is governed by the “fast” eigenvalues of matrix

Af =
∂Ff
∂xf

(0, 0).

Theorems 3 and 4 imply that Ω is the system’s slow invariant manifold
that exponentially attracts all system trajectories once the fast transients die
out. Therefore, a reduced-order description of the original system dynamics
would be the following one:

dxs
dt

= Fs(xs, π(xs))

xf = π((xs)) (27)

The above reduced-order model represents exactly the system’s actual dy-
namics on the slow manifold Ω (the most important stage of the system’s
life before it reaches the equilibrium state), and can be used in practice since
the fast transients are justifiably ignored. Indeed, the proposed reduced-order
model implies that almost instantaneously the fast state xf jumps from its
initial condition xf (0) to π(xs(0)) on the manifold Ω where the system is
bound to evolve and the relation xf (t) = π(xs(t)) holds for every t > 0.

Remark 2: In order to be able to make practical use of the proposed
method, one must provide a solution scheme for the associated system of
singular invariance PDEs (25). Notice that the method of characteristics is
not applicable because the aforementioned system of PDEs (25) is singular
[4, 6]. However, since all functions involved are locally analytic around the
origin, it is possible to calculate the solution xf = π(xs) in the form of a
multivariate Taylor series around the origin. The method involves expanding
all functions involved, as well as the unknown solution xf = π(xs) in a Taylor
series and equating the same order Taylor coefficients of both sides of the
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PDEs (25). This procedure leads to linear recursion formulas [23], through
which one can calculate the N -th order Taylor coefficients of the unknown
solution xf = π(xs), given the Taylor coefficients of xf = π(xs) up to order
N − 1.

In the derivation of the recursion formulas, it is convenient to use the
following tensorial notation:

a) The entries of a matrix A are represented as aji , where the subscript
i refers to the corresponding row and the superscript j to the corresponding
column of the matrix.

b) The partial derivatives of the μ-th component Fμ(xs, xf ) of the vec-
tor function F (xs, xf ) with respect to the state variables xs evaluated at
(xs, xf ) = (0, 0) are denoted as follows:

F iμ =
∂Fμ
∂xs,i

(0, 0)

F ijμ =
∂2Fμ

∂xs,i∂xs,j
(0, 0)

F ijkμ =
∂3Fμ

∂xs,i∂xs,j∂xs,k
(0, 0) (28)

etc., where i, j, k, ..=1, ..., n
c) The standard summation convention where repeated upper and lower

tensorial indices are summed up.
Under the above notation the l-th component πl(xs) of the unknown so-

lution π(xs) can be expanded in a multivariate Taylor series as follows:

πl(xs) =
1
1!
πi1l xs,i1 +

1
2!
πi1i2l xs,i1xs,i2 + ... +

+
1
N !

πi1i2...iNl xs,i1xs,i2 ...xs,iN + ... (29)

Similarly one expands the components of the vector functions Fs(xs, xf ),
Ff (xs, xf ) in multivariate Taylor series. Substituting the Taylor expansions of
π(xs) and Fs(xs, xf ), Ff (xs, xf ) into the system of PDEs (25) and matching
the Taylor coefficients of the same order, the following relation for the N -th
order terms can be obtained:

N−1∑
L=0

∑
(N

L)
πμi1...iLl F iL+1...iN

s,μ = Fμf,lπ
i1...iN
μ + f i1...iNl (πi1...iN−1) (30)

where f i1...iNl (πi1...iN−1) is a function of Taylor coefficients of the unknown
solution π(xs) calculated in the previous recursive steps. Note that the sec-
ond summation symbol in (30) should be regarded as summing up the rele-
vant quantities over the

(
N
L

)
possible combinations of the indices (i1, ..., iN).

Furthermore, equations (30) represent a set of linear algebraic equations in
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the unknown coefficients πi1,...,iNμ , and this is precisely the underlying math-
ematical reason that allows the series solution method to be accomplished in
an automated fashion by exploiting the computational capabilities and com-
mands of a symbolic software package such as MAPLE. Finally, it should be
also pointed out, that occasionally the Taylor series solution method for the
invariance PDEs (25) exhibits slow convergence. In these cases, significant
improvement of the convergence properties of the PDE solution scheme can
be achieved if direct Newton-type methods as described in [10] are employed,
or relaxation methods such as the ones reported in [7, 16].

4 Conclusions

A new approach to the problem of model-reduction for nonlinear dynamical
systems was proposed in the present study. The formulation of the problem
was conveniently realized through a system of singular quasi-linear invariance
PDEs, and a set of conditions for solvability was derived. In particular, within
the class of real analytic solutions, the aforementioned set of conditions was
shown to guarantee the existence and uniqueness of a locally analytic solution.
The solution of the system of singular invariance PDEs was then proven to be
the slow invariant manifold of the nonlinear dynamical system under consid-
eration, and an exact reduced-order model for the nonlinear system dynamics
was obtained through the restriction of the original system dynamics on the
aforementioned slow manifold. The local analyticity property of the above
solution (whose graph corresponds to the system’s slow invariant manifold)
enabled the development of a series solution method, which allows the poly-
nomial approximation of the “slow” system dynamics on the slow manifold
up to the desired degree of accuracy, and can be easily implemented with the
aid of a symbolic software package such as MAPLE.
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Summary. This paper deals with the numerical computation of invariant manifolds
using a method of discretizing global manifolds. It provides a geometrically natural
algorithm that converges regardless of the restricted dynamics. Common examples
of such manifolds include limit sets, co-dimension 1 manifolds separating basins of
attraction (separatrices), stable/unstable/center manifolds, nested hierarchies of at-
tracting manifolds in dissipative systems and manifolds appearing in bifurcations.
The approach is based on the general principle of normal hyperbolicity, where the
graph transform leads to the numerical algorithms. This gives a highly multiple
purpose method. The algorithm fits into a continuation context, where the graph
transform computes the perturbed manifold. Similarly, the linear graph transform
computes the perturbed hyperbolic splitting. To discretize the graph transform, a
discrete tubular neighborhood and discrete sections of the associated vector bundle
are constructed. To discretize the linear graph transform, a discrete (un)stable bun-
dle is constructed. Convergence and contractivity of these discrete graph transforms
are discussed, along with numerical issues. A specific numerical implementation is
proposed. An application to the computation of the ‘slow–transient’ surface of an
enzyme reaction is demonstrated.

1 Introduction

Invariant manifolds of dynamical systems typically determine the skeleton
of the dynamics, around which a further analysis may be in order. This is true
whether the system is dissipative or conservative. For dissipative systems,
the phase space often contains a nested hierarchy of attracting manifolds
Vi ⊂ Vi+1, i = 0, . . . , n. The manifold Vi is composed of initial data which
evolves slowly compared to initial data in the rest of Vi+1. The manifold V0

contains the global attractor, which may be an equilibrium point or more
complicated set. The long-time (medium-time) dynamics is described by the
system restricted to V0 (V1). By restricting the system to a lower dimensional
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manifold, fast transients are removed from consideration. Thus, the dimension
of the model is reduced while retaining the essential features of the dynamics.

Analytical formulae for the lower dimensional manifolds and the corre-
sponding reduced systems are only obtainable in special cases. Hence, meth-
ods of approximating these manifolds are desirable. For example, in applied
bifurcation theory, the center manifold of an equilibrium is approximated lo-
cally by polynomials, using a recursive algebraic procedure [23]. This allows
the local approximation of the system restricted to the center manifold, up to
sufficiently high-order terms. An analysis of the bifurcation is then performed
on the approximate center manifold.

In the present paper, we focus on a numerical algorithm which computes
global invariant manifolds. This allows a global approximation of the system
restricted to the invariant manifold, in principle to arbitrary accuracy. This
may aid further analysis of long-time non-local dynamics.

The algorithmic approach is based on the principle of normal hyperbol-
icity. According to the Invariant Manifold Theorem, normally hyperbolic in-
variant manifolds persist smoothly under small perturbations of the system.
To be specific, the Invariant Manifold Theorem is concerned with the follow-
ing setup. Given a diffeomorphism F and an F–invariant submanifold V , the
invariant manifold Ṽ for a nearby diffeomorphism F̃ is constructed. Based
on this, an invariant manifold Ṽ for the system of interest, F̃ , may be com-
puted given an analytically known initial manifold V for a nearby system F .
It turns out that a rough estimate of an initial manifold V is often enough. In
addition, the algorithm may be repeated with computed initial data, allowing
the potential to compute invariant manifolds of systems not necessarily near
a system with a known manifold.

The algorithm is adapted from one of the classical approaches to the proof
of the Invariant Manifold Theorem, the graph transform. The theory of invari-
ant manifolds using the graph transform is well developed [21]. In particular
the convergence properties of the graph transform are inherited by the algo-
rithm. This complete theory of convergence is one thing that distinguishes
this approach from many other approaches to computing invariant manifolds
in the literature.

The implementation of methods for computing (non-local) manifolds of
dimension ≥ 2 is fairly recent. Some of the related work in this category
concerns quasiperiodic (for example [17]) or attracting (for example [10]) tori,
parts of global attractors [9] or global (un)stable manifolds [22]. The computa-
tions of tori use global parametrizations of the tori where simplicial complexes
are used in the present paper. The computations of parts of global attractors
use successive subdivisions of a covering of part of the global attractor. This
approach computes global attractors which are smooth or non–smooth. The
computations of global (un)stable manifolds are concerned with extending a
given piece of the manifold, to fill out the global (un)stable manifold. The
present paper has the antecedents [2, 3, 5, 27]. In [5, 27] a method to compute
saddle–type manifolds is presented. The graph transform and simplicial com-
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plexes are used to approximate manifolds. The present paper, starting with
a simplicial complex, uses a piecewise polynomial approximation. To do this,
a discrete tubular neighborhood is constructed. An approximation of arbi-
trary order for any manifold is obtained. A tubular neighborhood of V is the
geometrical setting of the graph transform. Thus, a discrete tubular neigh-
borhood is a natural approach which allows an analogous development of a
discrete graph transform. In addition, the construction of a discrete (un)stable
bundle allows a natural derivation of the discrete linear graph transform.

Compared to related work, the present approach gives a general purpose
algorithm. It applies to manifolds of arbitrary topological type, attracting
or saddle–type, regardless of the restricted dynamics. There is a satisfactory
theory of convergence in this general setting. If the manifold is not normally
hyperbolic, however, a different approach should be used, see for example [17].
Other novel features of the present paper include the following. In Section 5, a
practical approach to solving the global equations associated with the discrete
graph transform is proposed. In Section 6, the graph transform approach is
used to compute a part of the ‘slow–transient’ surface of an enzyme reaction
model. This is the first time this approach has been used to compute this
type of surface. For numerical methods designed specifically for this type of
problem, see [15, 16, 30].

To repeatedly apply the algorithm, both the perturbed manifold Ṽ and
its hyperbolic splitting must be approximated. This is done by first using
the graph transform Γ to obtain Ṽ and then the linear graph transform L
to compute the hyperbolic splitting of Ṽ . Thus, in Section 2, Γ and L are
formulated. This includes a discussion of normal hyperbolicity, the Invariant
Manifold Theorem, tubular neighborhoods and hyperbolic splittings. In Sec-
tion 3, the discretizations of the domains of Γ and L are formulated. To do
this, a discrete tubular neighborhood along with a space of discrete sections
of the associated vector bundle are constructed. In Section 4, discrete versions
ΓD of Γ and LD of L are formulated, based on the discrete approximating
sections of Section 3. Analyses of the convergence and contractivity of ΓD and
LD are given. In Section 5, an outline of a computer implementation of the
algorithm is given. Some auxiliary numerical techniques, along with numerical
conditioning and error, are also discussed. Section 6 contains an application to
an enzyme reaction model. For more examples, see [2, 3] or the DISC project
website, http://home.nethere.net/hagen.

2 Invariant Manifolds

In this section, the basic theory of normally hyperbolic invariant manifolds
is introduced. An overview of some definitions and results from [21] is given.
For locating a perturbed manifold, the graph transform is formulated. The
linear graph transform is formulated to locate the hyperbolic splitting of this
perturbed manifold. In later sections, discrete versions of these graph trans-
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Fig. 1: Lorenz system orbit and hyperbolic splitting; two tori in the Lorenz-84
system, moving away from a Hopf saddle–node bifurcation [23].

forms, suitable for a numerical implementation, will be given. This will be
done by replacing the basic elements, like tubular neighborhoods and sections
of vector bundles, with discrete constructions.

2.1 Normal Hyperbolicity

The starting point is a Cr diffeomorphism F on a C∞ Riemannian mani-
fold M , with an invariant submanifold V ⊂ M . Here, V is a compact, Cr ,
r–normally hyperbolic submanifold of M , r ≥ 1. The submanifold V is r–
normally hyperbolic for F if there is a DF–invariant splitting

TV (M) = Nu(V )⊕ T (V )⊕Ns(V ), (1)

and a Riemann structure on the tangent bundle TV (M), such that, for y ∈ V ,
i ≥ 0, and 0 ≤ k ≤ r:

‖DF i |Ns
y (V )‖ · ‖(DF i |Ty(V ))−1‖k ≤ cμi,

‖(DF i |Nu
y (V ))−1‖ · ‖DF i |Ty(V )‖k ≤ c (1/λ)i ,

(2)

for some 0 < μ < 1 < λ < ∞ and 0 < c < ∞. Here the operator norms
are associated with the Riemann structure on TV (M). For example, consider
the attracting case, Nu

y (V ) = {0}, y ∈ V and r = 1. Condition (2) concerns
the linearization of F at V , in other words DF on TV (M). It states that
under the action of the linearization, vectors normal to V are asymptotically
contracted more than vectors tangent to V . This means that under the action
of the dynamical system F , a neighborhood of a point in V is flattened in the
direction of the manifold.

The Invariant Manifold Theorem [21, Theorem 4.1] states that a Cr dif-
feomorphism F̃ , that is Cr–near F , has an r–normally hyperbolic invariant
manifold Ṽ , that is Cr and Cr–near V . This theorem and its proof suggests
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that it may be possible to compute an approximation to Ṽ from a given V . To
implement this idea, we look more closely at a proof of the invariant manifold
theorem.

First, we focus on a tubular neighborhood of V [20, 24]. A tubular neigh-
borhood of V in M is a vector bundle E with base space V , an open neigh-
borhood U of V in M , an open neighborhood Z of the zero section in E and a
homeomorphism φ : Z → U . Here, φ must satisfy φ◦σ0 = i, where σ0 : V → E
is the zero section and i : V → M is the inclusion. For example, the normal
bundle E =

⋃
p∈V Tp(V )⊥ of V in M gives a tubular neighborhood of V , at

least if r ≥ 2. In fact, any Lipschitz vector bundle N(V ), transverse to T (V )
in TV (M), gives a tubular neighborhood of V in M . In the following, Ṽ is
constructed in the neighborhood U in M , or equivalently in the neighborhood
Z in N(V ). A slight technical adjustment is made here. Namely, below, Z is
the closure of a neighborhood, Z = Z(ε) = {(p, v) ∈ N(V ) : |v|p ≤ ε}.

For any Lipschitz transverse vector bundle N(V ), the invariant splitting
(1) induces a splitting N(V ) = Nu(V ) ⊕ Ns(V ) into stable and unstable
parts. The hyperbolic splitting TV (M) = Nu(V ) ⊕ T (V ) ⊕ Ns(V ) has the
same growth properties (2) as the invariant splitting. Sections of Z may now
be written σ(p) = (p, vs(p), vu(p)), where vs(p) ∈ Zsp = Ns

p (V ) ∩ Z, vu(p) ∈
Zup = Nu

p (V ) ∩ Z.

2.2 The Graph Transform

The graph transform uses the F̃–dynamics near V to locate Ṽ . The domain
of the graph transform is a certain space of sections of the vector bundle Z =
Z(ε). The graphs of the sections in the domain are the Lipschitz manifolds near
V in Lipschitz norm. In fact, the graph transform is a contraction on a space
of Lipschitz sections σ : V → Z. To define the Lipschitz constant of a section,
a C0 connection in TV (M) is used [25]. A connection gives a way to compare
points in different fibers of TV (M). It does this using a continuous family of
horizontal subspaces H(y), y ∈ TV (M), which extend the tangent spaces of
V . More precisely, a C0 connection in the vector bundle π : TV (M) → V is
a C0 distribution H : TV (M)→ T (TV (M)) with Ty(TV (M)) = H(y)⊕ V (y),
y ∈ TV (M), where V (y) is the kernel of Dπ. Here, it is also required that the
horizontal subspace of the associated frame bundle corresponding to H(y)
be invariant under the structure group. This implies, in particular, that if
σ0 : V → TV (M) is the zero section, then H(σ0(p)) = Dσ0(Tp(V )).

To define the slope of a section σ : V → TV (M) at p ∈ V , let θ : V →
TV (M) be a C1 section with θ(p) = σ(p) and Dθ(Tp(V )) = H(σ(p)). Then
the slope of σ at p is

slopep(σ) = lim sup
x→p

|σ(x)− θ(x)|x
dV (x, p)

,

[21]. Since Zs and Zu are subbundles of TV (M), this also gives a natural
definition of the slope of sections σs : V → Zs and σu : V → Zu. From this,
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the Lipschitz constant of σs is Lip(σs) = supp∈V slopep(σ
s), and similarly

for σu. Now, the Lipschitz constant of a section σ(p) = (p, vs(p), vu(p)) of
Z is Lip(σ) = max{Lip(σs),Lip(σu)}, where σs(p) = (p, vs(p)) and σu(p) =
(p, vu(p)). The domain of the graph transform is Sε,δ = {σ : V → Z : Lip(σ) ≤
δ}. The norm on Sε,δ is ‖σ‖ = max{ |σs|s, |σu|u}, where | · |s and | · |u are
the natural C0 norms on sections of Zs and Zu, respectively. With this norm,
Sε,δ is complete.

V

�

y

�

F̃ 0(p, vs(p), vu(p))

�
��

�

p

� (p, vs(p), vu(p))

Fig. 2: Invariance condition (3).

To formulate the graph transform, the starting point is the F̃–invariance
condition φ ◦ σ(V ) = F̃ ◦ φ ◦ σ(V ). This is split into two coupled equations,
a part on V and a part normal to V . We put F̃ 0 = φ−1 ◦ F̃ ◦ φ and work in
N(V ). The image of φ ◦ σ is F̃–invariant if and only if

(y, vs(y), vu(y)) = F̃ 0(p, vs(p), vu(p)),

y = π ◦ F̃ 0(p, vs(p), vu(p)),
(3)

for p ∈ V , where π : N(V )→ V is the vector bundle projection. See Figure 2.
Under our hypotheses, y = π ◦ F̃ 0(p, vs(p), vu(p)) may be solved for a unique
p ∈ V given y ∈ V and σ ∈ Sε,δ for small ε, δ and θ = ‖F − F̃‖C1 . Denote
this solution by p = p(y, vs, vu). Now, given σ ∈ Sε,δ, σ(p) = (p, vs(p), vu(p)),
the graph transform of σ is the section Γ (σ)(p) = (p, ws(p), wu(p)). Here, ws

is defined by

ws(y) = P sy ◦ F̃ 0(p, vs(p), vu(p)), p = p(y, vs, vu), (4)

for y ∈ V , where P sy : Ny(V ) → Ny(V ) is the linear projection with range
Ns
y (V ) and nullspace Nu

y (V ). The unstable part wu is defined implicitly by

vu(y) = Puy ◦ F̃ 0(p, vs(p), wu(p)),

y = π ◦ F̃ 0(p, vs(p), wu(p)),
(5)

for p ∈ V , where Puy : Ny(V ) → Ny(V ) is the linear projection with range
Nu
y (V ) and nullspace Ns

y (V ). In (5), there is a unique solution for wu(p) for
small θ, ε, and δ.
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If σ = Γ (σ), then (4) and (5) imply (3). Hence σ is a fixed point of Γ if
and only if the graph of σ is F̃–invariant. By replacing F̃ with F̃N above, for
some large integer N , Γ becomes a contraction on Sε,δ whose fixed point σ∗

satisfies φ ◦ σ∗(V ) = Ṽ .

2.3 The Linear Graph Transform

Two linear graph transforms Ls and Lu are used to determine the hyperbolic
splitting Nu(Ṽ ) ⊕ T (Ṽ ) ⊕ Ns(Ṽ ) of Ṽ . Here, Ls determines Ns(Ṽ ) and Lu
determines Nu(Ṽ ). These two linear graph transforms are contractions on
certain spaces of sections. These spaces of sections are determined by the
initial data for Ls and Lu.

To illustrate the details, here Lu is formulated. Given a transverse bundle
N(Ṽ ), first the initial data for Lu in N(Ṽ ) is determined. Let Q : TṼ (M)→
TṼ (M), be, on each fiber Ty(M), the linear projection with range Ny(Ṽ ) and
nullspace Ty(Ṽ ). Initial data N(Ṽ ) = Nu,0(Ṽ )⊕Ns,0(Ṽ ) are then

Nu,0(Ṽ ) = Q(Nu,1(Ṽ )), Ns,0(Ṽ ) = Q(Ns,1(Ṽ )),

where Nu,1
y (Ṽ ), Ns,1

y (Ṽ ) are obtained from Nu
p (V ), Ns

p (V ), y = φ ◦ σ∗(p),
by parallel translation Tp(M) → Ty(M) along φ–images of fibers of N(V ),
[1, 25]. There exists α > 0, where α → 0 as ε + δ + θ → 0, such that, if
{�N(V ), T (V )}, {�N(Ṽ ), T (Ṽ )} ≥ α > 0, then this procedure produces
non-degenerate initial data Nu,0(Ṽ ), Ns,0(Ṽ ).

The domain of Lu is a space of sections whose graphs are the j–plane
bundles near Nu,0(Ṽ ) in N(Ṽ ), where j is the dimension of Nu,0(Ṽ ). These
are sections of the bundle L(Ṽ ) whose fiber at y ∈ Ṽ is the space of linear
transformations Nu,0

y (Ṽ )→ Ns,0
y (Ṽ ), L(Nu,0

y (Ṽ ), Ns,0
y (Ṽ )), [21]. The domain

of Lu is Sη = {σ : Ṽ → L(Ṽ ) : supy ‖σ(y)‖ ≤ η}, where the operator norm
‖ · ‖ is associated with the Riemann structure on TṼ (M). The space Sη is
complete with respect to the norm |σ| = supy ‖σ(y)‖.

To formulate Lu, the starting point is the invariance condition. The linear
mapping induced by DF̃ : TṼ (M) → TṼ (M) on N(Ṽ ) ⊂ TṼ (M) is Φ =
Q ◦DF̃ |N(Ṽ ) : N(Ṽ )→ N(Ṽ ). The graph of σ ∈ Sη is Φ–invariant if and only
if Φ(graph{σ(x)}) = graph{σ(y)}, y = F̃ (x), x ∈ Ṽ . This condition is split
into a part in Nu,0(Ṽ ) and a part in Ns,0(Ṽ ). Let Puy : Ny(Ṽ ) → Ny(Ṽ ) be
the linear projection with range Nu,0

y (Ṽ ) and nullspace Ns,0
y (Ṽ ). Define P sy

analogously. Then the graph of σ ∈ Sη is Φ–invariant if and only if

σ(y)(ρ̃) = P sy ◦ Φ(ρ, σ(x)(ρ)),

ρ̃ = Puy ◦ Φ(ρ, σ(x)(ρ)),
(6)

for ρ ∈ Nu,0
x (Ṽ ), x ∈ Ṽ , where y = F̃ (x). The second equation in (6) is

a linear mapping Nu,0
x (Ṽ ) → Nu,0

y (Ṽ ), ρ → ρ̃, which is invertible for small
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ε, δ, θ and η. Denote the inverse By(ρ̃) = ρ. Then, the graph transform
of σ is the section Lu(σ)(y) = P sy ◦ Φ ◦ (id, σ(x)) ◦ By for y ∈ Ṽ . Here,
(id, σ(x)) : Nu,0

x (Ṽ )→ Nx(Ṽ ) is (id, σ(x))(ρ) = (ρ, σ(x)(ρ)).
The graph of σ is Φ–invariant if and only if σ is a fixed point of Lu. By

replacing Φ with ΦN above, for some large integer N , and for ε, δ, θ and η
small, Lu is a contraction on Sη whose fixed point σ∗ gives the Φ–invariant
bundle Nu(Ṽ ). The formulation of Ls is analogous.

To summarize, one step of the proposed continuation algorithm has two
parts. The initial data is an F–invariant manifold V with hyperbolic splitting
Nu(V )⊕T (V )⊕Ns(V ). The first step uses the graph transform Γ on V with
Nu(V ) ⊕ T (V ) ⊕ Ns(V ) to determine the F̃–invariant manifold Ṽ . That is,
starting with the zero section σ0, Γ is iterated, Γ i(σ0) → σ∗ in C0 norm as
i→∞. The second step uses linear graph transforms Ls and Lu together with
initial data determined by Ṽ and Nu(V ) ⊕ T (V ) ⊕ Ns(V ) to determine the
hyperbolic splitting Nu(Ṽ ) ⊕ T (Ṽ ) ⊕Ns(Ṽ ) of Ṽ . Now the first and second
steps are repeated with initial data Ṽ , Nu(Ṽ )⊕ T (Ṽ )⊕Ns(Ṽ ).

3 Discrete Sections

In this section, discrete versions of V , its hyperbolic splitting, transverse bun-
dle and sections of the transverse bundle are constructed. From this, the dis-
crete version of the graph transform in Section 4 follows. Here, the manifold
M = Rn with the constant Riemann metric induced by the usual inner prod-
uct. This is not, in principle, a reduction of the generality of the method, since
V may be embedded in Rn and the property of normal hyperbolicity (2) is
independent of the Riemann structure.

The initial manifold V is approximated by a geometric simplicial complex
C ⊂ Rn supporting V ⊂ Rn, [6, 26]. Recall that the polyhedron P ⊂ Rn of
C is the set of all points in the simplices of C with the subspace topology. A
simplicial complex C supports V if the vertices of all simplices are in V and
P is homeomorphic to V . If H is the maximal diameter of the simplices of C
then P converges to V in Lipschitz norm as H → 0. Denote by C1 . . . CN the
d–simplices of C, d = dim V . For the uniformity of the polynomial approxima-
tions on each Ci as H → 0, it is required that {Ci}Ni=1 be a regular family. This
means that, if hi is the diameter of Ci and ρi the supremum of the diameters
of the inscribed spheres of Ci, then hi/ρi is bounded uniformly for all i and
H → 0, [8].

Next, discrete approximations to the transverse bundle and hyperbolic
splitting of V are described. The approximation to the hyperbolic splitting will
be given by vector bundles Ns(P ) and Nu(P ), where N(P ) = Ns(P )⊕Nu(P )
is the transverse bundle associated with a tubular neighborhood of P .

To be specific, a tubular neighborhood of P is induced by a transverse
field of k0–planes μ : P → Gn,k0 = the Grassmann manifold of k0–planes of
Rn, k0 = codimV , provided μ is locally Lipschitz with respect to Riemannian
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metrics [20, 32]. Note that the approximation to the hyperbolic splitting sat-
isfies Nx(P ) = Ns

x(P ) ⊕ Nu
x (P ) ⊂ Tx(Rn), x ∈ P . Here, Tx(Rn), x ∈ P , are

as usual identified with the ambient space Rn containing V and also the un-
derlying space Rn of the Grassmann manifold via the standard basis. By this
identification, the field μ gives a transverse bundle N(P ). In fact, the field μ
is made up of two parts, μ(x) = μ1(x) ⊕ μ2(x), x ∈ P , where μi : P → Gn,ki

for i = 1, 2, k1 = dimNs(V ) and k2 = dimNu(V ). Here, μ1 gives Ns(P ) and
μ2 gives Nu(P ).

The bundle Ns(V ) is approximated by Ns(P ) as follows. The given N(V )
induces a homeomorphism ψ : P → V . Let Ns,0(P ) be the vector bundle over
P whose fiber at y ∈ P is Ns

ψ(y)(V ). To approximateNs(V ), the Lipschitz field
ϑ : P → Gn,k1 , ϑ(y) = Ns,0

y (P ), is approximated by a field μ1 : P → Gn,k1 .
The field μ1 is constructed by interpolating a given finite set of data points

in Gn,k1 . These data points are the k1–planes {Ns
y (V ) : y ∈ C0}, where C0 is

the set of vertices of C. The interpolation is performed in the space of frames
for the k1–planes of Gn,k1 . Since the same procedure is used for μ2, in the
following we will use k to denote a variable which may be k1 or k2. Recall
that Fn,k, the space of k–frames in Rn, k ≤ n, is given the structure of a
smooth manifold by its natural identification with the space of n×k matrices
of rank k. The space of n× k matrices of rank k is a smooth manifold due to
its identification with an open subset of Rnk, [1].

In the case k = 1, the following method may be used to interpolate the k–
plane fibers at the vertices of a d–simplex Ci. Given d+1 nearby 1–plane fibers
at the vertices of Ci, choose d + 1 unit vector bases b1 . . . bd+1 for the fibers,
all contained in a small neighborhood in the frame manifold. Then a basis for
the interpolating 1–plane fiber at the barycentric coordinates (t1, . . . , td+1) [7]
is obtained by normalizing the vector v = t1 · b1 + . . . + td+1 · bd+1. This is
numerically practical since the nearness of the bases b1 . . . bd+1 implies that
|v| is near one.

For the construction of discrete k–plane bundles in the case k > 1, see
[4]. Here, plane rotation matrices are used to interpolate special orthonormal
bases for the k–plane fibers at the vertices of a d–simplex.

Next, a discrete approximation of a section in Sε,δ is constructed. The field
of k0–planes μ : P → Gn,k0 induces a vector bundle N(P ) with base space
P , whose fiber at x ∈ P is the k0–plane μ(x). This N(P ) gives a tubular
neighborhood of P . Analogous to the approach in Section 2, we work in a
neighborhood of the zero section in N(P ), which is equivalent to a neighbor-
hood of P in Rn. Any Cr, r ≥ 1, manifold Ṽ Lipschitz–near V corresponds to
the graph of a section σ of N(P ), for small H . The section σ is Cr on each Ci.
A candidate manifold Ṽ is approximated by a section σD of N(P ) which is
polynomial on each Ci in appropriate coordinates. On each Ci, σD is a polyno-
mial map into the fibers of N(P ). In fact, N(P ) = Ns(P )⊕Nu(P ), where the
fiber of Ns(P ) at x ∈ P is the k1–plane μ1(x) and the fiber of Nu(P ) at x ∈ P
is the k2–plane μ2(x). The approximating section is σD(x) = (x, vs(x), vu(x)),
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Fig. 3: Approximation to Ṽ , attracting case, p = 2.

where vs(x) ∈ Ns
x(P ), vu(x) ∈ Nu

x (P ). In appropriate coordinates, on each
Ci, vs and vu are Lagrange polynomials of order p ≥ 1, [7].

The section σ on Ci is approximated by interpolating a discrete data set
consisting of the values of σ at certain points of Ci. The discrete data set for
σD on Ci consists of the points of intersection of the graph of σ in NCi(P )
with the fibers Nx(P ), for points x in the principal lattice of order p of Ci.
See Figure 3. The principal lattice of order p of Ci, denoted Σi, is the set of
points in Ci with barycentric coordinates b1 . . . bd+1 ∈ {0, 1/p . . . (p− 1)/p, 1},
[7]. Denote the points of Σi by xi,j ∈ Ci ⊂ P , j = 1 . . .m. Then the points of
intersection of the graph of σ in NCi(P ) with the fibers Nx(P ), x ∈ Σi, are

(xi,j , vsi,j , v
u
i,j) ∈ NCi(P ), for some vsi,j ∈ Ns

xi,j
(P ), vui,j ∈ Nu

xi,j
(P ),

j = 1 . . .m. The discrete section σD is composed of stable and unstable parts,
vs(x) and vu(x). Here, vs(x), x ∈ Ci, is fitted to vsi,j , j = 1 . . .m, and vu(x),
x ∈ Ci, is fitted to vui,j , j = 1 . . .m.

Coordinates on Ns
Ci

(P ), i = 1 . . .N , are induced by smooth orthonor-
mal moving frames. Namely, an orthonormal basis of Ns

x(P ) is given by the
columns of an n × k1 matrix Ei(x) which depends smoothly on x ∈ Ci.
For each x ∈ Ci, this matrix induces an invertible linear transformation
ξi(x) : Rk1 → Ns

x(P ), ξi(x)(ρ) = Ei(x)ρ. There is a unique Lagrange polyno-
mial ηsi : Ci → Rk1 of total degree p fitting the data

ηsi (xi,j) = ξi(xi,j)
−1(vsi,j), j = 1 . . .m,

[7, 8]. Now put vs(x) = ξi(x) ◦ ηsi (x) for x ∈ Ci.
The construction of vu is analogous to the construction of vs. The resulting

approximating section σD(x) = (x, vs(x), vu(x)) of N(P ) is continuous. If Ṽ
is of smoothness class Cp+1, σD is an approximation to σ of order p. That is,
sup{ |v(x) − vD(x)|x : x ∈ P} = O(Hp+1) as H → 0, where σ(x) = (x, v(x))
and σD(x) = (x, vD(x)).
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4 The Discrete Graph Transform

In this section the discrete graph transform ΓD, used to approximate Ṽ , is
formulated. This is done in Sections 4.1 and 4.2 by replacing the components
of the graph transform described in Section 2 with the discrete counterparts of
Section 3. Namely, N(V ) = Nu(V )⊕Ns(V ) is replaced by N(P ) = Nu(P )⊕
Ns(P ) in Section 4.1 and the sections σ of N(V ) are replaced by discrete
sections σD of N(P ) in Section 4.2.

In addition, the discrete linear graph transforms LuD and LsD, used to ap-
proximate the hyperbolic splitting of Ṽ , are formulated. The approximations
of the stable and unstable bundles, Ns(P ) and Nu(P ), lead to LsD and LuD in
Section 4.3.

4.1 The Graph Transform of Sections of N(P )

In this section, the graph transform is formulated as in Section 2.2, replacing
N(V ) = Nu(V )⊕Ns(V ) by N(P ) = Nu(P )⊕Ns(P ). The difference between
this section and Section 2.2 is that here N(P ) is Lipschitz rather than smooth.

The Lipschitz constant of a section σs of Ns(P ) is defined as follows.
First, N(P ) induces a homeomorphism ψ : V → P . Suppose Ns(V ) is the
vector bundle over V whose fiber at p ∈ V is Ns

ψ(p)(P ). Since Ns(V ) is a
subbundle of TV (M), the Lipschitz constant of the section σs ◦ ψ of Ns(V )
is defined in Section 2. Hence, Lip{σs} = Lip{σs ◦ ψ}, and similarly for σu.
Now, Lip{σ} for a section σ of N(P ) is defined as in Section 2.2. Suppose
Z = Z(ε) = {(x, v) ∈ N(P ) : |v|x ≤ ε} and Sε,δ = {σ : P → Z : Lip(σ) ≤ δ}.
The space Sε,δ with the C0 norm ‖ · ‖ described in Section 2.2 is complete.

Given σ ∈ Sε,δ, σ(x) = (x, vs(x), vu(x)), the graph transform of σ is a
section Γ (σ)(x) = (x,ws(x), wu(x)) of N(P ). Here, ws(x) is the stable part
of the intersection of the F̃ 0–image of the graph of σ with the fiber Nx(P ).
Thus, to define ws(x) for a given x ∈ P , first solve

x = π ◦ F̃ 0(p, vs(p), vu(p)), (7)

for p ∈ P , where π : N(P ) → P is the vector bundle projection. In (7) we
are solving for the unique p ∈ P such that F̃ 0 ◦ σ(p) is contained in the fiber
Zx(P ). Equation (7) has a unique solution for p ∈ P , provided ε, δ, θ and H
are small. Denote this solution by p = p(x, vs, vu). Now, ws(x) is given by the
formula

ws(x) = P sx ◦ F̃ 0(p, vs(p), vu(p)), (8)

for x ∈ P , where P sx : Nx(P ) → Nx(P ) is the linear projection with range
Ns
x(P ) and nullspace Nu

x (P ).
The unstable part wu is defined implicitly by eliminating x in

vu(x) = Pux ◦ F̃ 0(p, vs(p), wu(p)), x = π ◦ F̃ 0(p, vs(p), wu(p)), (9)
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for p ∈ P , where Pux : Nx(P ) → Nx(P ) is the linear projection with range
Nu
x (P ) and nullspace Ns

x(P ). In (9) we are solving for the vector w = wu(p) ∈
Zup (P ) such that the F̃ 0–image of (p, vs(p), w) has unstable component in the
graph of vu. There is a unique solution for wu(p) in (9) for small ε, δ, θ
and H . The proof that there are unique solutions in (7) and (9) follows from
the Lipschitz implicit function theorem [12, page 207]. As in Section 2.2, by
replacing F̃ with F̃N if necessary, Γ becomes a contraction on Sε,δ whose fixed
point gives the F̃–invariant manifold Ṽ .

4.2 The Discrete Graph Transform

In this section, the formulation of ΓD started in Section 4.1 is finished. The
domain of Γ from Section 4.1 is restricted to the subset of Sε,δ consisting
of discrete sections. For σD ∈ Sε,δ, where σD is a discrete section of the
form constructed in Section 3, Γ (σD) is not a discrete section. Thus, define
ΓD(σD) = I ◦ Γ (σD), where I ◦ σ is the discrete section approximating σ
described in Section 3. Whether ΓD leaves Sε,δ invariant depends on the effect
I has on both the C0 norm and the Lipschitz constant of sections in Sε,δ.

To be precise, a formula for I(σ) is obtained. A section σ ∈ Sε,δ is

σ(x) = (x, ξsi (x) ◦ fsi (x), ξui (x) ◦ fui (x)), x ∈ Ci (10)

for some fsi : Ci → Rk1 and fui : Ci → Rk2 . Here, ξsi and ξui are defined in
Section 3. Recall that ξsi (x) : Rk1 → Ns

x(P ), ξsi (x)(ρ) = Esi (x)ρ, where the
columns of the n × k1 matrix Esi (x) form an orthonormal basis for Ns

x(P ),
x ∈ Ci. The description of ξui (x) is analogous. Recall that Σi, defined in
Section 3, is the principal lattice of order p ≥ 1 of the d–simplex Ci. Then
I(σ) is the discrete section σD of N(P ) whose data on Ci consists of the points
of intersection of the graph of σ in NCi(P ) with the fibers Nx(P ), x ∈ Σi. To
be specific,

I(σ)(x) = (x, ξsi (x) ◦ Lsi ◦ fsi (x), ξui (x) ◦ Lui ◦ fui (x))

for x ∈ Ci, where Lsi and Lui are the standard Lagrange interpolation operators
on functions on Ci. Here, the Lagrange interpolation operators are defined as
follows. Given f : Ci → Rk1 , Lsi ◦ f : Ci → Rk1 is the unique polynomial
of total degree p with Lsi ◦ f(x) = f(x) for x ∈ Σi. The definition of Lui is
analogous.

The maximum factor of growth of the C0 norm of a section under I is
Cp = sup{ ‖I(σ)‖/‖σ‖ : σ ∈ Sε,δ}. The maximum factor of growth of the
Lipschitz constant of a section under I is C′p = sup{Lip{I(σ)}/Lip{σ} : σ ∈
Sε,δ}. Here, Cp and C′p are bounded as H → 0. The Lipschitz constant of I is
also bounded by Cp for p ≥ 1. If Cp = C′p = 1, I has no deleterious effect on
Γ , and ΓD is a contraction on Sε,δ with no adjustments to any parameters.
In general, however, Cp, C′p > 1. Note that Cp and C′p are smaller for smaller
p ≥ 1. Even for p = 1, though, C′p > 1.
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To deal with Cp > 1 or C′p > 1, one of the parameters of Γ is modified. For
simplicity, consider the attracting case. Suppose that 0 < α < 1 is the factor
of (weakest) normal contraction toward V under F . Also, 0 < μ < 1 from (2)
is a bound on α/{the factor of (strongest) tangential contraction under F}.
Given σ ∈ Sε,δ, the C0 norm and Lipschitz constant of Γ (σ) are multiplied by
factors cαN + o(1) and cμN + o(1), respectively, as ε+ δ+ θ+H → 0. The C0

norm and Lipschitz constant of ΓD(σ) are multiplied by factors Cp cαN +o(1)
and C′p cμ

N +o(1), respectively. Thus, by choosing N large enough, we obtain
ΓD : Sε,δ → Sε,δ. Also, ΓD is a contraction since

Lip{ΓD} ≤ Lip{I}Lip{Γ} = Cp cα
N + o(1)

as ε+ δ + θ +H → 0.
Alternatively, it is possible to estimate Lip{I(σ)} using the constant C′′p =

H sup{Lip{I(σ)}/‖σ‖ : σ ∈ Sε,δ}, which is bounded as H → 0. In this case,
there exists a constant c > 0 and a positive function ω(H) → 0 as H → 0,
such that the following holds. If ε = cHδ, ω(H) < cδ, θ < cε, δ is sufficiently
small and N sufficiently large, then ΓD : Sε,δ → Sε,δ is a contraction [2].
This result does not use the full hypothesis of normal hyperbolicity, but only
the existence of a C1, 0–normally hyperbolic manifold Ṽ , [21]. This explains
why ΓD is a contraction, in practice, for some dynamical systems even in the
absence of normal hyperbolicity.

In either of the scenarios in the preceding two paragraphs, ΓD has a fixed
point σ∗D ∈ Sε,δ, where φ ◦ σ∗D(P ) → Ṽ in C0 norm as H → 0. In fact,
φ ◦ σ∗D(P ) → Ṽ in Lipschitz norm as H → 0 if p = 1 or r ≥ 2. In addition,
if Ṽ is of smoothness class Cp+1, then φ ◦ σ∗D(P ) is a C0 approximation to Ṽ
of order p.

4.3 The Discrete Linear Graph Transform

This section deals with the computation of the approximate hyperbolic split-
ting of Ṽ . In Section 4.2, an approximation φ ◦ σ∗D(P ) to Ṽ was obtained
for H → 0. The simplicial complex C̃ with vertices φ ◦ σ∗D(C0), where C0 is
the set of vertices of P , supports the manifold φ ◦ σ∗D(P ). Suppose P̃ ⊂ Rn

is the polyhedron of C̃ and N(P̃ ) is a given transverse bundle. Given such
an N(P̃ ), the approximate hyperbolic splitting of Ṽ is given by a splitting
N(P̃ ) = Nu(P̃ )⊕Ns(P̃ ).

In this section, the discrete linear graph transforms LuD and LsD are used
to determine Nu(P̃ ) and Ns(P̃ ). Here it is assumed that N(P̃ ) and N(P )
are approximately normal in the following sense. Each d–simplex subspace
Pi, i = 1 . . .N , of P is a manifold with boundary with tangent bundle T (Pi).
Then

inf{�Nx(P ), Tx(Pi) : all Pi containing x, x ∈ P} → π/2

as H → 0. Next, LuD is formulated. The formulation of LsD is analogous.
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The initial data for LuD is a splitting N(P̃ ) = Nu,0(P̃ ) ⊕ Ns,0(P̃ ). This
splitting is obtained from N(P ) = Nu(P ) ⊕ Ns(P ) by parallel translation
followed by projection onto the fibers of N(P̃ ) ⊂ TP̃ (Rn) using Q, as in
Section 2.3. To be specific, suppose π is the vector bundle projection of N(P ).
Then Nu,1

y (P̃ ), Ns,1
y (P̃ ) are obtained from Nu

p (P ), Ns
p (P ), p = π ◦φ−1(y), by

parallel translation Tp(Rn) → Ty(Rn) along φ–images of fibers of N(P ). In
the present case, parallel translation is trivially defined by the identification
of Tx(Rn), x ∈ Rn, with the ambient space Rn. In the present setting,

Q : TP̃ (Rn)→ N(P̃ ) ⊂ TP̃ (Rn),

is, on each fiber Tx(Rn), the linear orthogonal projection with range Nx(P̃ ).
The initial data are then

Nu,0(P̃ ) = Q(Nu,1(P̃ )), Ns,0(P̃ ) = Q(Ns,1(P̃ )).

This procedure produces non-degenerate initial data for ε+ δ + θ +H → 0.
As in Section 2.3, L(P̃ ) is the bundle whose fiber at y ∈ P̃ is the space

of linear transformations Nu,0
y (P̃ )→ Ns,0

y (P̃ ). The domain of LuD is a subset
of the space of sections Sη = {σ : P̃ → L(P̃ ) : supy ‖σ(y)‖ ≤ η}, where the
operator norm ‖ · ‖ is associated with the Riemann structure on TP̃ (Rn). The
space Sη is complete with respect to the norm |σ| = supy ‖σ(y)‖.

The domain of LuD is the subset of Sη consisting of discrete sections. A
discrete section in Sη is constructed using the construction of a discrete field
of k2–planes μ : P̃ → Gn,k2 in Section 3. A discrete section σD of L(P̃ ) is
constructed from given data {σD(x) ∈ Lx(P̃ ) : x ∈ C̃0}, where C̃0 is the set
of vertices of P̃ , as follows. Using the method of Section 3, construct the field
μ : P̃ → Gn,k2 of k2–planes determined by the set of k2–plane data points{

graph{σD(x)} ⊂ N(P̃ ) ⊂ TP̃ (Rn) : x ∈ C̃0
}
.

The discrete section σD is then uniquely characterized by graph{σD(x)} =
μ(x), x ∈ P̃ .

To construct LuD, first the linear graph transform Lu is formulated in
the present setting, replacing N(Ṽ ) by N(P̃ ). Thus, instead of a smooth
manifold and transverse bundle, here they are only Lipschitz. In addition, the
formulation of Lu in this section is slightly different from the formulation of
Lu in Section 2.3 because P̃ is not F̃–invariant. Second, the domain of Lu is
restricted to discrete sections, LuD(σD) = I ◦ Lu(σD), σD ∈ Sη. Here, for σ ∈
Sη, I(σ) is the discrete section of L(P̃ ) defined by the data {σ(x) : x ∈ C̃0}.

To formulate Lu, the invariance condition is derived. To define the mapping
Φ induced by DF̃ on N(P̃ ), suppose π is the vector bundle projection of N(P̃ )
and φ : Z → U is the homeomorphism, defined in Section 2.1, associated with
the tubular neighborhood of P̃ induced by N(P̃ ). Then the linear mapping
induced by DF̃x : Tx(Rn)→ Ty(Rn), y = F̃ (x), x ∈ P̃ , on N(P̃ ) is
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Φ = Q ◦ γ ◦DF̃ |N(P̃ ) : N(P̃ )→ N(P̃ ).

Here γ : Ty(Rn) → Tp(Rn), p = π ◦ φ−1(y), y ∈ U , is parallel translation.
Note that y ∈ U for small H because P̃ → Ṽ in C0 norm as H → 0.

Given a section σ ∈ Sη, the linear graph transform Lu(σ) is characterized
by the condition Φ(graph{σ(x)}) = graph{Lu(σ)(y)} where y = π◦φ−1◦F̃ (x).
To calculate Lu(σ)(y) for a given y ∈ P̃ , first solve y = π ◦ φ−1 ◦ F̃ (x)
for x ∈ P̃ . Next, given an orthonormal basis e1 . . . ek2 for Nu,0

y (P̃ ), solve
ei = Puy ◦ Φ(ρi, σ(x)(ρi)) for ρi ∈ Nu,0

x (P̃ ), i = 1 . . . k2. Then Lu(σ)(y) is
given by the formula

Lu(σ)(y)(ei) = P sy ◦ Φ(ρi, σ(x)(ρi)),

i = 1 . . . k2. If Φ is replaced by ΦN , then Lu : Sη → Sη is a contraction for
ε+ δ + θ + η +H small and N large.

Next, conditions are determined which guarantee LuD(σD) ∈ Sη for σD ∈
Sη and that LuD : Sη → Sη is a contraction. Recall LuD(σD) = I ◦ Lu(σD) for
σD ∈ Sη. Thus, the norm of I(σ), σ ∈ Sη and the Lipschitz constant of I on
Sη must be estimated. For σ ∈ Sη, |I(σ)| ≤ η + o(1) and Lip{I} = 1 + o(1)
as H → 0. Thus, LuD : Sη → Sη is a contraction for ε + δ + θ + η + H small
and N large.

The fixed point σ∗D ∈ Sη of LuD gives an approximation to Nu(Ṽ ) in the
following sense. Suppose γ : Nx(Ṽ ) → Ny(P̃ ), y = π ◦ φ−1(x), is parallel
translation and σ is a section of L(P̃ ) satisfying graph{σ(y)} = γ(Nu

x (Ṽ )),
y = π ◦ φ−1(x), y ∈ P̃ . Then |σ − σ∗D| → 0 as H → 0.

5 Numerical Implementation

In this section, a specific computer implementation of the discrete graph trans-
form is outlined. In Section 5.1, a practical numerical approach for solving
equations (7), (8) and (9) is proposed. The main part is solving (7), as well as
the second equation in (9), for a point p ∈ V . Note that this is a global prob-
lem. In Section 5.2, numerical conditioning and error for these problems is
discussed. Also, some important smoothing techniques are mentioned. These
are useful for stabilizing a computation in which non-smooth data appears.

The discrete graph transform/linear graph transform algorithm takes as
input an approximation to V and its hyperbolic splitting. It returns as out-
put an approximation to Ṽ and its hyperbolic splitting. Then, the algorithm
may be repeated taking as input the newly computed data. In practice,
the input/output to the algorithm are the following: (i) A polyhedron P
Lipschitz–near a Cr F–invariant submanifold V ⊂ Rn, r ≥ 1. (ii) Approx-
imately normal fibers Nx(P ), x ∈ C0 = the vertices of P , and a splitting
Nx(P ) = Nu

x (P )⊕Ns
x(P ), x ∈ C0, which is near the hyperbolic splitting.
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The graph transform algorithm, which returns as output an approximation
to Ṽ , is the subject of Section 5.1. The linear graph transform algorithm, which
returns as output an approximation to the hyperbolic splitting of Ṽ , will not
be discussed further here. It is less complicated than the graph transform
algorithm since it presents no additional nonlinear equations to solve.

5.1 The Discrete Graph Transform Algorithm

The graph transform algorithm starts with the zero section σ0
D of Z(P ) and

for i ≥ 0 repeats (graph transform step) until the convergence criteria are
met. The graph transform step takes as input a discrete section σiD of Z(P )
and returns as output a discrete section σi+1

D = ΓD ◦ σiD of Z(P ). Here,
Z(P ) = {(x, v) ∈ N(P ) : |v|x ≤ ε} is from Section 4.1 and ΓD is from Section
4.2. The convergence criteria for the graph transform are the following. The
iteration of (graph transform step) is stopped when |σi+1

D − σiD| < error and
the contraction factor |σj+2

D −σj+1
D |/|σj+1

D −σjD| < 1 is approximately constant
for all j < i sufficiently large [5].

The graph transform step consists of the following. Recall that Σi, defined
in Section 3, is the principal lattice of order p ≥ 1 of the d–simplex Ci. A
discrete section of Z(P ) is determined by a discrete set of data points, one
in each fiber Zx(P ), x ∈ G =

⋃
{Σi : i = 1 . . .N} ⊂ P . Thus for the graph

transform step, the input is the set of data points σiD(x), x ∈ G, and the
output is the set of data points σi+1

D (x) = (ΓD ◦ σiD)(x), x ∈ G. The sections
have stable and unstable parts, σiD(x) = (x, vs,i(x), vu,i(x)) and σi+1

D (x) =
(x, vs,i+1(x), vu,i+1(x)). Hence, the graph transform step has two independent
stages, one for determining the stable part vs,i+1(x), x ∈ G and one for
determining the unstable part vu,i+1(x), x ∈ G.

Some notation used below is φ, defined in Section 2.1 and F̃ 0 = φ−1◦F̃ ◦φ,
defined in Section 2.2.

Graph transform step: Stable part
For x ∈ G:
1. Put vs = vs,i, vu = vu,i in (7) and (8).
2. Solve (7) for p ∈ P .

2.1 Determine a neighborhood containing p ∈ P .
Aj ≡ ∪{Ck : Ck ∩ Cj �= ∅} for j = 1 . . .N .
Find j∗ ∈ {1 . . .N} with F̃ 0 ◦ σiD(Aj∗) ∩ Zx(P ) �= ∅.
(a) C0

j ≡ vertices of Cj , j = 1 . . .N .
(b) Bj ≡ d–simplex with vertices φ ◦ F̃ 0 ◦ σiD(C0

j ), j = 1 . . .N .
(c) For j = 1 . . .N : Test Bj ∩ φ(Zx(P )) �= ∅. If true, return j = j∗.

2.2 Locate p ∈ Aj∗ to a desired tolerance.
(a) Search for p in each Ck ⊂ Aj∗ using a standard root finding method

[14].
(b) If no root found in (a), search Ck in successively larger regions

around Aj∗ .
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3. Evaluate (8) at p to obtain vs,i+1(x) = ws(x).

In 2.1, a simple geometrical test is used to find Aj∗ . This step is typically only
necessary for i = 0, the same j∗ may be used for i > 0, since the location of
p ∈ P may not change much as i increases. The approach in 2.1 is justified by
the fact that σiD is kept approximately flat over Cj and F̃ 0 is well approximated
by its linearization over the set σiD(Cj) as H → 0.

Graph transform step: Unstable part
For p ∈ G:
1. Put vs = vs,i, vu = vu,i in (9).
2. Solve (9) for w = wu(p) ∈ Zup (P ).

Comment: Use a standard root finding method [14] with initial guess w =
0. Function evaluations in the root finding method require a call to the
following subroutine.
2.1 Given w ∈ Zup (P ), solve the second equation in (9) for x = x(w) ∈ P .

(a) y ≡ φ ◦ F̃ 0(p, vs,i(p), w).
(b) x ∈ P is the point near y with y − x parallel to φ(Zx(P )). There

are two stages to solving for x, similar to Stable part step 2.
3. Put vu,i+1(p) = w.

5.2 Numerical Conditioning and Smoothing Techniques

The global equations (7), (8) and (9) associated with the graph transform
pose a numerically well-conditioned problem. To be specific, solving (7) for
p ∈ P is numerically optimally conditioned for N(P ) chosen perpendicular
to V , as is evaluation of the second equation of (9). In practice, N(P ) is an
approximate normal bundle in the sense of Section 4.3. In the evaluation of
(8) at p, hyperbolicity damps the numerical discretization and rounding error.
Solving (9) for wu is a well-conditioned problem. This is because the normal
hyperbolicity of V implies that small errors in wu produce large deviations in
the right hand side of the first equation of (9).

As discussed in Section 4.2, it may be necessary to control the Lipschitz
constant of discrete sections σD(x) = (x, vs(x), vu(x)), x ∈ P . The Lipschitz
constant of sections is effectively controlled in practice using two techniques.
The first is even redistribution of the grid points G. This replaces P with a
nearby polyhedron P ′ with each Ci ⊂ P ′ close to the shape of the standard d–
simplex. The second technique is local fairing [11] of the data vs(x) ∈ Ns

x(P )
and vu(x) ∈ Nu

x (P ), x ∈ Σi, which smooths out graph{σD}. Consider for
example the attracting case. Here, the data σiD(x) ∈ Zx(P ), x ∈ Σi, is tested
for large deviations. If an undesirable data point σiD(x∗) is detected, it is
replaced by the average of σiD(x), x �= x∗, x ∈ Σi. To be precise, the average
y ∈ Rn of φ ◦ σiD(x) ∈ Rn, x �= x∗, x ∈ Σi, is obtained. Then, y is projected
onto the affine k1–plane φ ◦ Z∗x(P ) to obtain z ∈ φ ◦ Z∗x(P ) ⊂ Rn. The data
point σiD(x∗) is replaced by φ−1(z). Prior to these steps, it is important to
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Fig. 4: Enzyme reaction surfaces: left kp = 0.1, k1 = 103; middle kp = 0.1, k1 = 1.0;
right kp = 1.0, k1 = 1.0.

use local averaging of the fibers of N(P ), to make Nx(P ), x ∈ Ci, more nearly
parallel. For each x ∈ C0, Nx(P ) is replaced by the average of the Ny(P ) for
y ∈ C0 near x. This is sometimes necessary because, in practice, small bumps
in P can introduce degeneracies in its approximate normal bundle N(P ).

6 An Application

This section deals with a problem of chemical kinetics. The ‘slow–transient’
surface of an enzyme reaction is computed for a variety of parameter values.
This application requires a modification to the algorithm of Section 5. This
modification allows the computation of just a part of an invariant manifold.
This is a necessary adaptation in cases where the invariant manifold is so large
that its data cannot be held in computer memory.

The ‘slow–transient’ surface, in the phase space of chemical species con-
centration variables, is useful in chemical kinetics for model reduction. After a
short time interval, the n–tuple of chemical species concentrations is restricted
to the surface, at least for experimentally measurable tolerances. The dynam-
ics of the reaction after this short time interval is described by the dynamics
on the surface. In principle, once this surface is known, the system may be
reduced to a 2D system on the surface. In chemical kinetics, the steady state
and equilibrium approximations, as well as variations on these, have been
used to approximate the slow–transient surface [13]. These approximations
are typically valid in limiting cases.

In the enzyme reaction model

ṡ = −k1(e0 − c− q) s+ k−1 c
ċ = k1(e0 − c− q) s− (k−1 + k2) c+ k−2 q
q̇ = k2 c− (k−2 + kp) q

, (s, c, q) ∈ R3, (11)
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the variables s, c and q are the concentrations of different chemical species
undergoing chemical reaction [30]. Here, k1, k−1, k2, k−2, kp > 0 are the rate
constants and e0 > 0 is the concentration of the enzyme, taken to be constant.
The attracting equilibrium is 0 in the physical region {0 ≤ s < ∞, c + q ≤
e0, 0 ≤ c, q} ⊂ R3. In Figure 4, the part of the slow–transient surface in the
physical region restricted to {0 ≤ s ≤ 2} is computed for three parameter
choices. In every case, e0 = 1.0, k−1 = 1.0, k2 = 1.0 and k−2 = 1.0. The
middle surface is computed by alternate means in [30].

In the present example, the dynamics are described by a nested hierarchy
of attracting invariant manifolds in 3D. This is an equilibrium point contained
in a curve contained in a surface, the slow–transient surface, which separates
the physical region of phase space. The rate of attraction toward the surface
is faster than toward the curve in the surface. The rate of attraction toward
the curve in the surface is faster than toward the point in the curve. The part
of the slow–transient surface in the physical region restricted to {0 ≤ s ≤ 2}
is a manifold with boundary S. A technical obstacle here is that S is only part
of an invariant surface and is not overflowing invariant. For a diffeomorphism
F , a compact manifold with boundary S is overflowing invariant under F if
S ⊂ F (S0), where S0 = S \ ∂S is the interior of S. For such manifolds, the
graph transform works in principle with no modification [12]. For the present
example, a modification to the general purpose algorithm presented in Section
5 is required. Namely, local extrapolation of S at its boundary is used after
each graph transform step. This means the following. In the present case, the
order of approximation is p = 1. Thus, the output data of a graph transform
step is σiD where graph{σiD} = P is a polyhedral manifold with boundary. The
d–simplices of P whose points are on the boundary of P are flatly extended to
form a slightly larger polyhedron P ′ ⊃ P . This P ′ is used as input to the next
graph transform step. For other approaches to computing the slow–transient
surface in chemical kinetics, see [15, 16, 30].
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Summary. Invariant manifolds are important objects in the study of dynamical
systems, as well as several applications. They are challenging to compute because
even in simple systems they can be very complicated surfaces, demanding adaptive
schemes to deal with large curvatures.

This paper describes a method that represents the invariant manifold as a set of
circular disks in the tangent space, projected onto the manifold which overlap and
cover the manifold. These disks are found by integrating fat trajectories, which add
tangent and curvature information to the usual point in phase space, and integrates
these quantities along a trajectory.

Using a covering eliminates the usual problems with advancing front approaches,
and the dual of the covering is a triangulation, should one be needed.

1 Introduction

One of the more important concepts in dynamical systems is that of an in-
variant manifold. By dynamical system we mean a flow in a phase space IRn

dx
dt

= f(x), x ∈ IRn (1)

An invariant set of points in phase space is such that points on the trajectory
t ∈ (−∞,∞) passing through any point in the set are also in the set. So a
collection of trajectories through a discrete set of initial points is an invariant
set. If the initial points lie on a smooth curve and the flow f(x) is smooth, the
invariant set will be a smooth surface. This is a consequence of the smooth
dependance of trajectories on initial conditions (Figure 1.)

Any point in the initial set can be moved forward or backward along a
trajectory without changing the invariant manifold, so the curve of initial
points defining an invariant manifold is not unique, and a smooth invariant
manifold need not be defined by a smooth curve. If a smooth curve of initial
points M0 can be found for an invariant manifold M , M0 is called a global
transversal of M .
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Fig. 1: Invariant sets. (left) defined by a set of points, (right) defined by points on
a smooth curve.

For a large class of invariant manifolds M0 is part of the definition of the
manifold. For example, the unstable invariant manifold of a hyperbolic fixed
point is the image of a small ball in the unstable eigenspace of the fixed point.
However, there are interesting invariant manifolds for which finding a global
transversal is part of the problem. A periodic orbit can be found by finding
a fixed point of a Poincar’e return map. The fixed point is a global transver-
sal. Not all invariant tori have a closed global transversal, but a torus which
contains a quasiperiodic motion does, and a global transversal can be found
which is an invariant circle of a return map that is similar to the Poincaré
return map [18], [20]. There are better ways to compute periodic orbits [3]
and quasiperiodic tori [17], [19], which find M0 and M together by solving a
larger nonlinear system. The literature on all these problems is extensive, and
the citations above are not meant to be exhaustive.

Some commonly computed invariant manifolds are summarized in Table
1.

Motion Geometry M0

Fixed Pt. Point Point

Periodic Motion Closed Curve Point

Heteroclinic Motion Curve connecting two Fixed
Pts.

Point

Quasiperiodic Motion Torus Closed curve

Unstable manifold of hyper-
bolic equilibrium

IR× (k − 1) Sphere (k − 1) Sphere

Inertial manifold Attracting kd manifold (k − 1)d manifold

Table 1: Some common invariant manifolds and the manifolds of starting points
which define them.

Certain complex behaviors in dynamical systems are associated with par-
ticular configurations of invariant manifolds. However, they can also be useful
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by themselves. In orbital mechanics, for instance, it has been proposed [5],
[10] to use the unstable manifold of periodic motions (orbits) to design trajec-
tories for spacecraft “missions”. These trajectories start in an unstable orbit
about a planet or Lagrange point. To stay in the unstable orbit small thrusts
are needed. By choosing an appropriate point and direction on the unstable
manifold and burning a small amount of fuel, the vehicle can coast along a
trajectory on the invariant manifold, and reach certain destinations with no
further expense of fuel. The destination might be another unstable periodic
orbit, which would allow the spacecraft to return home.

Invariant manifolds are also commonly used in fluid flow visualization,
where they are called stream surfaces. In experiments, smoke or dye is intro-
duced into a steady flow along a wire or a tube, and swept downstream. Flow
visualization software simulates the experiment by computing the image of
the wire under the flow.

In this paper we describe an algorithm for computing a well distributed set
of points on a two dimensional invariant manifold when a global transversal
is given (a curve in IRn). The algorithm is described in detail for invariant
manifolds of dimension two and greater in [9]. The points are spaced along a set
of trajectories, and the trajectories are spaced by “fattening” the trajectories.
That is, trajectories are not allowed to pass into an interval around the other
trajectories.

2 Basic Definitions

The “forward” part of an invariant manifold M+(M0) consists of all trajec-
tories which start at a point on a smooth curve M0 ⊂ IRn. There is also a
“backward” part M−(M0), found by integrating trajectories backward in time
from M0. This is simply a change of the sign of f(x), so in what follows we
drop the superscripts ±, and consider only the forward image of M0.

The “natural” parameterization of M uses the coordinate σ of a parame-
terization of M0, and the time t. Any point on an invariant manifold M(M0)
can be written as x(σ, t) ∈ IRn where

M(M0) =
{
x(σ, t)

∣∣∣∣ x(σ, 0) = M0(σ),
d
dt
x(σ, t) = f(x(σ, t))

}
.

In many interesting cases the natural parameterization is poor (Figure 2).
The tangent vectors of the coordinate lines of the natural parameterization
are xi,σ(σ, t), and xi,t(σ, t) = f i(x(σ, t)). A poor parameterization is one where
these become nearly linearly dependant, and/or become large or small in
norm.

We use the usual tensor notation [16], where the superscript refers to
the coordinates of a vector x ∈ IRn. The subscript with a comma refers to
the derivative with respect to the subscript. We will also use the Einstein
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summation convention, where the appearance of an index twice in a product
indicates a sum over that index. The inner product of two vectors is written
xpyp, to mean

∑
p x

pyp. We will try to use p, q, r, ... for indices which are
summed over, and i, j, ... for other indices.

The metric g at a point on M(M0) is the 2× 2 matrix

g =

⎛⎝xp,σx
p
,σ x

p
,σx

p
,t

xp,tx
p
,σ xp,tx

p
,t

⎞⎠ .

A “good” parameterization is one for which g is everywhere close to the iden-
tity. That is x,σ and x,t are unit vectors, and x,t is orthogonal to x,σ.

dx
ds

dx
ds

x(s,0)

x(s,t)
f(x)

f(x)

Fig. 2: The natural parameterization. (left) A “good” parameterization, (right) two
types of “poor” parameterizations. The lower trajectory has tangent vectors that
are roughly orthogonal (that is, g is diagonal), but not unit vectors. The upper
trajectory suffers from shear, where the tangent vectors are far from orthogonal (g
has large off diagonal elements.

One way to understand the literature on computing invariant manifolds
is to consider how the natural parameterization M is improved. (A recent
survey [14] describes and constrasts the various approaches.) [11] and [13] use
a diagonal scaling, while [6], [7] and [15] use an upper triangular scaling. These
scalings are done indirectly, by adapting a mesh, and if the coordinate curves
no longer align with the trajectory, some sort of interpolation must be done.
The approach described here uses a parameterization that is locally Euclidean
near a trajectory (i.e. g in the new parameterization is the identity), and
advances points, tangents and curvature along trajectories (a fat trajectory).
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3 Fat Trajectories

In order to build an interval about a trajectory we need the tangent space and
curvature of the invariant manifold M . The interval trajectory will be the set
of points which when projected to the tangent space of the nearest point on
the fat trajectory, lie inside a disk about the origin. The radius of the disk
will be allowed to vary along the trajectory according to the curvature of the
trajectory. A good choice is R =

√
ε/2 ‖ x′′ ‖, where x′′ is the curvature and

ε controls the distance between the tangent space and the manifold (see [8]
for details).

In the natrual parameterization the t tangent vector is x,t = f(x). The σ
tangent must be integrated along a trajectory starting at M0(σ) –

d
dt
xi,σ = f i,px

p
,σ. (2)

With a little differential geometry it can be shown [9] that an orthonormal
basis xi0, x

i
1 for the tangent space which changes as little as possible along a

trajectory (Figure 3) evolves according to

d
dt
xi,j = f i,px

p
,j −

(
xp,rf

p
,qx

q
,j

)
xi,r (3)

Equation 3 is similar in form to Equation 2, but a linear combination of the
tangent vectors has been subtracted, and this maintains the orthonormality
of the basis. Evolution equations can also be found for the curvature (or more
precisely the derivatives of the tangent vectors). In the natural parameters

d
dt
xi,t,t = f i,px

p
,t

d
dt
xi,σ,t = f i,px

p
,σ

d
dt
xi,σ,σ = f i,px

p
,σ,σ + f i,p,qx

p
,σx

q
,σ

(4)

and in the orthonormal basis

d
dt
xi,j,k = f i,px

p
,j,k + f i,p,qx

p
,jx

q
,k

−(xp,rf
p
,qx

q
,j)x

i
,r,k − (xp,rf

p
,qx

q
,k)x

i
,r,j

−(xp,wf
p
,qx

q
,j,k + xp,wf

p
,q,rx

q
,jx

r
,k + xp,j,kf

p
,qx

q
,w)xi,w

(5)

Though the expressions are of course more complicated, the form of Equation
5 is the same as Equation 4 except that this time linear combinations of both
the second derivative vectors and the tangents have been subtracted.
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Initial conditions for the basis at points on M0 can be found using Gram–
Schmidt orthogonalization starting with the natural parameterization. Since
the second derivatives in the natural parameterization are easily found they
can be transformed into second derivatives in the new basis [9].

This coordinate system is analogous to the Riemannian Normal Coordi-
nates (RNC) used in general relativity to find an inertial frame along geodes-
ics. Here the trajectory plays the role of the geodesic. The coordinate system
is also a parallel transport.

f(x)

M
0

f(x)x,0

x,1

x,0

x,1

x,1

x,0
x,0

x,1

R

R

R

Fig. 3: A sketch of the new coordinate system near a trajectory. (left) Looking
“down” on M . (right) the same in space. Note that the flow direction f(x) is not
one of the two basis vectors. The lines paralleling the trajectory are a neighborhood
on M of the trajectory with width R.

Fat trajectories are neighborhoods of width R(x) about a trajectory, with
R(x) varying along the trajectory (Figure 3). To cover M , a set of points is
distributed on M0 using R(x), and fat trajectories are integrated forward from
these points. The integration is stopped if the trajectory enters a previously
integrated fat trajectory. This may leave uncovered parts of M if the flow
expands (which is common). To cover the rest of M we must locate points
and construct initial conditions for starting more fat trajectories. To do this
we use circular disks in the tangent space of the fat trajectory at points spaced
on the trajectory according to R(x). This allows us to use a representation of
the boundary of the covered part of M to locate an interpolation point.

4 Flying Disks

In [8] the author developed a method of representing manifolds as the union
of overlapping spherical balls of different radii. The representation was used
to compute implicitly defined manifolds (i.e. solutions of F (x) = 0 with F :
IRn → IRn−k), and has been used for computing other types of manifolds as
well. The approach computes an approximate “restricted Laguerre–Voronoi”
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tessellation of M based on the spherical balls. This is instead of the more
usual grid, or triangulation, though the dual Delaunay triangulation can be
used if a triangulation is required (Figure 4.) Voronoi and Delaunay diagrams
are described in [2]. The restricted Laguerre–Voronoi diagram, or restricted
power diagram, is decribed in [1], [4] and [12]. Using the Voronoi tessellation
avoids the well known problems with advancing triangulations, and the radius
of the spherical ball provides a way of equi-distributing points on M . Roughly,
points are no closer than R, or further apart than 2R.

Below we describe the two dimensional case, but the same approach works
in higher dimensions, with a polyhedral Voronoi tessellation instead of polyg-
onal tesselation.

a) b) c)

Fig. 4: A set of circular neighborhoods (a), the corresponding restricted Laguerre-
Voronoi (b) and dual Delaunay diagrams (c).

A triangulation would probably be the first choice to represent a manifold.
To iteratively find a set of points on a manifold a point on the boundary would
be identified (easily done for a triangulation) and advanced some distance
normal to the boundary. The new point would then be used to define a triangle
(or simplex in higher dimensions) which is added to the mesh. This keeps the
triangulation moving “outward” from the initial point, but there are many
cases in which the new triangle is incompatible with the existing triangulation.
That is, the new triangle overlaps the existing triangulation.

A covering is a set of neighborhoods centered at points on the manifold.
The neighboroods are allowed to overlap, as long as every point on M lies in
some neigborhood. A covering does not have the difficulty with compatibility
of new neighborhoods as triangulations (they are meant to overlap). However,
it is not obvious how to find a point near the boundary of a union of neigh-
borhoods. The polygonal Voronoi tiles provide a way to find a point on the
boundary.

Finding the Voronoi tiles is simple. The points are found at the same time,
so this is not the usual incremental computation of a Voronoi diagram, where
the points are givem. If we have one circular disk, and a square which contains
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it, then the boundary of the disk is the part of the circle inside the square.
When a second disk is added, the intersection of the circles bounding the
two disks lies on a line (in higher dimensions a plane) orthogonal to the line
between the centers of the two disks, and the part of the circle on the boundary
of the union is the part on the appropriate side of this line. If complementary
halfplanes are removed from the squares surrounding the two disks, the part of
the boundary of each disk is the part inside the resulting polygon (figure 5). By
identifying neighboring disks when a new disk is added, the Voronoi tiles (the
part of the disk inside the polygon) are updated by removing complementary
halfplanes from the new disk and each disk which it overlaps.

aD

R

R

R

D

R

a D +R  = (1-a) D +R2 2 2 2

10

0 1

1

0

2 2

a=            +
2

(R  -R  )

2 D

2

01
2

1
2

aD

Fig. 5: Updating Voronoi tiles. Each tiles starts as a square, then for each disk which
overlaps the disk the polygon is clipped against the line by the intersection of the
circles of the two disks.

When disks are in different tangent spaces, they must be projected to
a common tangent space before updating the polygons. If the radius of the
disk is small relative to the curvature of M , the projection of one disk to the
tangent space of an overlapping disk will almost be a circular disk, and the
previous procedure can be used to update the polygons. There is an error
committed, but the effect is that points that are identified as boundary points
may be slightly inside the boundary (Figure 6).

The invariant manifold M is represented as the union of the projections
of a set of circular disks onto M . This is a list, or “atlas” of “charts”, which
consist of a point on M , tangent vectors of M at that point, and a radius
(these represent the circular disk), together with a polygon (the Voronoi tile).
As points are added to the list, the polygons are updated by clipping the
polygon against a line.

To approximate a fat trajectory we start with a point x0 ∈ M0, or an
interpolated point, and compute the initial orthonormal basis and second
derivatives. This forms the first chart on the fat trajectory. The trajectory,
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a b c d

Fig. 6: On a curved surface (a) the update of a disk’s polygon is done in the disk’s
tangent space. The center of each overlapping disk is projected into the tangent
space (b), and a circle with the radius of the overlapping disk is used to update
the polygon. There is an error involved, since the neighborhood is actually on the
manifold (sketched below the surface), and the circle is distorted by the projection
onto M and then the projection into the tangent space. This process is then repeated
(c) to update the polygon of the neighboring disk. The result (d) is still part of the
boundary of the projection onto M , but we may think that a point is on the boundary
when it is actually a little inside. The size of this error is of the order of the distance
between the tangent space and M on the circle.

tangent space and curvature are integrated a distance R, and another chart
is added. This process is repeated until a maximum time is reached, or the
trajectory enters an existing chart. A sketch of a fat trajectory that has been
covered this way is shown in figure 7.

M
0

M
0

Fig. 7: Circular neighborhoods (charts) along a trajectory. (left) Looking “down” on
M . (right) the same in space, showing how the disk “rolls” and “pitches”, but does
not “yaw”.
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5 Interpolation

When there are no more points on M0 which are outside the union of charts
(Figure 8), a starting point must be found that is not on M0. A point in the
interior of the union will be inside a fat trajectory, so we use the polygons
to find a point near the boundary, where the new trajectory will leave the
interior of the union.

M 0

Fig. 8: When the manifold of starting points M0 is covered, some other point must
be found that can be used to start a new trajectory.

In [9] the author used an argument based on a modified nonlinear optimiza-
tion problem to show that such a point exists. There is a technical requirement
that is satisfied for 2d surfaces once M0 is covered, and the variation in f(x)
over the disk must be small relative to the radius of the disk. The optimization
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problem looks for a point on the boundary of the union which is furthest back
(locally) toward M0 along trajectories on M . While there is no objective in
this optimization problem, the usual optimality conditions must hold. These
conditions are that an optimum be a stable fixed point of a modified flow (on
a boundary the component of f(x) normal to the boundary is projected out).
The problem is posed on the part of M which is outside the disks, and not
further than a maximum time Tmax from M0 (measured along trajectories).

There can be no fixed points on the extrior of the union, since it takes an
infinite amount of time to reach the fixed point, and a maximum time has
been imposed. The point furthest back toward M0 must therefore lie on the
boundary of the disks. For a point on the boundary to be a fixed point, the
flow vector must lie in the positive cone of normal vectors. This is just another
way of introducing Lagrange multipliers. There are only two types of point on
the boundary, those which lie on a single circle, and those at the intersection
of two circles. For a fixed point on a single circle f(x) must be parallel to
the normal of the circle, and point away from the center of the circle. That
is, the extension of the flow vector on the boundary backward in time passes
through the center of the circle (Figure 9). However, such a point cannot be a
minimum, since it lies on a circle which curves backward in time.

At fixed points of the modified flow lying at the intersection of two circles
must have f(x) in the positive cone formed by the normals of the two circles.
The normals are parallel to lines starting at the center and passing through
the intersection point (Figure 10). That is, the extension the flow vector at
the boundary point backward in time crosses the interior of the edge between
the two centers. This point is the minimum, and if we use the point on the
edge between the centers to start a new trajectory, the initial values can be
interpolated from the values at the two centers, and if f(x) does not vary
much over a disk the new trajectory will leave the union near the intersection
point.

Intersection points can be easily found from the polygons associated with
the disks (Figure 10). They are points where an edge of the polygon crosses
the circular boundary of the disk. A list of the disks on the boundary can be
maintained (boundary disks have polygons with at least one exterior vertex).
To find an interpolation point this list is transversed, and the edges of the
polygon are tested for crossing. If one endpoint is inside and the other outside
this is trivial. If both endpoints are outside, the distance between the edge
and the center being less than the radius indicates a crossing.

6 Example

As an illustration, we consider a periodically forced pendulum with damping
(this example is from [21]). When the forcing is zero, the phase space consists
of a set of hyperbolic fixed points at x1 = (2n + 1)π, (x1),t = 0, where the
pendulum points straight up, and centers at x1 = 2nπ, (x1),t = 0 with the
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n
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f(x)
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n
an

a
x

f(x)

A

Positive Cone

Fig. 9: (left) A point x on the boundary of a single disk is a fixed point of the
modified flow if f(x) is parallel to the normal and points in the “outward” direction.
That is, the extension of f(x) backward in time passes through the center of the
disk. Moving x a little in either direction on the circle moves x further back towards
M0, so it is not the “minimum”. (right) A point x at the intersection of two circles
is a fixed point of the modifed flow if f(x) lies in the positive cone formed from
the two normals. That is, the extension of f(x) backward in time crosses the line
between centers a and b (point A). This is a local “minimum”, and a trajectory
started at A – if f does not change too rapidly over the radius of a disk – will pass
out of the interior of the disks near x. Initial values for the tangents and curvature
can be interpolated from centers a and b.

pendulum pointing down. With periodicity the phase space can be reduced
to x1 ∈ [−π, π]. Figure 11 shows the unperturbed nonlinear single pendulum.
Gravity acts on the pendulum bob and the equations are

d
dt
x1 = x2

d
dt
x2 = − sinx1

Without the forcing and dmping there is an energy E = x2
2/2−cosx1 that

is conserved on trajectories. For initial energies E > 1 the pendulum “runs”,
that is x1 continually increasing or decreasing depending on the initial velocity.
For E < 1 the pendulum oscillates about the downward pointing fixed point.
If the pendulum is started with E = 1 it will swing to the top and stop. This
last is a heteroclinic orbits shown as dark curve in Figure 11 center.

The perturbated equations, analyzed in [21] are
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f(b)
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P
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ea

eb

Fig. 10: Interpolating: (left) Some of the disks and polygons from Fig. 8. Polygons
with a vertex outside the disk indicate that the disk is on the boundary. We highlight
two polygons, Pa and Pb. (right) The edges of Pa and Pb which cross the boundary
of the disks, and two of the crossing points, a and b. All of the other edges of the
polygons have been removed. The centers that these two edges separate form an
edge. At point a the flow vector f(a) extended backward does not intersect ea,
while at the point b f(b) extends backward to cross eb. A trajectory started at the
point where the two cross will leave the union of the disks, and initial values can be
interpolated between the centers at the ends of eb.

d
dt
x1 = x2

d
dt
x2 = − sinx1 + ε (γ sin(Ωx3) sinx1 − δx2))

d
dt
x3 = 1

The perturbation is time dependant, so time is introduced as a phase space
coordinate to make the flow autonomous (a standard trick called suspending
the flow).

For small perturbations (ε << 1) there is a critical forcing amplitude

γ∗ =
4δ
πΩ

sinh
πΩ

2

For γ < γ∗ the damping removes more “energy” than the periodic forcing
puts into the system, and the pendulum eventually will spiral into the fixed
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Fig. 11: The periodically forced pendulum from [21]. (left) A periodic vertical force
is applied to the pivot, as well as a damping. (center) the behavior of the pendulum
when ε = 0. If the energy x2

1/2 − cos x1 is greater than one the pendulum swings
around and around. If the energy is less than one the pendulum oscillates (there is
no damping at ε = 0. When the energy is exactly one, the pendulum comes to rest
with the bob above the pivot. (right) with ε > 0 time becomes a variable, periodic
over 2π/Ω. Following [21] we will use this box to display the image of a line of initial
points.

Fig. 12: The periodically forced pendulum. ε = .2, γ = 1.5, δ = .2, and Ω = 5. The
calculation used 176 points on seven replicas of the fundemental region [0, π/Ω),
and those 176 start points created 84,943 disks. In addition, 48 interpolations were
needed, for a total of 91,240 disks.

point at zero (which is now the straight line (0, 0, t)). For γ ≥ γ∗ heteroclinic
tangles appear (a type of chaotic motion).

For illustration we chose M0 to be the line (x1, x2, x3) = (3.0,−0.1, x3),
which is near one of the unstable fixed points for ε = 0. Figure 12 shows the
surface that was computed. The time coordinate x3 is periodic with period
2π/Ω, and Figure 12 shows sixteen periods of x3. If we use the same compu-
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Fig. 13: (left) A closer view of the invariant manifold in Figure 12. (right) The same
invariant manifold but brought back to a single period in the forcing. The dark black
line is a trajectory starting near the fixed point at x1 = π. The mapping from the
plane t = 0 to t = 2π/Ω is used in the analysis, and the black dots are the orbit
of one point under that map. For these parameters the motion decays to the fixed
point of the map at (0, 0)

tational results and collapse it to two periods of x3 we can see some of the
structure that leads to a heteroclinic tangle and chaotic motion.
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Summary. One of the popular methods (Intrinsic Low-Dimensional Manifolds –
ILDM)) of decomposition of multiscale systems into fast and slow sub-systems for
reduction of their complexity is considered in the present paper. The method suc-
cessfully locates a position of slow manifolds of considered system and as any other
numerical approach has its own disadvantages. In particular, an application of the
ILDM-method produces so-called “ghost”-manifolds that do not have any connec-
tion to the true dynamics of the system. It is shown analytically that for two-
dimensional singularly perturbed system (for which the fast-slow decomposition has
been already done in analytical way) the “ghost”-manifolds appear. The problem
of discrimination/identification of the “ghost”-manifolds is under consideration and
two numerical criteria for their identification are proposed. A number of analyzed
examples demonstrate efficiency of the suggested approach.

1 Introduction

In this paper, following Maas and Pope [16] we consider Intrinsic Low- Di-
mensional Manifolds Method (ILDM) for systems of ordinary differential equa-
tions. The main aim of this paper is to demonstrate that application of the con-
ventional ILDM machinery can produce additional artificial objects (“ghost”
manifolds) that do not have any connection to the true slow invariant manifold
of considered system. Two various approaches for the “ghost” manifolds iden-
tification/discrimination are suggested and their application is demonstrated.

The paper is organized as follows. In Sect. 2, we give a review of sev-
eral reduction methods, which are used in combustion and chemical kinetics
problems. In Sect. 3, we give the examples of the “ghost” manifolds phenom-
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enon. In Sect. 4, we suggest two criteria for identification/discrimination of
the “ghost” objects. In Sect. 5, we conclude the results.

2 Theoretical Background

In this section the method of invariant manifolds, iterative method of Fraser,
Inflector-method, Intrinsic Low-Dimensional Manifolds (ILDM) method and
its modification (TILDM) will be briefly described.

2.1 Method of Invariant Manifolds (MIM)

Consider a singularly perturbed system of ordinary differential equations

ε
dx
dt

= f(x,y, ε) (1)

dy
dt

= g(x,y, ε) (2)

Here x ∈ �m, y ∈ �n are vectors in Euclidean space, t ∈ (t0,+∞) is a time-
like variable, 0 < ε < ε0 << 1, functions f : �m×�n → �m, g : �m×�n →
�n are supposed to be sufficiently smooth for all x ∈ �m, y ∈ �n, 0 < ε < ε0.
The values |fi(x,y, ε)|, |gi(x,y, ε)|, (i = 1, ...m; j = 1, ...n) are assumed to
be comparable with the unity as ε→ 0.

Definition 1. A smooth surface in the phase space M ∈ �m × �n × � is
called an invariant manifold of the system (1)-(2), if any phase trajectory
(x(t, ε),y(t, ε)) such that (x(t1, ε),y(t1, ε)) ∈M belongs to M for any t > t1.
If the last condition holds only for t ∈ [t1, T ], then M is called a local invariant
manifold.

The simplest examples of invariant manifolds are phase trajectory and phase
space.

The manifold’s existence leads to the fact that the analysis of the sys-
tem’s behaviour can be considerably simplified by reducing a dimension of
the system. We are interested in the invariant manifolds of dimension m (the
dimension of the slow variable) that can be represented as a graph of the
vector-valued function:

x = h(y, ε). (3)

The invariant manifolds mentioned above are called manifolds of slow motions
(this term was adopted from the nonlinear mechanics). The system’s dynamics
on this manifold is described by the equation

dy
dt

= g(h(y, ε),y, ε). (4)
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If y(t, ε) is a solution of the Eq.(4), then the pair x(t, ε),y(t, ε) where
x(t, ε) = h(y(t, ε), ε) is a solution of the original system (1)-(2), since it de-
termines a trajectory on the invariant manifold.

A usual approach in the qualitative study of (1)-(2) is to consider first the
degenerate system, which is obtained by substituting ε = 0 into the system

0 = f(x,y, 0) (5)
dy
dt

= g(x,y, 0), (6)

and then to draw conclusions for the qualitative behaviour of the full system
for sufficiently small ε. The Eq.(5) determines the slow surface. The slow sur-
face is the zeroth approximation of the slow invariant manifold. It is assumed
that the Eq.(5) has an isolated smooth solution x = h0(y). Moreover, the
next relation should take place

lim
ε→0

h(y, ε) = h0(y)

In addition, only these manifolds are important here that are stable (at-
tractive). By the famous Tikhonov’s theorem, the question of stability of an
invariant manifold can be reduced to study of its zeroth approximation sta-
bility.

Invariant manifold x = h(y, ε) of the system (1)-(2) is stable, if the real
parts of all eigenvalues of the matrix Dxf (h0(y),y, 0) are negative.

Points of the slow surface determined by (5) are sub-divided into two
types: standard points and turning points. A point (x,y) is a standard
point of the slow surface if in some neighborhood of this point the sur-
face can be represented as a graph of a function x = h0(y) such that
f(h0(y),y, 0) = 0. It means that the condition of the Implicit Function The-
orem Dxf(h0(y),y, 0) �= 0 holds and the slow surface has the dimension of
slow variable. Points where this condition does not hold are turning points of
the slow surface. In other words, turning points are defined as solutions of the
following system

f(x,y, 0) = 0

fx(x,y, 0) = 0

The asymptotic method described below can not be applied there.
Problems of existence, uniqueness and stability of invariant manifolds have

been studied by many authors. The main results of these studies can be sum-
marized in the following theorems.

Theorem 1. (Mitropolsky and Lykova, 1973) Let the system (1)-(2) satisfies
the following conditions:

(i) The equation f(x,y, 0) = 0 has an isolate solution x = h0(y) in some
domain G = {(x,y, ε) : y ∈ �n, 0 < ε < ε0, ||x− h0(y)|| ≤ ρ}.

(ii) The functions f ,g,h0 and their first and second partial derivatives are
uniformly continues and bounded in G.



58 S. Borok, I. Goldfarb, V. Gol’dshtein, and U. Maas

(iii) The eigenvalues λi(y), i = 1, 2, ..., n of the matrix Dxf(h0(y),y, 0)
satisfy the condition Re[λi(y)] ≤ −β, i = 1, 2, ..., n, y ∈ �n for some β > 0.

Then there exists an ε1 : 0 < ε1 < ε0, such that for every ε : 0 < ε < ε1
the system (1)-(2) has a unique invariant manifold x = h(y, ε), where the
function h satisfies the equality h(y, 0) = h0(y).

Theorem 2. (Strygin and Sobolev, 1988) Let the assumptions (i)-(iii) of the
previous theorem hold. Then there exists an ε1 : 0 < ε1 < ε0, such that for
every ε : 0 < ε < ε1 the invariant manifold x = h(y, ε) is stable.

In general situations the determination of the exact form and location of
the slow invariant manifold is impossible. Therefore, methods of approxima-
tion are necessary. One of them finds the slow invariant manifold as a power
series with respect to the small parameter ε:

h(y, ε) = h0(y) +
∑

εihi(y)

Theorem 3. (Strygin and Sobolev, 1988) Let the assumptions of the previous
theorem hold. Then the invariant manifold x = h(y, ε) can be represented as

h(y, ε) = h0(y) +
k∑
i=1

εihi(y) + h∗(y, ε) (7)

for some k, where h∗(y, ε) is a smooth function with a bounded norm, such
that |h∗(y, ε)| = O(εk+1) for all y ∈ �n.

It is not hard to see from the Eq. 7 that the slow surface x = h0(y) is
O(ε) approximation of the slow invariant manifold, except the turning points.
Thus, the general scheme of application of this technique for singularly per-
turbed system can be subdivided to analysis of the fast and slow motions.
The analysis can be considerably simplified by this decomposition and reduc-
ing the dimension of the system to the dimension of the slow variable y and to
the dimension of the fast variable x. It means that in O(ε) approximation of
the slow invariant manifold, the analysis of the original system can be reduced
to the analysis of system’s dynamics on the slow surface. On the slow surface
the changes of the slow and fast variables are comparable (i.e. the fast and the
slow processes are balanced). Beyond the slow surface the slow variables are
fixed (quasi-stationary). Hence, each system’s trajectory can be approximated
by fast motions (which are beyond the slow manifold) that are described by
the fast sub-system

ε
dx
dt

= f(x,y0, ε); y = y0 = const,

and slow motions (which are on the slow manifold) that are given by the slow
sub-system (4) with h(y, ε) = h0(y).

The method of invariant manifolds has been used for study of singularly
perturbed systems of ordinary differential equations by many authors (see,
for example [4], [12], [32]). The asymptotics of the slow invariant manifold are
given explicitly, for example, in [17], [20].
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2.2 Iterative Method of Fraser

The method of functional iteration for finding slow manifold was supposed in
[5], further developed and applied to enzyme kinetics in [3], [18], [26], [27], [25].
In [13] there was done the asymptotic analysis of the method and comparison
with the ILDM-method.

The method was inspired by the phase space geometry of an enzyme ki-
netics model involving a fast and a slow species, where the slow manifold is a
curve in the phase plane, and extended naturally to multidimensional systems
with higher-dimensional slow manifolds.

The idea of the method is as follows. Consider the planar dynamical system

ẋ = f(x, y)

ẏ = g(x, y),

where x can be considered as a slow variable and y as a fast one. Taking g = 0
as a zeroth iteration the procedure matches the slope of the slow manifold.
From the trajectory equation

y′(x)f(x, y) = g(x, y)

there is obtained functional equation

y = ϕ(x, y′)

and from here iterative scheme

yn+1 = ϕ(x, y′n).

The procedure is explicit if the vector field is linear in the fast variable and
implicit otherwise. In [13] there was considered general singularly perturbed
system of ordinary differential equations, which is linear for the fast variable

ẏ = f1(y, ε)z + f2(y, ε),

εż = g1(y, ε)z + g2(y, ε)

It was shown that for such system the iterative method generates, term by
term, the asymptotic expansion of the slow invariant manifold. Starting from
the slow surface, the i-th iteration of the algorithm yields the correct expan-
sion coefficient at O(εi). Thus, after l applications, the expansion is accurate
up to and including the terms of O(εl).

2.3 Inflector Method

In this sub-section we describe very briefly the definition of inflector and
some its properties. This object was introduced by Japanese mathematician
Masami Okuda in the early eighties [21], [22], [23]. This investigation is interest
for us because the Inflector can be considered as some prediction of Intrinsic
Low-Dimensional Manifolds. The study deals with two-dimensional dynamical
systems, but can be naturally generalized for higher dimensional problems.



60 S. Borok, I. Goldfarb, V. Gol’dshtein, and U. Maas

Definitions of Inflector, A-inflector and R-inflector

Here we remind the definitions of inflector, A-inflector and R-inflector. Con-
sider two-dimensional dynamical system of the type

ẋ = F(x), (8)

where

x =
(
x
y

)
, F(x) =

(
f(x, y)
g(x, y)

)
.

Let A = A(x) be a Jacobian matrix of F = F(x):

A =
∂F
∂x

=
(
fx fy
gx gy

)
.

Let λi = λi(x) (i = 1, 2) be the eigenvalues of A, and assume |λ1| ≤ |λ2|.
For the dynamical system (8) the author defined three sets: C (inflector), Ca
(A-inflector), Cr (R-inflector) by

C = {x | (A− λiI)F = 0, i = 1 or 2}, (9)

Ca = {x | λ2 < 0, | λ1/λ2 |< 1, (A− λ1I)F = 0}, (10)

Cr = {x | λ2 > 0, | λ1/λ2 |< 1, (A− λ1I)F = 0}, (11)

where I is the unit matrix. The definition (10) means that the A-inflector is
found as all the points in the phase plane where the vector field is parallel
to the slow eigenvector. Notice here that A-inflector (R-inflector) was called
attractor (repellor) in the previous author’s study (1976).

Eliminating λi from Eq. (9), one can obtain another expression for C

C = {x | f(gxf + gyg)− g(fxf + fyg) = 0} (12)

It is obvious that
Ca ⊂ C, Cr ⊂ C,

but Ca ∪ Cr is not always C.

The relation between the A-inflector (R-inflector) and the
attracting (repelling) naive trajectory

In [21], [23] and [22] the author investigated properties of the inflector. Let us
remind here very briefly one of them concerning asymptotics of the inflector.

Consider according [23] the system

ẋ = u(x, y, ε) (13)
εẏ = v(x, y, ε), (14)
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where ε > 0 and the functions u and v have the power-series expansions in
powers of ε. It is assumed that the trajectory equation

εu(x, y, ε)dy = v(x, y, ε)dx (15)

has solution y = Y 0(x, ε) in the neighborhood of ε = 0 in some region Ω in
the phase plane. The author denoted this trajectory as

T 0(ε) = {x | y = Y 0(x, ε)} (16)

and called T 0(ε) a naive trajectory (NT) in the neighborhood of ε = 0.
From the definition of the function Y 0(x, ε) follows that it has the power-

series expansion

Y 0(x, ε) =
∞∑
i=0

ψj(x)εj (17)

which converges in the neighborhood of ε = 0 uniformly in x in ∩|ε|<ε0{x |
x ∈ T 0(ε)} with some ε0 > 0. For calculation of the functions ψj(x) in [23]
the standard procedure was used:substitution of Eq. (17) into Eq. (15) and
equating coefficients of like powers of ε. Then we have

v0(x, ψ0(x)) = 0, (18)

ψ1(x) = −(ū0v̄0x + v̄1 ¯v0y)/v̄2
0y, (19)

where ū0 = u0(x, ψ0(x)), v̄0y = v0y(x, ψ0(x)), etc.
An attracting part and a repelling part of the naive trajectory was defined

as follows:
T 0
a (ε) = {x | y = Y 0(x, ε), D(x) < 0} (20)

T 0
r (ε) = {x | y = Y 0(x, ε), D(x) > 0}, (21)

where D(x) is so-called a repulsion rate. This object was introduced by the
author in [22] for stability analysis in transient states. In that article he gave
the mathematical expression for the repulsion rate and found two properties
of the inflector with relation to it. The repulsion rate D(x) has the following
properties for the dynamical system (8) [22]: (i) Let T (x) be a section of the
trajectory passing through a point x. If D(x) < 0, then any state point in the
neighborhood of x will approach T (x) at that point of time, and if D(x) > 0 it
will go away from T (x). (ii) If x is a regular point belonging to the A-inflector
Ca (R-inflector Cr), then D(x) < 0 (D(x) > 0).

Let Ω0(χ) be the region {x | | v0
y |≥ χ}, where χ is an arbitrary positive

constant independent of ε and v0 ≡ v(x, y, 0) = v0(x, y). Then the repulsive
rate can be written as

D(x) = v̄0yε
−1 +O(1) (22)

for a regular point x ∈ T 0(ε) as ε→ 0 in the region Ω0(χ).
The following important property was proved in [23] (Property 1.1): The

A-inflector (R-inflector) is a first order approximation to T 0
a (ε) (T 0

r (ε)) for
sufficiently small ε in Ω0(χ) except singular points.
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2.4 Intrinsic Low-Dimensional Manifold Method (ILDM)

Let us describe here very briefly the essential steps of the ILDM method.
Consider differential system

dZ
dt

= F(Z) (23)

Assume that this system can be represented locally as a multi-scale system
for a corresponding choice of a local basis. The last depends on the choice
of an arbitrary point Z in the n-dimensional Euclidean space �n. It means
that in this local basis a separation of variables in accordance with their
rates of changes is possible (i.e. the considered system can be rewritten in
this local basis for some neighborhood of the point Z as singularly perturbed
system). According to the assumption, the system can be subdivided locally
into fast relaxing and slow or non-relaxing subsystems. Suppose that the fast
sub-system has the same dimension nf (nf < n) at any point Z ⊆ �n.

For typical situations a set of all steady states of the fast subsystem repre-
sents an ns-dimensional slow manifold (ns = n−nf ) and our aim is to deter-
mine its location. The authors of ILDM suggested that the dynamics of the
overall system from arbitrary initial condition should decay very quickly onto
this ns-dimensional manifold. The ILDM allows to identify approximately (as
a set of separate points) the slow invariant manifolds (so-called intrinsic low-
dimensional manifolds – ILDM-manifolds). These manifolds can be found in
the following manner [16]. Suppose a local basis of the original phase space is
formed by the invariant subspaces of the Jacobi matrix Mj of the vector field
F at an arbitrary point Z0. If the set of eigenvalues λi can be sub-divided into
two groups

max{Re[λi], i = 1, ..., nf} << τ < min{Re[λi], i = nf + 1, ..., n} (24)

(where τ < 0) one can introduce invariant sub-spaces Tf and Ts. The sub-
space Tf is spanned by the eigenvectors corresponding to eigenvalues with
large negative (fast) real parts. In turn, the sub-space Ts is spanned by
the eigenvectors corresponding to eigenvalues with small negative or positive
(slow) real parts. Therefore, the new basis Q(Z), which is constructed from
the eigenvectors of the Jacobi matrix and transition matrix from the standard
basis to this local basis Q−1(Z) can be written like two block matrices

Q =
(
Qf Qs

)
; Q−1 =

(
Q̃f
Q̃s

)
(25)

where matrices Qf and Qs correspond to the fast and slow subspaces (Qf
is n × nf matrix of the fast eigenvectors, Qs is n × ns matrix of the slow
eigenvectors, Q̃f is nf × n matrix and Q̃s is ns × n matrix). The parameter
τ is a time scale splitting parameter. This splitting parameter determines the
dimensions of the slow (ns) and fast (nf ) sub-spaces.

Using a standard lineaization of the RHS of (23) at the point Z0 we get
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dZ
dt

= F(Z) ≈ F(Z0) +
∂F
∂Z
|Z=Z0 (Z− Z0) (26)

The Jacobian at the point Z0 can be represented as a product of three
matrices: the transition matrix Q, a two-blocks representation JMJ of the
Jacobian in the eigenvectors basis and inverse of the transition matrix Q−1

∂F
∂Z
|Z=Z0= MJ(Z0) = QJMJQ

−1 = MJ =
(
Qf Qs

)(JMf
0

0 JMs

)(
Q̃f
Q̃s

)
(27)

The square (n× n) matrix JMJ is decomposed into a two-block matrix. The
blocks JMf

, JMs correspond to fast and slow invariant sub-spaces. The matrix
JMf

is nf × nf and the matrix JMs is ns × ns.
Introduce the intermediate variable φ = Z−Z0 and rewrite the expression

(26) in the form

dφ

dt
= F(Z0) +MJ(Z0)φ = F(Z0) +Q(Z0)JMJ (Z0)Q−1(Z0)φ (28)

Multiply both sides of (28) by the inverse matrix Q−1(Z0)

Q−1(Z0)
dφ

dt
= Q−1(Z0)F(Z0) + JMJ (Z0)Q−1(Z0)φ

and introduce new variable (this is a point of the transition from the origi-
nal basis to the new one, which allows the decomposition into fast and slow
motions)

Ψ = Q−1(Z0)φ

With respect to the new variable the equation can be written in the form

dΨ
dt

= φ
dQ−1

dt
(Z0) +Q−1(Z0)F(Z0) + JMJ (Z0)Ψ

One can show that the first term in the RHS of the last equation is negligible
under certain special conditions [16]. The equation is reduced to the simple
equation in the form

dΨ
dt
≈ Q−1(Z0)F(Z0) + JMJ (Z0)Ψ

According to the original algorithm of Maas and Pope (1992) the Intrinsic
Low-Dimensional Manifold (ILDM) is determined by the following system of
equations

Q̃f (Z)F(Z) = 0 (29)

This definition means that the fast component of the original vector field
F(Z), that corresponds to the (“big”) fast block JMf of the Jacoby matrix
representation, is vanished.
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ILDM-algorithm for singularly perturbed system

Suppose that we initially have differential system in singularly perturbed form
and we are interested in asymptotic expansion of ILDM equation in order to
compare it with the invariant manifold. In this case the transition matrix Q,
its inverse Q−1 and the vector field have the following representation

Q =
(
Qff Qsf
Qfs Qss

)
, Q̃ =

(
Q̃ff Q̃fs
Q̃sf Q̃ss

)
, F =

(
ε−1f
g

)
, (30)

where Q̃ff is nf × nf matrix, Q̃fs is nf × ns matrix, Q̃sf is ns × nf matrix
and Q̃ss is ns × ns matrix.

The ILDM-equation gets the form

Q̃ff f + εQ̃fsg = 0

In the zero approximation ε→ 0 the equation is

Q̃ff f = 0.

If det Q̃ff = 0, then the last equation gets additional solutions (“ghost” man-
ifolds) except the slow manifold f = 0. This is one of reasons for “ghost”
manifolds appearance. The others will be considered in the future works of
the authors.

Connection of the ILDM and the Ca-inflector

Consider a two-dimensional system (8):

ẋ = F(x), x =
(
x
y

)
, F(x) =

(
f(x, y)
g(x, y)

)
.

Assume that |λ1| < |λ2| and λ2 < 0 hold in some domain D of the phase
plane. According to the definition of the Ca-inflector (10) its equation can be
written as

fgx + g(gy − λ1) = 0 (31)

According to the ILDM-method, λ1 is a slow eigenvalue and λ2 is a fast
eigenvalue in D. The equation for the ILDM in this case looks as

1
det(Q)

(fgx + g(gy − λ1)) = 0, (32)

where Q is the new basis matrix, which is built from the eigenvectors of the
Jacobi matrix of the system.

From the direct calculation we get

det(Q) = gx(λ2 − λ1) (33)

Equations (31) and (32) show that in D ILDM coincides with Ca-inflector up
to the expression gx.
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Remarks about possible non-coincidence of ILDM and slow
invariant manifold

The interesting fact is that the concept of the Intrinsic Low-Dimensional Man-
ifolds is well known and widely used in the reduction methods [21]-[23], [25].
The following hints of “ghost”-manifolds existence are given in these studies:

(i) Consider the definition of the A-inflector (Eq.10) Sect. 2.3. We see
that the points where the eigenvalues of the Jacobian are equal are out of
that definition. In our study (see, for example, [6]) we show that the orig-
inal algorithm cannot treat these points (curves, surfaces). It can be easily
shown by formula (33). Namely, the expression 1/ det(Q) is always involved
into an ILDM-equation and λ1− λ2 = 0 is one of possibilities to the determi-
nant to vanish. Therefore numerical application of the ILDM-algorithm yields
“ghost”-objects in the points λ1 − λ2 = 0.

(ii) Note, that the asymptotic comparison between the A-inflector (R-
inflector) and T 0

a (ε) (T 0
r (ε)) in [23] was performed in the region Ω0(χ) = {x |

| v0
y |≥ χ}. One can show that the original algorithm does not work in the

zones where v0
y = 0 and their neighborhoods.

(iii) In some cases it can be shown for a two-dimensional singularly per-
turbed system that in turning zones eigenvalues of Jacobi matrix are complex.
It means that their real parts are identical. By the definition, v0

y = 0 in turning
points. From the above we can conclude that turning zones are problematic for
ILDM-method. The analysis of the algorithm shows that existence of complex
eigenvalues is one of the main problems of the method.

(iiii) It should be noticed that the ILDM-method was used in [25] for
analysis of fast-slow planar dynamical systems. In this study the Intrinsic
Low-Dimensional Manifold was called a slow tangent manifold. It was defined
as the curve on which the slow eigenvector is parallel to the velocity field (this
definition coincides with the ILDM definition, see [16], [13]). It was shown
that the slow tangent manifold lies close to the slow invariant manifold. In
our study we demonstrate that in some situations the ILDM does not coincide
with the slow invariant manifolds, and different disruptions of the original
algorithm are reasoned by different types of non-linearity of a vector field of
the considered ODE system.

2.5 TILDM

The remarks (i)-(iiii) show that the ILDM-algorithm has several disadvan-
tages and some improved version is needed.

TILDM-method [2] is a modified version of the original ILDM approach
of Maas and Pope. The additional letter “T” comes from the word “Trans-
pose”. The basic difference between the algorithms is that the TILDM uses
the symmetric matrix T = J · J t instead of the Jacobi matrix J . It is known
that any symmetric matrix has real eigenvalues and orthogonal eigenvectors.
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This solves one of the main problems of the ILDM-approach (complex eigen-
values with a large negative real part of the Jacobi matrix) and also problems
connected to non-orthogonality of the eigenvectors. Note, that idea to exploit
properties of a symmetrized (in some special sense) matrix was suggested in
[9, 10].

Consider the differential system

ẏ = f(y, z, ε)

εż = g(y, z, ε),

where y ∈ K1 ⊂ �m, z ∈ K2 ⊂ �n, 0 < ε ≤ ε0, functions f , g derivatives are
proportional to the unity when ε→ 0.

Fix an arbitrary point (y, z). The Jacoby matrix is

J =
(

Dyf Dyg
ε−1Dzf ε−1Dzg

)
The corresponding symmetric matrix T is

T = J · J t =
(
T11 T12

T21 T22

)
T11 is m ×m matrix with the elements proportional to O(ε0), T12 is m × n
matrix with the elements proportional to O(ε−1), T21 is n ×m matrix with
the elements proportional to O(ε−1), T22 is n × n matrix with the elements
proportional to O(ε−2). For arbitrary point (y, z) the matrix T has positive
eigenvalues and orthogonal eigenvectors. The eigenvalues of T fall into two
distinct groups: n fast eigenvalues ( proportional to O(ε−2) and m slow ones
(proportional to O(ε0)).

From linear algebra we know that in some orthonormal basis Q the matrix
T has a diagonal form with its eigenvalues in the diagonal. The eigenvalues
can appear along the diagonal in any desirable order.

T = QTdQ
t,

where

Q =
(
Q11 Q12

Q21 Q22

)
, Qt =

(
Qt11 Q

t
21

Qt12 Q
t
22

)
Here

(
Q11

Q21

)
is the orthonormal basis of the fast sub-space,

(
Q12

Q22

)
is the

orthonormal basis of the slow sub-space. Td is a following diagonal matrix

Td =
(
Λf 0
0 Λs

)
Here Λf is a fast block (n×n block of the fast eigenvalues), Here Λs is a slow
block (m×m block of the slow eigenvalues). By the definition, the equation
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for TILDM manifold is multiplication of the fast part of the matrix Qt by the
vector field F = (f , ε−1g)t:

Qt11f + ε−1Qt21g = 0. (34)

Asymptotic analysis with respect to the small parameter ε shows that zeroth
approximation of the TILDM coincides with the zeroth approximation of the
slow invariant manifold (slow surface g = 0). It must be noticed that the
turning points are not problematic for the TILDM-algorithm and this fact is
one of the most important advantages of the method.

3 “Ghost” ILDM-Manifolds Examples

In this section the examples of “ghost”-manifolds appearance will be demon-
strated. The examples 1-3 are theoretical ones; the example 4 is practical one.
All presented systems are written in the singularly perturbed form. Neverthe-
less the “ghost” objects appear when we apply the ILDM method.

Example 1. This example will demonstrate appearance of a large number of
“ghost” manifolds because of non-correct fast direction defined by the ILDM
method. It should be noticed that the slow manifold of this system does not
have turning points and also it is stable. Consequently according to the con-
jecture [24] the ILDM manifold should coincide with the invariant manifold,
but this statement is not true for this example. In other words, the present
example can be considered as a counterexample for the conjecture suggested
in [24].

Consider the following system of differential equations with small parame-
ter ε :

εẋ = −x− sin(x)− sin(y)

ẏ = −y
The slow manifold (the manifold of critical points) is given by the equation

−x− sin(x)− sin(y) = 0 (35)

The slow manifold is shown as the central object on Fig.1(below). Application
of the ILDM method for this example provides us with two equations for
domains with different hierarchy of the eigenvalues λ1,2:

−x− sin(x)− sin(y) +
εy cos(y)

−1 + ε− cos(x)
= 0, |λ1| > |λ2|

y = 0, |λ2| > |λ1|
Fig.1(upper) demonstrates two ILDM manifolds (solid lines)and a system’s

trajectory (thick dashed line). Fig.1(below) demonstrates the slow curve (solid
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Fig. 1: Example 1. Upper graph – ILDM and trajectory, lower graph – slow curve
and trajectory

line)and a system’s trajectory (thick dashed line). On the figure we can see
that the trajectory with arbitrary initial conditions approaches the ILDM
curve passing through “ghost” manifolds (fast motion, almost parallel to the
x axe). it must be noticed that one of the ILDM-manifolds (the central part
of Fig.1(upper)) is very close to the slow manifold.

Example 2. This example will demonstrate the essential perturbations pro-
duced by the ILDM algorithm on unique slow manifold. Consider the following
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system of differential equations with small parameter ε

εẋ = −x− sin(x) − sin(y) + 10

ẏ = −2y − sin(y)

The method of invariant manifolds provides us with the slow manifold as
follows (dashed line on Fig.2).

−x− sin(x) − sin(y) + 10 = 0 (36)
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Fig. 2: Application of ILDM algorithm for Theoretical Example 2

As in the previous example we get two ILDM-equations (it depends on
which of the eigenvalues is “fast” in the considered domain) applying the
algorithm. Fig.2 demonstrates two ILDM manifolds (solid lines), the slow
curve (central dashed line) and a system’s trajectory (thick dashed line).

Example 3. Consider the following system of differential equations with small
parameter ε

εẋ = −x/2− sin(x) − sin(xy)

ẏ = −y
We will show that this example is pathological for the ILDM algorithm in
some sense. The method of invariant manifolds provides us with the slow
manifold

−x/2− sin(x) − sin(xy) = 0
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Fig. 3: The curve on which the eigenvalues of the Jacobian in Example 3 are equal
one to another

The analysis of the eigenvalues shows that either |λ1| >> |λ2| or |λ1| = O(|λ2|)
and the last relation holds in almost all points of the phase plane. On Fig.3 the
curve is depicted, on which λ1 = λ2. Then, in some small vicinity of this curve
the eigenvalues are comparable. We see that the curve fills up the whole plane
and has a very interesting form. Let us remark that the system is written in
the singularly perturbed form with explicit small parameter.

Fig. 4 shows that the ILDM method approximates the slow manifold very
well.

Example 4. Consider classical model of thermal explosion in a gas. The di-
mensionless model reads as

ε
dθ
dt

= η exp
(

θ

1 + βθ

)
− αθ = f(θ, η) (37)

dη
dt

= −η exp
(

θ

1 + βθ

)
= g(θ, η) (38)

θ(0) = 0, η(0) = 1 (39)

Here θ is a dimensionless temperature, η is a dimensionless concentration, α is
a dimensionless heat loss parameter, ε is a reciprocal of the dimensionless adia-
batic temperature rise, β is a dimensionless ambient temperature. For realistic
combustible gas mixtures typical values of ε lie in the interval (0.01, 0.1) and
the following relation is satisfied: β2 < ε < β. Therefore this system can be
considered as a singularly perturbed system with small parameter ε, where θ
is a fast variable, η is a slow variable.

Note that the dynamics of the system is known very well, see, for exam-
ple, [2], [6], [7], [8]. In particular, in [7], [8] the dynamics of the system was
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Fig. 4: Example 3. Upper graph – the slow manifold, lower graph - ILDM

analyzed in framework of the method of invariant manifolds (MIM); in [6] the
detailed analysis of the ILDM algorithm application to the system (37)-(39)
was performed; in [2] the modification of ILDM (TILDM) was applied. Here
we remind only basic results of the ILDM-method application.

According to the ILDM-method, the Jacobian of the system is

J =
(
ε−1fθ ε

−1fη
gθ gη

)
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The eigenvalues are

λ1,2 = 1/2(ε−1fθ + gη ±
√
D(θ, η)),

where
D(θ, η) = (ε−1fθ + gη)2 − 4ε−1(fθgη − fηgθ)

There are three possibilities depending on the sign of the discriminant
D(θ, η):
a) D(θ, η) > 0. The Jacobi matrix provides us with two real different eigenval-
ues. Depending on order of magnitude of the eigenvalues two ILDM equations
are obtained for different domains of the phase space.
b) D(θ, η) = 0. The Jacobian provides us with two identical eigenvalues. In
this case one of the main assumptions of the ILDM approach does not hold,
namely, the eigenvalues can not be sub-divided into two different groups (24).
It means that there is no splitting on fast and slow eigenvalues and the ILDM-
method can not be applied.
c) D(θ, η) < 0. The Jacobian provides us with two complex eigenvalues. It
means that their real parts are identical. We can repeat the previous argu-
ment to conclude that the original technique does not work in this case. The
region in the phase plane corresponding to this case is the domain between
the curves Y+ and Y− (see Fig. 5).

Fig. 5 shows all the curves (M1,M2, Y±) obtained by the ILDM-algorithm
(thick solid lines) and the slow manifold (dashed line).

The functions Y±(θ) are the solutions of the equation D(θ, Y±(θ)) = 0 and
they have their own sense. These functions serve as the separating lines on
the phase plane between domains of real and complex eigenvalues.

Fig. 5: ILDM and the slow curve for the Semenov’s model
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Let us now illustrate briefly the basic steps of the system’s analysis by the
method of invariant manifolds.

In accordance with Sect. 2.1, the slow curve of the system (37)-(39) is
given by

f(θ, η) ≡ η exp
(

θ

1 + βθ

)
− αθ = 0 (40)

Eq.(40) has a unique isolated solution θ(η) for all η, except at the turning
points, at which f = 0, fθ = 0. The slow curve has two turning points. On
Fig. 5 we can see one of them T . The second point has a very big θ-coordinate
for reasonable values of the system’s parameters. On the slow curve the relative
rates of the processes are comparable, and the system’s dynamics is governed
by the reduced system on the slow curve:

dη
dt

= −η exp
(

θ(η)
1 + βθ(η)

)
where θ(η) is given by (40).

The first approximation of the slow invariant manifold reads

η = αθ exp
(
− θ

1 + βθ

)
+ ε

θ(1 + βθ)
θ − (1 + βθ)2
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Fig. 6: The zeroth and the first approximations of the slow invariant manifold for
the Semenov’s model

Fig. 6 represents both the slow curve (dashed line) and the first approxi-
mation (solid line) of the exact manifold.

If we compare Fig. 5 and Fig. 6 we see that the first approximation of the
invariant manifold and the intrinsic low-dimensional manifolds are identical,
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except the lines Y±(θ). These lines separate in the phase plane domains of
real and complex eigenvalues. Between Y− and Y+ the “transition zone” is
located (the “gray zone” in [6]), which is large in this example, because of the
existence of complex eigenvalues far from the “transition point”. In this zone
the ILDM method does not work and it confirms [7] that there is no division
into fast and slow processes in “transition zone”.

3.1 Conclusions

We can see that there exist “ghost” manifolds as a result of ILDM-method
application. The first example demonstrated that even for two-dimensional
singularly perturbed system the slow manifold of which is stable and does not
have turning points the ILDM does not coincide with the invariant manifold.
The second example demonstrated appearance of “ghost”- manifolds in neigh-
borhoods of the turning points. It is known (see, for example[1], [2], [6]) that
in these zones the original ILDM method doesn’t work. Let us remind that the
Ca-inflector (see Sect. 2.3) is not defined in zones containing turning points.
The third example is pathological for the ILDM-algorithm in some sense. In
spite of the original system of equations is done in the standard singularly per-
turbed form the processes involved are comparable in almost all phase plane.
Nevertheless, the algorithm locates the slow manifold well. The application of
the algorithm gives “ghost” manifolds. The forth example demonstrated one
of the main ILDM-method’s problems: existence of complex eigenvalues of the
Jacobi matrix.

4 Criteria for “Ghost”-Manifolds Identification

In Sect. 3 we demonstrated that application of the original Maas and Pope
algorithm produces so-called “ghost”-manifolds. In this section we suggest two
criteria that allow to distinguish the “ghost”-manifolds from the correct ones.

4.1 Criterion 1: “Normal Vector”

The idea of the criterion “Normal vector” can be described as follows. Fix
an arbitrary point that belongs to the invariant manifold of the system (1)-
(2). In this point the vector field F = (ε−1f, g)T and vector normal to the
invariant manifold n are ε-close to orthogonal pair, i.e. the value of (F, n)
is comparable with ε. If a point is far from the invariant manifold then the
vector field and the normal have some angle | α − π/2 |∼ O(1) and (F, n)
cannot be small.

Apply the suggested criterion for discrimination of “ghost”-manifolds in
theoretical example 1. The slow manifold for this system is exactly known
(Eq. (35), Fig.1). Fig.7 demonstrates result of application of the criterion.
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The horizontal axe is x-coordinate of the checked point, the vertical axe shows
values of log(F,n) for different x. For x ∈ (−1, 1) we have log(F,n) = O(1).
It means that (F,n) = O(ε). According to the suggested criterion the point
belongs to the correct ILDM-branch. For x from any other zone we have
(F,n) = O(1). That is, the point belongs to “ghost”-manifold.

-

Fig. 7: Application of criterion “Normal vector” for Theoretical Example 1

The obtained results are confirmed by Fig.1. For x ∈ (−1, 1) the ILDM
coincides with the slow manifold (we do not see “ghost” manifolds in this
zone); for x out of this interval there is only “ghost” ILDM.

Apply the suggested criterion for discrimination of “ghost”-manifolds in
theoretical example 2. The slow manifold for this system is exactly known
(Eq. (36), Fig.2).

Fig. 8: Application of criterion “Normal vector” for Theoretical Example 2
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Application of the criterion is shown on Fig.8. Difference of values log(F,n)
is easily seen. According to Fig.8 points from x ∈ (11, 12) belong to the real
ILDM, because log(F,n) = O(1) and so (F,n) = O(ε). Points from other
intervals belong to “artificial” ILDM-branches. This result is confirmed by
Fig.2. We can see that for x ∈ (11, 12) the ILDM coincides with the slow
manifold. For x out of this interval there is only “ghost” ILDM.

4.2 Criterion 2: “Slow Matrix”

Consider the system of ordinary differential equations (23). Suppose that this
system can be represented as a singularly perturbed system (1)-(2) in some
coordinate system. In this sub-section we find an invariant that does not
depend on a choice of coordinate system and can distinguish between ILDM-
manifolds that correspond to true invariant manifold and ILDM-manifolds
that are far from any invariant manifold. Our analysis is asymptotic one.

We know from Sect. 2.3 that that ILDM-manifolds are solutions of Eq.
(29). Denote the intrinsic low-dimensional manifold by S. Let us analyze val-
ues of Q̃s(Z)F(Z) = 0 for different points (x, y). The matrix Q̃s can be
represented as Q̃s = (Q̃sf Q̃ss) see Eq. (30). That is, we have

Q̃sF =
1
ε
Q̃sf f + Q̃ssg (41)

Let us remind that zeroth approximation of the slow invariant manifold is
defined by f = 0. If the ILDM-manifold S belongs to ε-neighborhood of the
slow invariant manifold, then the term ε−1f has the order O(1) on S. If the
ILDM-manifold is far from the slow invariant manifold, then the term ε−1f is
comparable with the value O(ε−1) on S.

From (41) we can conclude that
(i) If ILDM-manifold S belongs to ε-neighborhood of slow invariant man-

ifold, then Q̃s(Z)F(Z) has the order O(| g |) on S.
(ii) If ILDM-manifold is far from any slow invariant manifold then

Q̃s(Z)F(Z) >>| g | on S.
Then, the described criterion suggests to use values of Q̃s(Z)F(Z) for

discrimination of “ghost”-manifolds.
Apply the suggested criterion for discrimination of “ghost” manifolds in

the theoretical Example 1. The eigenvalues of the Jacobi matrix are λ1 =
(−1 − cos(x))/ε, λ2 = −1. Consider any artificial branch, for example, x ∈
(2, 4). The eigenvalues analysis shows that in this region |λ2| > |λ1|. Then,
Q̃fF = −y and Q̃sF = −x − sin(x) − sin(y) + εy cos(y)

−1+ε−cos(x) . The result of
application of the criterion is given in Table 1.

Table 1 shows that the values of Q̃sF are much bigger than g. Therefore
according to the suggested criterion the points from this region belong to
“ghost” manifold.

Check the points of the ILDM that belong to ε-neighborhood of the slow in-
variant manifold, x ∈ (−1, 1). Then, Q̃fF = −x−sin(x)−sin(y)+ εy cos(y)

−1+ε−cos(x)
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Table 1: Application of criterion “Slow matrix” for Theoretical Example 1

x y Q̃sF

2.588 0 -311.375
3.439 0 -314.597
2.89 0 -313.92

and Q̃sF = −y ≡ g. Therefore for these points |Q̃sF| = O(|g|). According to
the criterion this means that all the points from the considered interval belong
to correct ILDM manifold.

Results of the suggested criterion are conformed by the method of invariant
manifolds, criterion 1 and Fig.1.

5 Conclusions

The present paper represents a natural continuation of the authors work on
a comparative analysis of the two powerful asymptotic methods ILDM and
MIM.

As any other algorithm, ILDM has its own restrictions, which were partly
demonstrated in the present paper on a number of examples. It was shown,
that ILDM can not treat the regions of the phase space, where the leading
eigenvalues of the Jacobi matrix are equal. In particular, it means, that the
ILDM approach may face problems in the vicinity of the turning surfaces,
where the leading eigenvalues are normally complex (their real values are
equal and there is no splitting in rates of change of the processes involved).
As a result of the ILDM application in these regions of the phase space, so
called ghost manifolds can appear. It is illustrated by a number of examples.

The problem of the determination and elimination of the ghost manifolds
is of high importance. A numerical criterion allowing distinguishing the ghost
manifolds from the true ones is suggested in the present paper. The criterion is
based on the unique properties of the true invariant manifolds. The efficiency
of the suggested criterion is demonstrated on the number of the examples
introduced earlier.
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Summary. A new method of decomposition of multiscale systems of ordinary dif-
ferential equations is suggested. The suggested approach is based on the comparative
analysis of the magnitudes of the eigenvalues of the matrix JJ∗, where J is the local
Jacobi matrix of the system under consideration. The proposed approach provides
with the separation of the variables into fast and slow ones. The hierarchy of the de-
composition is subject of variation with time, therefore, this decomposition is called
dynamic. Equations for fast variables are solved by a stiff ODE system solver with
the slow variables taken at the beginning of the time step. This is considered as a
zeroth order solution for these variables. The solution of equations for slow variables
is presented in a simplified form, assuming linearised variations of these variables
during the time evolution of the fast variables. This is considered as the first order
approximation for the solution for these variables or the first approximation for the
fast manifold. The new approach is applied to numerical simulation of diesel fuel
spray heating, evaporation and the ignition of fuel vapour/ air mixture. The results
show advantages of the new approach when compared with the one proposed by
the authors earlier and the conventional CFD approach used in computational fluid
dynamics codes, both from the point of view of accuracy and CPU efficiency.

1 Introduction

The decomposition of complex systems into simpler subsystems is almost uni-
versally used in engineering and physics applications. It allows the numerical
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simulation to focus on the subsystems, thus avoiding substantial difficulties
and instabilities related to numerical simulation of the original systems.

As an example of such decomposition we can mention the solutions of
ordinary and partial differential equations (ODEs and PDEs) describing spray
dynamics in computational fluid dynamics (CFD) codes. Numerical spray
modelling is traditionally based on the Lagrangian approach coupled with the
Eulerian representation of the gas phase. This permits the decomposition of
complicated and highly nonlinear systems of PDEs, describing interactions
between computational cells, and the systems of ODEs that govern processes
in individual computational cells, including liquid/gas phase exchange and
chemical kinetics. The systems of ODEs are usually integrated using much
shorter time steps δt (typically 10−6 s) than the global time steps used for
calculating the gas phase Δt (typically 10−4 s). Thus the decomposition of
ODEs and PDEs is de facto used although its basis has not been rigorously
investigated [1] - [2].

Further decomposition of the system of ODEs, describing droplet dynamics
inside individual computational cells, is widely used as well. The simplest
decomposition of this system is based on the sequential solution of individual
subsystems comprising this system. In this approach, the solution of each
individual subsystem for a given subset of variables is based on the assumption
that all the other variables are fixed. The sequence of solutions of individual
subsystems is often chosen rather arbitrarily and the results sometimes vary
substantially depending on the order in which these subsystems are solved.
Undoubtedly, an arbitrary choice of decomposition and sequential integration
of subsystems might lead to substantial and uncontrollable errors. As a result,
in the case of a multiscale system, the reliability of this approach becomes
questionable altogether.

A similar system decomposition into lower dimension subsystems has been
used for modelling CO2 lasers [3] and analyses of the Shell model equations
[4], in constructing reduced chemical mechanisms based on Intrinsic Low-
Dimensional Manifolds (ILDM) [5] - [7] and its modification TILDM [8], in
development of constructive methods for invariant manifolds for problems of
chemical kinetics [9] - [10], in the method of Computational Singular Pertur-
bation (CSP) [11] - [15]. There are many similarities between these methods.
They are based on a rigorous separation of timescales, such that ’fast’ and
’slow’ subspaces of the chemical source term are defined, and mechanisms of
much reduced stiffness are constructed.

A useful analytical tool for the analysis of stiff systems of ODEs, used for
the modelling of spray heating, evaporation and ignition of fuel vapour/air
mixture, could be based on the geometrical asymptotic approach to singularly
perturbed systems (Method of Integral Manifolds - MIM) as developed by
Gol’dshtein and Sobolev [16] - [17] for combustion applications. This approach
is based on the general theory of the integral manifolds [18] - [19].

These approaches to decomposing systems of ODEs were developed and
investigated with a view to their application to rather special problems (e.g.
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complex chemical kinetics), and were based on a number of assumptions, the
justification of which is not at first obvious in most engineering applications.
The underlying philosophy of these approaches, however, seems to be attrac-
tive for application to the analysis in a wide range of physical and engineering
problems including spray modelling in CFD codes.

A general method of decomposition of stiff systems of ODEs into fast and
slow parts was suggested in [20, 21]. This decomposition was based on the
comparison of the rates of change of variables. In contrast to most previous
approaches, where this decomposition was fixed in time (fixed decomposition),
in the model developed in [20, 21] it was allowed to change with time (dynamic
decomposition). The efficiency of this approach was demonstrated in the ex-
ample of its application to the numerical modelling of heating, evaporation,
and ignition of diesel fuel spray.

The model described in this paper is based on the further development of
the model described in [20, 21]. Its main idea is described in the Section 2.
The mathematical background of the model and the assumptions on which it
is based are discussed in Sections 3 and 4. The application of the model to the
problem of numerical modelling of heating, evaporation, and ignition of diesel
fuel spray (a problem similar to the one discussed in [20, 21]) is presented in
Section 5. The main results of the paper are summarised in Section 6.

2 Dynamic Fast-Slow Decomposition: Underlying
Philosophy

As in the case of the model described in [20, 21], the focus of the new model will
be on stiff systems of ODEs. The stiffness of these systems is known to create
problems in their numerical solution. In our approach, however, this stiffness
can play a positive role and make the numerical solution of the systems of
ODEs easier. Referring to the terminology of asymptotic analysis, stiffness
means that the system is multiscale and there can be at least two essentially
distinct time scales. This allows us to subdivide all variables into fast and
slow ones.

Our approach is ultimately based on the Method of Integral Manifolds
(MIM) mentioned in the Introduction. This method is essentially focused on
the analysis of the systems of ODEs written in the form:

ε
dX
dt

= F(X, Y, ε) (1)

dY
dt

= G(X, Y, ε), (2)

where X and Y are n and m-dimensional vector variables, and 0 < ε � 1 is
a small positive parameter. The rate of change of vector X tends to infinity
when ε −→ 0 if F(X,Y, ε) �= 0). Hence, Equation (1) describes the so called
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fast sub-system, while Equation (2) describes the so called slow sub-system.
In practical implementations of the integral manifold method a number of
simplifying assumptions have been made. These include the assumption that
the slow variable is constant during the fast processes. When ε → 0 and the
functions in the RHS of Equations (1)-(2) are of the same order of magnitude
(at least, in some bounded domain), the system (1)-(2) shows a dynamical be-
haviour characterised by the presence of two sufficiently different time scales.
The difference between the rates of change of two vectors (F,G) is determined
by ε.

Although this method has been widely used for the qualitative analyses of
thermal explosion of combustible mixture of fuel droplets and air [22] - [24],
its direct application to quantitative modelling of realistic physical systems is
rather restrictive. This is due to a number of factors. Firstly, these systems are
usually described by many equations, with different characteristic time scales,
and their division into slow and fast subsystems is not at first obvious. Also,
even if this division is possible, then the value ε is expected to be small but not
infinitely small. This implies that we can no longer assume that fast variable
changes infinitely fast and slow variable is constant. Finally, in the original
version of this method, the subdivision of the variables into fast and slow ones
was fixed and not allowed to change with time (fixed decomposition). This
certainly does not reflect the physical reality where the characteristic time
scales of all variables change with time.

Some of these restrictions of the original Method of Integral Manifolds
were overcome in the method described in our earlier presentation [20, 21].
In this method the characteristic time scales of variables in the system of
ODEs were organised in ascending order (τ0 ≤ τ1 ≤ ..... ≤ τ i ≤ .... ≤ τN ).
Then the authors looked for a possible gap in these timescales such that
τ i/τ i+1 < ε where i = 1, 2, ..., N − 1, ε is an a priori chosen small parameter.
If this gap was found then the first i equations formed the fast system and the
remaining N − i equations formed the slow system. In this case the system of
ODEs was rewritten in the form (1)-(2). In contrast to the original Method of
Integral Manifolds, however, this decomposition of variables was not fixed, but
was allowed to change at each time step. Hence, it was suggested to call this
decomposition dynamic. When analysing this decomposed system, the system
of equations for fast variables was solved numerically using an ODE system
solver, while the variations of the slow variables were assumed to be linear
in time. This approach to System (1)-(2) is more realistic that the original
MIM, and opens the way to implementing this approach into CFD codes.
Some preliminary results of this implementation were reported in [20, 21, 25].

Although this approach was shown to be effective for implementation into
CFD codes in some cases, it still had a number of limitations. The required
threshold τ i/τ i+1 < ε to enable the application of this method could be found
in exceptional rather than typical cases. Also, this method was most effective
when i was close to 1. When i was close to N , then any advantages of this
method became questionable.
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In contrast to the method described in [20, 21], the new method suggested
in this paper does not rely on the existence of the gap in the characteristic
time scales of the change of variables. That means that potentially it can
be applied to both stiff and non-stiff system of equations, although in the
latter case it is expected to be less efficient than in the first case. This new
method is focused on finding a “global” (possibly “nonlinear”) transformation
of the original coordinate axes such that the original system of ODEs becomes
the singularly perturbed system (SPS) with the required gap between fast and
slow variables. In other words, our task is to find the direction of “fast” motion
described by System (1)-(2) for a fixed point (X,Y) of the phase space. This
direction may or may not exist. If this direction exists for the original system
of ODEs then the method described in [20, 21] can be applied. If it does not
exist then it can be potentially found using the new method. Hence, the new
method can be considered as a straightforward generalisation of the method
described in [20, 21].

The procedure of finding fast and slow variables can be iterative and result
in a hierarchical division of the original system. For example the ‘slow’ sub-
system can, in its turn, be subdivided into ‘slow’ and ‘very slow’ subsystems.

3 Decomposition of the System of Equations

Let us consider the system, the state of which is characterized by n dimen-
sionless variables Zn (n = 1, 2, ......n). The value of each of these variables
for a given place in space depends on time t, i.e. Zn = Zn(t). This system can
be described by n equations, which can be presented in the vector form:

dZ
dt

= Φ(Z), (3)

where:
Z = (Z1, Z2, ......., Zn), Φ = (Φ1, Φ2, ......., Φn).

Although a rigorous coupled numerical solution of this system could be
found, using one of ODEs solvers, this may not always be practical, when too
many equations are involved. An alternative approach to this solution could
be based on the decomposition of this system, as discussed in Sections 1 and
2.

The solution of System (3) depends on whether it is not stiff (not multi-
scale) or stiff (multi-scale). In the first case, we cannot offer any alternative
to the conventional numerical solution of this system. In the second case, the
system can be potentially decomposed. This decomposition can take place
either without changing the scales of variables (for example, equations can
merely be reordered according to scales of variables as in [20, 21]) or with the
change of these scales. The second approach can be focused on the systems
which are multi-scale, but the hierarchy of these scales is ‘hidden’ inside the
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system. In both cases, the analysis of the systems starts with finding local
transformation matrices Q such that the original system (3) is transformed
to the system which can be presented as System (1)-(2). The latter is known
as a Singularly Perturbed System or SPS.

There are a number of possible ways to specify matrix Q. Some of these
will be discussed in the next section. If this matrix is found, it can be split
into two distinct parts Qf and Qs responsible for the transformation of the
initial vector variable Z into the ordered combination of the new fast and slow
variables, respectively [26]:

Q = (QfQs) ;Q−1 =
(

Q−1
f

Q−1
s

)
. (4)

Hence, we can write:

Z = Q
(

U
V

)
, (5)

where U and V are new vector variables: U contains all fast scalar variables,
V contains all slow scalar variables. The splitting of matrix Q implies that
a gap in scales exists between these variables. This splitting is fixed over a
specified period (time step), but can change beyond this period (dynamic
decomposition).

The equations for U and V can be presented in vector forms as:

dU
dt

= Q−1
f F

(
Q
(

U
V

))
= Φf

(
U
V

)
, (6)

dV
dt

= Q−1
s F

(
Q
(

U
V

))
= Φs

(
U
V

)
. (7)

Having introduced a new small positive parameter ε� 1 and remembering
that:

||Φs|| � ||Φf ||, (8)

we can rewrite Equations (6) and (7) in the form similar to the one used in
the Method of Integral Manifolds:

ε
dU
dt

= εQ−1
f (Z0)Φ

(
Q(Z0)

(
U
V

))
≡ Φfε

(
U
V

)
, (9)

dV
dt

= Q−1
s (Z0)Φ

(
Q(Z0)

(
U
V

))
≡ Φs

(
U
V

)
, (10)

where Φfε = εΦf . In this presentation the right hand sides of Equations (9)
and (10) are expected to be of the same order of magnitude over the same
period during which the original decomposition of matrix Q is valid.

Equations (9) and (10) need to be integrated over the time period Δt :
tk → tk+1. The zeroth order solution of Equation (10) (slow subsystem) is
just a constant value of the slow variable: V0

k+1 = Vk = V(tk), where the
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superscript 0 indicates the zeroth approximation, while the subscripts k and
k+1 indicate the points in time. The zeroth order for the fast variable is found
from Equation (9) with V = Vk. The latter condition can be interpreted as
the equation for the slow variable on the fast manifold. Hence, Equation (9)
can be approximated by the following system:

dU
dt

= Φf

(
U
Vk

)
. (11)

The solution of Equation (11) at t = tk+1 (U0
k+1) is the zeroth order approx-

imation of the fast motion on the fast manifold determined at t = tk. Note
that the system described by Equation (11) can be stiff in the general case,
but with a reduced level of stiffness, compared with the original system (3).
Hence, the suggested method is expected to reduce the level of stiffness of the
system and not eliminate the stiffness altogether.

Under the same zeroth order approximation the slow variables would re-
main constant over the same time period. This assumption was used in the
original formulation of the Method of Integral Manifolds [19, 18, 17]. This,
however, leads to an unphysical result in many applications when slow vari-
ables would remain constant for any time t > t0. Hence, the need to calculate
slow variables using at least the first order approximation. In the case when
ε is not asymptotically small, higher order approximations need to be con-
sidered. In this case we introduce the new time scale τ = t/ε, and formally
present the slow and fast variables as:

V (τ ) = V (0) + εV (1)(τ ) + ε2V (2)(τ ) + ...............

U(τ ) = U (0)(τ ) + εU (1)(τ ) + ε2U (2)(τ ) + ..........

}
. (12)

Having substituted Expressions (12) into Equation (10) we obtain:
d(V (0)+εV (1)(τ)+ε2V (2)(τ)+ ...... )

dτ =

εΦs

(
U (0)(τ ) + εU (1)(τ ) + ε2U (2)(τ ) + ......
V (0) + εV (1)(τ ) + ε2V (2)(τ ) + ......

)
. (13)

Equation (13) allows us to obtain the first order solution for the slow
variable in the form:

Vk+1 = V
(0)
k+1 + εV

(1)
k+1 = V

(0)
k + εΦs

(
U

(0)
k+1

V
(0)
k

)
Δτ. (14)

Returning to the original variables we can write the expression for V(tk+1) ≡
Vk+1 in the form:

Vk+1 = V(0)
k + Φs

(
U(0)
k+1

V(0)
k

)
Δt. (15)

To increase accuracy of calculations one could continue the process to
take into account the first order solution for the fast motion (similar to (11)).
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Then the second order solution for the slow motion (similar to (15)) could be
obtained etc.

4 Choice of Decomposition

The focus of this section is on the determination of the transformation matrix
Q. This matrix is expected to provide us with the required subdivision of the
original system of ODEs into two smaller subsystems - fast and slow. There
are a number of ways to find Q. These can be based on (a) invariant subspaces
(eigenspaces) of Jacobi matrix of the original system J (ILDM, see [5]), (b)
so called principal subspaces (eigenspaces) of a matrix JJ∗ (TILDM - further
development of ILDM - see [8]), (c) invariant subspaces of the symmetrised
Jacobi matrix of the original system (this was based on the system entropy)
([9] - [10]), (d) reordering of the original system of equations according to the
values of RHSs of the system suggested in [20, 21].

ILDM was originally suggested for the numerical solution of the systems
containing a large number of ODEs. The method has proven to be an efficient
tool for the simplification of equations describing detailed chemical kinetics [5]
- [7], [27]. This approach uses the local Jacobian eigenspaces (more precisely
Shur basis for the local Jacobian matrix) for the transformation of coordi-
nates. Nevertheless, even for singularly perturbed systems, identification of
fast and slow eigenvectors is not always possible and a more delicate analysis
is required. It can be shown that the Jacobian matrix, does not always show
the hierarchy of the scales even if this hierarchy exists [27, 28]. Hence, the
information about eigenspaces may be insufficient, even not relevant for es-
tablishing the hierarchical structure of the scales of the system. This can be
illustrated for the following system of ODEs:

dx
dt

= −x− 1
ε1
y, (16)

dy
dt

= −y, (17)

where ε1 is a small positive parameter.
The Jacobian of this system is matrix A of the RHS of the system (16)

- (17). Both eigenvalues of this matrix are equal to −1. According to the
traditional interpretation of the ILDM approach, there is no internal hierarchy
in System (16) - (17). Nevertheless, as one can readily see, this system has
essentially different rates of change of variables (at least in the region, where
the functions x(t) and y(t) are of the same order: x(t) is the fast variable,
while y(t) is the slow one. Multiplying both parts of (16) - (17) by ε1, we can
re-write this system in the conventional SPS form:

ε1
dx
dt

= Θf (x, y), Θf (x, y) = −ε1x− y, (18)
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dy
dt

= Θs(x, y), Θs(x, y) = −y, (19)

Thus even in the simplest linear case with a strongly determined hierarchy,
the eigenvalues of the Jacobian do not always provide us with correct infor-
mation regarding possible reduction of the system to a singularly perturbed
one. Other examples illustrating this idea can be presented. Using geometri-
cal language, we can conclude that the traditional ILDM procedure fails to
decompose the vector field (Z) into fast and slow components. In other words,
the information about its eigenspaces may be insufficient to evaluate the ‘hid-
den’ hierarchical structure of the system. Essentially the same limitation can
be attributed to TILDM (see [27, 28] for the details).

In contrast to ILDM, we suggest not choosing Jacobian but JJ∗ (follow-
ing TILDM) for construction of the transformation matrix. The latter matrix
provides us with information regarding decomposition in the wider domain
than the Jacobian J does ([8]). Presenting the image of the unit sphere (on
which the transformation is performed) as a hyper ellipsoid, the eigenvalues
of the matrix JJ∗ represent the lengths of its semi axes. The corresponding
eigenvectors coincide with the directions of the semi axes. Note that all eigen-
values of matrix JJ∗ are real and positive and corresponding eigenvectors are
orthogonal.

The proposed algorithm for finding ‘hidden’ fast and slow variables of the
original system 3 (construction of matrix Q at an arbitrary point Z) contains
the following steps:

1. Build matrix T(Z) ≡ J(Z)J∗(Z) and determine its eigenvalues λi (i =
1, 2, , n).

2. Check the scales of λi and establish whether it is possible to find τ > 0
such that λi >> τ > λj , i = 1, ..., nf , j = nf + 1, nf + 2, .., n, f + s = n,
where the eigenvalues have been reordered in descending order. Large and
small eigenvalues determine ‘principal’ eigenspaces (invariant subspaces) of
T.

3. Build the transformation matrix Q in such a way that the eigenvectors
vi, i = 1, ..., f, f + 1, ..., f + s of the matrix T are presented in the same order
as the eigenvalues determined at Step 2:

Q =
(
v1

... vnf
vnf +1

... vnf +ns

)
, T = Q ·

(
Λf 0
0 Λs

)
·Q−1, (20)

Λf =

⎛⎜⎝λ1 . . . 0
...

. . .
...

0 . . . λnf

⎞⎟⎠ , Λs =

⎛⎜⎝λnf +1 . . . 0
...

. . .
...

0 . . . λnf+ns

⎞⎟⎠ . (21)

Once matrix Q has been obtained, further analysis of the system is per-
formed following the guidelines discussed in Section 3.
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5 Application

5.1 Equations for Spray Combustion

In this subsection basic equations used for modelling droplets heating, evap-
oration and combustion are summarised. A number of processes, including
droplet dynamics, break-up and coalescence, and the effects of the tempera-
ture gradient inside droplets [29]-[32] are ignored at this stage. This can be
justified by the fact that the main emphasis of this paper is on the investi-
gation of the new method of the solution of the systems of ODEs relevant to
spray combustion modelling rather than providing a detailed analysis of the
processes involved. The system under consideration contains equation for the
droplet mass in the ith parcel mdi, droplet temperature in the ith parcel Tdi,
fuel vapour density ρfv, density of oxygen ρO2

and temperature of the gas Tg
[33]:

ṁdi = 4π
kgRdi
cpF

ln(1 +BM ), (22)

mdicl
dTdi
dt

= 4πR2
dih(Tg − Tdi)− ṁdiL+ 4πR2

diσQaθ
4
R, (23)

αg
dρfv
dt

= −αgCT +

[∑
i

ṁdi

/
V

]
, (24)

dρO2

dt
= −18.5

MO2

Mf
CT = −3.48235 CT, (25)

cmixρmix
dTg

dt = αgQfCT−[∑
i

mdicl
dTdi
dt

+
∑
i

ṁdiL+
∑
i

ṁdicpF (Tg − Tdi)

]/
V, (26)

where BM is the Spalding mass number, L is the specific latent heat of va-
porization, QL is the heat spent on droplet heating, Rd is droplet radius, cpF
is specific heat capacity of fuel vapour, cmix is specific heat capacity of the
mixture of fuel vapour and air, θR is the radiative temperature, Qa is the
average absorption efficiency factor, ρfv is the fuel vapour density, ρO2

is the
density of oxygen, ρmix is the density of the mixture of fuel vapour and air.
αg is the volume fraction of gas assumed equal to 1 in our calculations, the
summation is assumed over all droplets in volume V, Qf is the heat released
per unit mass of burnt fuel vapour (in J/kg). CT is the chemical term (in
kg/(m3s)) presented as [20, 21]:

CT = A M−1.5
O2

M0.75
f ρ0.25

fv ρ1.5
O2

exp [−E/(BT )] , (27)
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where MO2 = 32 kg/kmol, and Mf = 170 kg/kmol are molar masses of oxygen
and fuel respectively in kg/kmol,

A = 3.8× 1011 1
s

(
mole
cm3

)−0.75

= 2.137× 109 1
s

(
kmole
m3

)−0.75

;

E = 30
kcal
mole

= 1.255× 108 J
kmole

.

This model is similar to the one used in [20, 21].

5.2 Values of Parameters and Solution Procedure

The method described in Sections 3 and 4 is applied to simulate polydisperse
spray heating, evaporation and ignition, based on equations given in the pre-
vious subsection. The model on which the analysis is based is chosen to be
rather simple, but capable nevertheless of capturing the essential features of
the process. We consider spray consisting of 3 groups of droplets with ini-
tial radii 5 μm, 9 μm and 13 μm respectively. The initial temperatures of
all droplets is taken to be equal to 400 K. The gas temperature is taken to
be equal to 880 K [23]. The gas volume is chosen such that if the droplets
are fully evaporated without combustion, then the equivalence ratio of fuel
vapour/air mixture is equal to 4. This is the situation typical for diesel engines
in the vicinity of the nozzle. The initial density of oxygen is taken equal to
2.73 kg/m3 (this corresponds to air pressure equal to 3 MPa). The initial mass
fraction of fuel is taken equal to zero. These values of the parameters can be
considered as an approximation of the actual conditions in diesel engines [23].

Since Equations (22) and (23) are solved separately for each of 3 groups of
droplets, the maximal number of equations to be solved is equal to 10. Note
that the density of the fuel vapour/air mixture could be derived algebraically
from mass conservation. It was preferred, however, to solve the ODE for it to
enable us to monitor the mass conservation in the system as a validity check.

Firstly, these equations were solved simultaneously in a coupled way using
DLSODAR stiff solver from the ODEPACK developed in LLNL laboratory
(software is available from [35]). The second approach is based on the decom-
posing of the original system following the procedure described in [20, 21].
Finally, the third approach is based on the algorithm, presented in the Sec-
tion 4.

5.3 Results and Discussion

The total number of equations solved, and the number of equations for fast
variables can change with time as expected. The corresponding plots of the
numbers of these equations are shown in Fig.1. The left graph is based on
the approach suggested in [20, 21], the right graph is based on the methods
described in Sections 3 and 4. Initially all 10 equations were solved, when the
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approach based on the coupled solution of the full system of ODEs was used.
About 0.6 ms after the beginning of the process this number was reduced to 8
when the smallest droplet evaporated. Then approximately about 1.8 ms after
the beginning of the process it further reduced 6 when the smallest droplets
evaporated.

Fig. 1: Plots of the total number of equations solved (dashed) and the number of
equations for fast variables (solid) for the values of parameters as specified in the
text. Left - dynamic decomposition performed based on the comparison of the RHSs
of the system (22) - (26) [21]; right - dynamic decomposition performed based on
the algorithm suggested in the present paper.

In the case when the decomposition based on the approach suggested in
[20, 21] was applied, the number of equations for fast variables to be solved
was always less than the total number of equations. Initially the number of
equations for fast variables was equal to seven, then it dropped to just one
equation describing fuel vapour density. After that, the number of equations
jumped to eight, then most part of the time between 0.1 ms and 0.5 ms the
number of equations for fast variables was equal to seven. Between 0.6 and
1.5 ms the number of equations for fast variables was equal to three. After
a short jump to four equations, again only the equation for fuel density was
solved. To summarise these results, up to about 0.6 ms the difference between
these numbers was relatively small to justify the application of decomposition
techniques. This could be done between approximately 0.5 ms and 1.5 ms
when the number of fast equations (three) was noticeably less than the total
number of equations (eight).

The situation became rather different when the transformation matrix
described in Section 4 was used. In this case the number of fast equation was
typically much less than the total number of equations. Initially the number
of equations for fast variables was equal to four, then it dropped to just one
equation describing fuel vapour density. Between about 0.25 ms and 0.5 ms
the number of equations for fast variables was equal to two (equations for fuel
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vapour density and the radius of the smallest droplet). Then again just the
equation for fuel density was solved. Between about 0.6 ms and 0.8 ms the
number of fast equations was comparable with the total number of equations.
During this period the decomposition of the system is not expected to be
useful. After about 0.8 ms and until about 1.8 ms, only one equation (fuel
density) or two equations (fuel density and the radius of the second droplet)
were solved. In this case the decomposition technique described in Section 4
is expected to be particularly important.
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Fig. 2: Plots of gas temperature versus time (upper) and relative errors of calcula-
tion (lower). Gas temperature was calculated using dynamic decomposition based on
the comparison of the RHSs of the system (22) - (26) [20, 21] (cubes), dynamic de-
composition based on the algorithm suggested in the present paper (stars), coupled
solution of the full system of equations (triangles). The errors of the dynamic decom-
position approaches were calculated relative to the results of the coupled solution of
full system of equations. Time step was taken equal 10−4 s.

The time evolution of gas temperature, calculated using the aforemen-
tioned approaches, and the relative errors of calculations based on the dynamic
decomposition for two time steps are shown in Figs 2, 3. As follows from these
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Fig. 3: The same as Fig. 2 but for time step 5 · 10−5 s.

figures for both time steps, the new approach to dynamic decomposition leads
to significantly smaller relative errors that the approach suggested in [20, 21].

To compare the CPU efficiency of both approaches to dynamic decompo-
sition (the one suggested in [20, 21] and the new one) and the conventional
approach used in computational fluid dynamics CFD codes (fixed decompo-
sition), a series of runs for various time steps were performed for the problem
solved above. For fixed time steps the CPU requirements of all three ap-
proaches were about the same. As shown above, however, the accuracy of the
new approach is almost always higher than that of the one used in [20, 21].
The latter approach, in its turn, is more accurate than the one based on the
fixed decomposition approach used in CFD codes [20, 21]. For example, rel-
ative errors less than 1.5% were achieved for the time step of 1.3 × 10−5 s
for the conventional CFD approach, and for the time step of 2.4× 10−5 s for
the new approach described in Sections 2 and 3. When this effect was taken
into account then in all cases under consideration, the CPU time for the new
method was always smaller than that for the fixed decomposition approach. In
some cases, the CPU reduction for the new approach was as high as a factor of
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3. The CPU requirements for the approach described in [20, 21] were between
those for the new and the fixed decomposition approach. The CPU time was
estimated based on the customised function DATE−AND−TIME [34].

6 Conclusions

A new approach to dynamic decomposition of the systems of ODEs to fast and
slow subsystems is suggested. The suggested approach is based on the compar-
ative analysis of the magnitudes of the eigenvalues of the matrix JJ∗, where
J is the local Jacobi matrix of the system under consideration. The eigenvec-
tors of this matrix are used for construction of the transformation matrix Q.
The hierarchy of the decomposition is allowed to vary with time. Hence, this
decomposition is called dynamic (it depends on the specific computation cell
and on the time layer). As in our earlier approach [20, 21], equations for fast
variables are solved by a stiff ODE system solver with the slow variables taken
at the beginning of the time step. This is considered as a zeroth order solution
for these variables. The solution of equations for slow variables is presented in
a simplified form, assuming linear variations of these variables during the time
evolution of the fast variables. This is the first order approximation for the
solution for these variables or the first approximation for the fast manifold.

The new approach is applied to numerical simulation of diesel fuel spray
heating, evaporation and the ignition of fuel vapour/ air mixture. The results
show advantages of the new approach when compared with the one discussed
in our previous paper [20, 21] and the conventional CFD approach used in
computational fluid dynamics codes, both from the point of view of accuracy
and CPU efficiency.
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Summary. This work considers multiple time scale models in non standard sin-
gularly perturbed form. These systems naturally arise as descriptions of detailed
rate-based process models of fast-rate chemical processes with several large para-
meters of different orders of magnitude. We propose a systematic framework to
derive representations of the dynamics in individual time scales. A nonlinear coor-
dinate transformation is presented to yield a standard singularly perturbed form
of the original system. This approach is applied to a representative multiple time
scale chemical process with reactions whose reaction rates span different orders of
magnitude.

1 Introduction

Chemical processes typically exhibit multiple time scale dynamics owing to
the presence of fast heat/mass transfer [10], multiple fast and slow reactions
[10, 15], fast flow of gases and liquids [11, 14], etc. This feature is observed
in a broad range of processes such as catalytic reactors [2], fluidized cat-
alytic crackers [3], multi-phase reactors [10], chemical reaction networks [15],
biochemical processes [1], distillation and reactive distillation processes [14].
Dynamic models capturing both the fast and slow phenomena of these mul-
tiple time scale processes are stiff, as they contain parameters of different
orders of magnitude; as a result they are difficult and costly to simulate. This
motivates the need to obtain reduced order models capturing the dynamics
only in the time scale of interest, while approximating the dynamics in other
(faster) time scales in a systematic fashion.

Singular perturbation theory has proven to be a natural framework for
the systematic decomposition of the system dynamics in different time scales.
There exists an extensive literature on the application of singular perturbation
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theory for the model reduction, analysis and control of systems with two time
scales (see e.g. [8, 9, 6]).

The vast majority of the existing research has focused on two time scale
systems modeled in the so-called “standard” singularly perturbed form, where
the fast and slow variables are explicitly separated due to the presence of a
small parameter ε (the singular perturbation parameter) that multiplies the
time derivative of the vector of “fast” state variables (see e.g. [8, 9]). However,
modeling a two time scale process in the standard singularly perturbed form
is in itself a nontrivial task. In some processes, e.g. catalytic reactors [2] and
fluidized catalytic cracking [3], there is an a priori knowledge of the variables
with slow and fast dynamics. This allows modeling of such processes directly
in the standard singularly perturbed form, through an appropriate definition
of ε. However, for most chemical processes with fast heat/mass transfer, fast
reactions, fast flow of gases and liquids, etc. the fast and slow dynamics can
not be associated with distinct state variables, and the corresponding dynamic
models are not in the standard singularly perturbed form. Only recently, a
class of nonlinear systems in the nonstandard singularly perturbed form that
arise naturally as rate-based models of fast-rate chemical processes were stud-
ied, and nonlinear coordinate changes were developed that allow transforming
such systems in a standard singularly perturbed form [10].

Many real processes are modeled by dynamic models containing several
small/large parameters that arise due to the presence of more than one large
reaction rate constants, heat/mass transfer coefficients, time constants and
other physical constants. The presence of several large parameters in the dy-
namic model does not necessarily imply the existence of dynamics over several
distinct time scales. If these parameters are of the same order of magnitude,
then the system is multi-parameter but not multi-time-scale [7], and it is usu-
ally approached as a single parameter (two time scale) singular perturbation
problem. This is achieved by expressing the small parameters (inverses of the
large parameters) as multiples of a single parameter. On the other hand, if the
large parameters are of different order of magnitudes, then the system may
exhibit multiple time scale dynamics [7]. The modeling, analysis and control
of multiple time scale systems has received very little attention; most research
efforts have focused on systems in standard singularly perturbed form.

First, we focus on multiple time scale systems in standard singularly per-
turbed form and briefly review the derivation of reduced models in each in-
dividual time scale. Then, we consider a broad class of multiple time scale
models in nonstandard singularly perturbed form that arise naturally in de-
tailed rate-based process models of fast-rate chemical processes with several
large parameters of different orders of magnitude. We present a systematic
approach to decompose this system into dynamics in individual time scales.
Finally, we propose a nonlinear coordinate transformation to yield a standard
singularly perturbed representation of the original system. Such a non linear
diffeomorphism is derived for a representative multiple time scale chemical
process in non standard singularly perturbed form.
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2 Standard Singularly Perturbed Form

A standard singularly perturbed form of multiple time scale systems can be
expressed as follows:

ζ̇ = F (ζ, η1, . . . , ηM , u, ε)

εj η̇j = Gj(ζ, η1, . . . , ηM , u, ε), j = 1, . . . ,M

where ζ ∈ Rn and ηj ∈ Rmj are the state variables, u ∈ Rq is the vector
of manipulated inputs, F , Gj ∈ Rmj are smooth vector fields of dimensions
n and mj respectively, and ε = [ε1, . . . , εM ]T is a vector of small positive
parameters ε1, . . . , εM , known as the singular perturbation parameters, which
satisfy:

εj+1

εj
→ 0 as ε1 → 0, j = 1, . . . ,M (1)

Conditions for regular degeneration for multiple time scale systems have
been derived, in analogy with two time scale systems, in terms of the proper-
ties of the Jacobian matrices in the individual time scales. Specifically, they
require that the matrix (∂Gj(ζ, η1, . . . , ηM , u, 0)/∂ηj) for j = 1, . . . ,M is non-
singular, and additionally this condition is satisfied with ε replaced by εj for
j = 1, . . . ,M [5]. Under these conditions, the system (1) with small parame-
ters satisfying (1) exhibits M distinct fast time scales and 1 slow time scale
[5]. Note that εM denotes the smallest parameter (responsible for the fastest
fast time scale) and ε1 represents the largest of the small parameters (respon-
sible for the slowest fast time scale). This essentially implies that the variable
ηj+1 is faster than the variable ηj , for j = 1, . . . ,M − 1. Note that such
a hierarchy of fast subsystems is a characteristic feature that distinguishes
multi-time-scale systems from two time scale ones.

In the limiting case when ε → 0 the dynamic order of the system of (1)
degenerates from (n +

∑
jmj) to n, and the slow subsystem is obtained as:

ζ̇ = F (ζ, η1, . . . , ηM , u, 0)

0 = Gj(ζ, η1, . . . , ηM , u, 0), j = 1, . . . ,M

The quasi-steady-state solutions ηj = σj(ζ, u) for j = 1, . . . ,M are
readily obtained by (locally) solving the set of algebraic equations 0 =
Gj(ζ, η1, . . . , ηM , u, 0). Then the slow subsystem can be expressed as:

ζ̇ = F (ζ, σ1(ζ, u), . . . , σM (ζ, u), u, 0) (2)

Introducing a “stretched” fastest fast time scale τM = t/εM , the system in
(1) takes the form:



102 N.P. Vora, M.-N. Contou-Carrere, P. Daoutidis

dζ
dτM

= εMF (ζ, η1, . . . , ηM , u, ε)

dηj
dτM

=
εM
εj

Gj(ζ, η1, . . . , ηM , u, ε), j = 1, . . . ,M − 1

dηM
dτM

= GM (ζ, η1, . . . , ηM , u, ε)

In the limit εM → 0, the dynamics of the slow variables ζ and ηj for
j = 1, . . . ,M − 1 become negligible, and the representation of the dynam-
ics corresponding to the fastest fast time scale τM is obtained as:

dηM
dτM

= GM (ζ, η1, . . . , ηM , u, 0) (3)

where the slow variables ζ and the slower fast variables (i.e., ηj , j = 1, . . . ,M−
1) are “frozen” at their initial conditions and treated as constant parameters.
The fast subsystem in (3) represents the fastest boundary layer subsystem.

In general, the introduction of the “stretched” lth fast time scale, where
1 ≤ l ≤M , τ l = t/εl results in the following description of the system in (1):

dζ
dτ l

= εlF (ζ, η1, . . . , ηM , u, ε)

dηj
dτ l

= εl
εj
Gj(ζ, η1, . . . , ηM , u, ε), j = 1, . . . , l − 1

dηl
dτ l

= Gl(ζ, η1, . . . , ηM , u, ε)

εj
εl

dηj
dτ l

= Gj(ζ, η1, . . . , ηM , u, ε), j = l + 1, . . . ,M

In the limit εl → 0, the dynamics of the slow variables ζ become negligible,
and since

εj
εl
→ 0 for j = l + 1, . . . ,M , and

εl
εj
→ 0 for j = 1, . . . , l − 1,

we obtain ηj = 0 for j = 1, . . . , l − 1, and the differential equations
for ηj for j = l + 1, . . . ,M , are replaced by a set of algebraic equations
0 = Gj(ζ, η1, . . . , ηM , u, 0), j = l + 1, . . . ,M . The representation of the lth
boundary layer subsystem corresponding to the fast variables ηl is then ob-
tained as:

dηl
dτ l

= Gl(ζ, η1, . . . , ηM , u, 0)

0 = Gj(ζ, η1, . . . , ηM , u, 0), j = l + 1, . . . ,M

where the slow variables ζ and ηj for j = 1, . . . , l − 1, are “frozen” at their
initial conditions ζ(0), ηj(0) and treated as constant parameters, and the vari-
ables ηj , j = l + 1, . . . ,M are obtained as quasi-steady-state solutions of the
algebraic equations Gj(ζ, η1, . . . , ηM , u, 0) = 0, j = l + 1, . . . ,M .
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The nested application of single parameter singular perturbation (two time
scale) theory to multi-time-scale systems illustrated above (for more details,
see e.g.[5, 6]), has been used for stability analysis of linear [12] and non-
linear systems (see e.g.[4]). In a different vein, a class of multi-parameter
systems with several small parameters of the same order of magnitude, but
with unknown relations between them has been studied using the concept of
D-stability (see e.g.[7]).

3 Nonstandard Singularly Perturbed Form

In this section, we generalize the previous approach to multiple time scale
systems of the following general form

ẋ = f(x) + g(x)u+
M∑
j=1

1
εj
bj(x)kj(x) (4)

where x ∈ X ⊂ Rn is the vector of state variables, f(x) is smooth vector field
of dimension n, g(x) represents a matrix of dimension n × q, kj(x) denote
smooth vector fields of dimensions pj for j = 1, . . . ,M , bj(x) denote matrices
of dimensions n× pj , and

∑
j pj < n. We assume that the matrices bj(x) and

the Jacobian matrices (∂kj(x)/∂x) have full column rank and full row rank,
respectively.

Such systems arise in the modeling of chemical processes with reactions,
heat/mass transfer, etc. occurring in multiple time scales (e.g. [13]). The 1/εj
terms in (4) represent parameters in the dynamic model corresponding to
large heat/mass transfer coefficients, large reaction rate constants, etc. We
assume that the small parameters εj satisfy the relationship of (1), and thus
the system (4) is a multiple time scale one.

Let us proceed with the derivation of representations of the system dy-
namics in the different time scales. A representation of the fastest dynamics
is obtained by introducing the “stretched” fastest time scale τM = t/εM , con-
sidering the limit εM → 0, and observing that lim

εM→0

εM
εj

= 0 for j < M , and

has the form:
dx

dτM
= bM (x) kM (x) (5)

The system in (5) represents the fastest boundary layer subsystem. Similarly,
in the slow time scale, t, multiplying (4) by εM and considering the limit

εM → 0, the following (linearly independent, as
[
∂kM (x)
∂x

]
has full rank)

constraints are obtained:

kMi(x) = 0, i = 1, . . . , pM (6)
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where kMi(x) denotes the ith component of kM (x). These constraints must

be satisfied in the slow subsystem. Defining lim
εM→0

kMi(x)
εM

= zMi and taking

the limit εM → 0 in the system of (4), the following system is obtained:

ẋ = f(x) + g(x)u +
M−1∑
j=1

1
εj
bj(x)kj(x) + bM (x)zM

0 = kM (x)

which describes the slow dynamics (after the fastest boundary layer) of (4),
where zM denotes the pM -dimensional vector comprising of the variables zMi .
Note that the system in (7) is still stiff, as it contains several parameters (εj ,
j = 1, . . . ,M − 1) of different orders of magnitude. Also, the system (7) is
a DAE system of nontrivial index, as we do not have algebraic equations to
evaluate zM . For most practical cases, the matrix (LbMkM (x)) is nonsingular,
and hence the variables zM can be obtained after one differentiation of the
constraints k(x). This also fixes the index of the DAE system in (7) as two, and
the number of slow and fast variables in this fastest time scale as (n−pM ) and
pM , respectively. In this case, a solution for the variables zM can be readily
obtained as:

zM = − (LbMkM (x))−1

⎧⎨⎩LfkM (x) + LgkM (x)u +
M−1∑
j=1

1
εj

(LbjkM (x))kj(x)

⎫⎬⎭
(7)

Observe that the solution for zM in (7) contains terms (
1
εj

(LbjkM (x))kj(x)),

for j = 1, . . . ,M−1 that are indeterminate in the limit as εj → 0. These terms
are implicitly determined by the additional constraints that will be obtained
in the subsequent time scales. A state-space realization of the DAE system of
(7) can be readily obtained as:

ẋ = f(x) + g(x)u +
M−1∑
j=1

1
εj
bj(x)kj(x)

− bM (x) (LbMkM (x))−1

⎧⎨⎩LfkM (x) + LgkM (x)u +
M−1∑
j=1

1
εj

(LbjkM (x))kj(x)

⎫⎬⎭
0 = kM (x)

We can now proceed to obtain a description of the next fastest dynamics
(i.e. the dynamics in the (M − 1)th fast time scale). To this end, we ini-
tially rearrange the system in (8) by collecting together terms containing the
parameter εM−1 as:
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ẋ =
(
f(x)− bM (x) (LbMkM (x))−1

LfkM (x)
)

+
(
g(x)− bM (x) (LbMkM (x))−1

LgkM (x)
)
u

+

⎧⎨⎩
M−2∑
j=1

1
εj
bj(x)kj(x) − bM (x) (LbMkM (x))−1

M−2∑
j=1

1
εj

(LbjkM (x))kj(x)

⎫⎬⎭
+

1
εM−1

{
bM−1(x)kM−1(x)− bM (x) (LbMkM (x))−1 (LbM−1kM (x))kM−1(x)

}
0 = kM (x)

Furthermore, introducing the “stretched” (M − 1)th fast time scale τM−1 =
t

εM−1
and considering the limit εM−1 → 0, we obtain the following description

of the (M − 1)th fast dynamics of the system in (4):

dx
dτM−1

=
[
bM−1(x) | bM (x)

] [ kM−1(x)
− (LbMkM (x))−1 (LbM−1kM (x))kM−1(x)

]
0 = kM (x)

The system in (8) represents the (M−1)th boundary layer subsystem. Assum-
ing that the matrix

[
bM−1(x) | bM (x)

]
has full column rank, the constraints

obtained, in addition to kM (x) = 0, after the (M − 1)th boundary layer are
kM−1(x) = 0.

Moreover, considering the limit εM−1 → 0 in (8) results in the following
description of the slow dynamics after the (M − 1)th boundary layer:

ẋ =
(
f(x)− bM (x) (LbMkM (x))−1

LfkM (x)
)

+
(
g(x)− bM (x) (LbMkM (x))−1

LgkM (x)
)
u

+

⎧⎨⎩
M−2∑
j=1

1
εj
bj(x)kj(x)− bM (x) (LbMkM (x))−1

M−2∑
j=1

1
εj

(LbjkM (x))kj(x)

⎫⎬⎭
+
[
bM−1(x) − bM (x) (LbMkM (x))−1 (LbM−1kM (x))

]
zM−1

0 = kM−1(x)

0 = kM (x)

where zM−1 denotes the pM−1-dimensional vector comprising of the variables

zM−1i
defined as, zM−1i

= lim
εM−1→0

kM−1i
(x)

εM−1
, i = 1, . . . , pM−1. Note that the

variables zM−1 are implicitly fixed by the constraints kM−1(x) = 0.
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Remark 1. Note that the additional constraints kM−1(x) = 0 obtained af-
ter the (M − 1)th boundary layer are the same as the ones that would
be obtained in the limit εM−1 → 0 from (7). This implies that the term

1
εM−1

(LbM−1kM (x))kM−1(x) in (7) does not introduce additional constraints

in the subsequent slow time scales. This indeed is the case as in the limit as
εM−1 → 0, we obtain (LbM−1kM (x))kM−1(x) = 0 from (7), which is automat-
ically satisfied for kM−1(x) = 0.

Proceeding in a similar fashion as above, in the slow time scale after the lth

boundary layer, and assuming that the (n×
M∑
j=l

pj) matrix [bl(x) | · · · | bM (x) ]

has full column rank, in the limit εl → 0, we obtain the additional constraints
kl(x) = 0. These constraints along with the earlier constraints corresponding
to faster time scales must be satisfied in the slow subsystem, i.e., kj(x) = 0

for j = l, . . . ,M . Defining lim
εl→0

kli(x)
εl

= zli and taking the limit εl → 0 in the

system of (4), the following system is obtained:

ẋ = f(x) + g(x)u+
l−1∑
j=1

1
εj
bj(x) kj(x) +

M∑
j=l

bj(x) zj

0 = kj(x) j = l, . . . ,M

which describes the slow dynamics (after the lth boundary layer) of (4). Note
that the system in (8) is “less stiff” in comparison with the system in (7),
as it contains fewer parameters (εj , j = 1, . . . , l − 1) of different orders of
magnitude. Also, the system (8) is again a DAE system of nontrivial index,
as we do not have algebraic equations to evaluate the algebraic variables zj ,
j = l, . . . ,M . To this end, we assume that (also see (7),(7) and the related

discussion) the
M∑
j=l

pj ×
M∑
j=l

pj matrix (Lbk(x))l defined as:

(Lbk(x))l :=

⎡⎢⎢⎢⎢⎢⎢⎣

LbM kM . . . LbM kj . . . LbM kl
...

. . .
...

. . .
...

Lbj kM . . . Lbj kj . . . Lbj kl
...

. . .
...

. . .
...

Lbl
kM . . . Lbl

kj . . . Lbl
kl

⎤⎥⎥⎥⎥⎥⎥⎦ (8)

is nonsingular for ∀ l ∈ [1,M ]. This fixes the index of the DAE system in
(8) as two, and the number of slow and fast variables as (n −

∑M
j=l pj) and∑M

j=l pj , respectively. Observe that the nonsingularity of the matrix (Lbk(x))l
for l = 1, . . . ,M implies that all principal minors of (Lbk(x))l are nonzero,
which ensures the solution for the variables zl in the individual time scales,
after just one differentiation of the corresponding constraints.
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Proceeding in an analogous manner, a description of the slow dynamics is
obtained after the slowest boundary layer corresponding to l = 1. Specifically,
in the limit as ε1 → 0, we obtain the system:

ẋ = f(x) + g(x)u +
M∑
j=1

bj(x) zj

0 = kj(x) j = 1, . . . ,M

which describes the slow dynamics (after the slowest boundary layer) of (4).
Note the non-stiff character of the system in (9).

Note that the above approach to derive representations of dynamics in in-
dividual time scales does not identify slow and fast variables associated with
the individual time scales. Let us now address the derivation of nonlinear
changes of coordinates which allow the transformation of system in (4) into a
standard singularly perturbed form, thus identifying explicitly the slow and
fast variables. The fact that kl(x), l = 1, . . . ,M are identically equal to zero
in the slow systems after the lth boundary layer (see (7), (8), (9)), and are
non-zero in the lth boundary layer, indicates that they should be used in the
definition of the fast variables in such a coordinate change. A nonlinear coor-
dinate change can be obtained along these lines yielding a standard singularly
perturbed representation of the system in (4), and is given in the following
theorem.

Theorem 1. Consider the system in (4), and assume that,

(i) the

⎛⎝ M∑
j=l

pj ×
M∑
j=l

pj

⎞⎠ matrix (Lbk(x))l defined in (8) is nonsingular

(ii)the

⎛⎝ M∑
j=l

pj × n

⎞⎠ matrix

[(
∂kl(x)
∂x

)T
| · · · |

(
∂kM (x)
∂x

)T]T
has full row

rank

∀ l ∈ [1,M ]. Then there exists a coordinate change of the form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ
η1
...
ηj
...
ηM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= T (x, ε) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(x)
k1(x)
ε1
...

kj(x)
εj
...

kM (x)
εM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

where ζ ∈ Rn−
�

j pj , ηj ∈ Rpj , j = 1, . . . ,M , under which the multiple time
scale system of (4) takes the following standard singularly perturbed form:
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ζ̇ = f̃(ζ, εη) + g̃(ζ, εη) u+
M∑
i=1

{
b̃i(ζ, εη)ηi

}
ε1η̇1 = f̄1(ζ, εη) + ḡ1(ζ, εη) u+

M∑
i=1

{
b̄1i (ζ, εη)ηi

}
...

εj η̇j = f̄ j(ζ, εη) + ḡj(ζ, εη) u+
M∑
i=1

{
b̄ji (ζ, εη)ηi

}
...

εM ˙ηM = f̄M (ζ, εη) + ḡM (ζ, εη) u+
M∑
i=1

{
b̄Mi (ζ, εη)ηi

}
where f̃ = Lfφ(x), g̃ = Lgφ(x), b̃ = Lbφ(x), f̄ j = Lfkj(x), ḡj = Lgkj(x), b̄ji =
Lbikj(x) are evaluated at x = T−1(ζ, εη) ∀ i, j, and the

∑M
j=l pj ×

∑M
j=l pj

dimensional matrix Ql(ζ, 0) = (Lbk(x))l evaluated at x = T−1(ζ, 0) is non-
singular uniformly in ζ ∈ Rn−

�
j pj , ∀ l ∈ [1,M ].

Proof. Note that given the linear independence of the
∑M

j=1 pj scalar functions
in kj(x), j = 1, . . . ,M (condition (ii) for l = 1), there exist (n−

∑M
j=1 pj)

scalar functions φ(x) such that (9) is a local diffeomorphism, thus qualifying
as a valid coordinate change. It can then be directly verified that the system of
(4) in the new coordinates takes the form of (10). In order to prove that (10) is
in the standard singularly perturbed form, we must show that the variables ηj ,
for j = l, . . . ,M can be solved for their quasi-steady-state solution from the
resulting algebraic equations in the limit εl → 0, for any arbitrary l ∈ [1,M ].
The condition (i) in the theorem guarantees the existence of such a quasi-
steady-state solution for the variables ηj , as the matrix Ql(ζ, 0) is uniformly
nonsingular in the limit εl → 0, ∀ l ∈ [1,M ]. This proves the theorem.

Note that the system in (10) allows obtaining the entire hierarchy of the
boundary layer subsystems and the corresponding slow subsystems for any
arbitrary l ∈ [1,M ].

4 Application

In this section, we derive a coordinate change for a representative multiple
time scale chemical system in non standard singularly perturbed form.

We consider an isothermal CSTR of volume V where reactants A and E
are fed at a flow rate F in at concentrations CinA and CinE , respectively. The
following reactions occur:

A � B → C � D
E → F
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The reaction rates R1 and R3 for the reversible reactions A � B and C � D,
respectively, are given by

R1 = k1

(
CA −

CB
κ1

)
and

R3 = k3

(
CC −

CD
κ3

)
where CA, CB , CC and CD denote the concentrations of species A,B,C and D,
k1 and k3 are the reaction rate constants whereas κ1 and κ3 are equilibrium
constants. The reaction rates R2 and R4 for the irreversible reactions B → C
and E → F are given by

R2 = k2CB

and
R4 = k4CE

where CE denotes the concentration of species E.
The dynamic model of this process takes the following form

V̇ = F in − F out

ĊA =
F in

V

(
CinA − CA

)
− k1

(
CA −

CB
κ1

)
ĊB = −F

in

V
CB + k1

(
CA −

CB
κ1

)
− k2CB

ĊC = −F
in

V
CC + k2CB − k3

(
CC −

CD
κ3

)
ĊD = −F

in

V
CD + k3

(
CC −

CD
κ3

)
ĊE =

F in

V

(
CinE − CE

)
− k4CE

ĊF = −F
in

V
CF + k4CE

(10)

It is assumed that the reaction rates are such that the following inequalities
hold k2 � k4 � k3 � k1. Moreover, the reaction equilibrium constants κ1

and κ3 are assumed to be different. Owing to the presence of reaction rates
of widely spread orders of magnitude, the process exhibit multiple time scale
dynamics.

The system in (10) is in the nonstandard singularly perturbed form of (4)
where the singular perturbation parameters are defined as

ε1 =
1
k1

ε2 =
1
k3

ε3 =
1
k4
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In this description, the vector of state variables x and the vector f(x)+ g(x)u
take the form

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

V
CA
CB
CC
CD
CE
CF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
f(x) + g(x)u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F in − F out

F in

V

(
CinA − CA

)
−F

in

V
CB − k2CB

−F
in

V
CC + k2CB

−F
in

V
CD

F in

V

(
CinE − CE

)
−F

in

V
CF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

The remaining vectors are

b1(x) =
[
0 −1 1 0 0 0 0

]T
k1(x) = CA − CB/κ1

b2(x) =
[
0 0 0 −1 1 0 0

]T
k2(x) = CC − CD/κ3

b3(x) =
[
0 0 0 0 0 −1 1

]T
k3(x) = CE

(12)

Assumptions (i) and (ii) in the theorem are fulfilled for this system. Specif-
ically, the matrices (Lbk(x))l for l ∈ [1, 2, 3] defined in (8) are nonsingular since
κ1 �= κ3 is assumed

(Lbk(x))1 =

⎡⎢⎢⎢⎣
−1 0 0

0 −1− 1
κ3

0

0 0 −1− 1
κ1

⎤⎥⎥⎥⎦
(Lbk(x))2 =

⎡⎣−1 0

0 −1− 1
κ3

⎤⎦ (Lbk(x))3 =
[
−1
]

(13)

It can also be easily verified that the Jacobian matrices[(
∂kl(x)
∂x

)T
| · · · |

(
∂kM (x)
∂x

)T]T
for l ∈ [1, 2, 3] have full row rank, given that the Jacobians of the scalars
k1(x), k2(x) and k3(x) are
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∂k1

∂x
=
[

0 1 − 1
κ1

0 0 0 0
]

∂k2

∂x
=
[

0 0 0 1 − 1
κ3

0 0
]

∂k3

∂x
=
[
0 0 0 0 0 1 0

]
(14)

Since assumptions (i) and (ii) hold, the theorem guarantees the existence of
a coordinate change leading to a standard singularly perturbed form of the
system in (10). In particular, we consider the following coordinate change

T (x, ε1, ε2, ε3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ1

ζ2

ζ3

ζ4

η1

η2

η3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V

CA + CB

CC + CD

CE + CF

k1

(
CA −

CB
κ1

)

k3

(
CC −

CD
κ3

)
k4CE

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

Under this diffeomorphism, the multiple time scale system of (10) yields the
following standard singularly perturbed system
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ζ̇1 = F in − F out

ζ̇2 =
F in

V
CinA −

F in

V
ζ2 −

k2

1 +
1
κ1

(ζ2 − ε1η1)

ζ̇3 = −F
in

V
ζ3 +

k2

1 +
1
κ1

(ζ2 − ε1η1)

ζ̇4 =
F in

V
CinE −

F in

V
ζ4

ε1η̇1 =
F in

V

(
CinA − ε1η1

)
−
(

1 +
1
κ1

)
η1 +

k2

1 +
1
κ1

(ζ2 − ε1η1)

ε2η̇2 = −F
in

V
ε2η2 −

(
1 +

1
κ3

)
η2 +

k2

1 +
1
κ1

(ζ2 − ε1η1)

ε3η̇3 =
F in

V

(
CinE − ε3η3

)
− η3

(16)

where fast and slow variables are clearly identified.

5 Conclusion

In this work, we considered a nonstandard singularly perturbed form of mul-
tiple time scale systems arising as models of chemical processes. For this class
of systems, we derived representations of the subsystems describing the dy-
namics in individual time scales following a nested application of singular
perturbation arguments. We also proposed a nonlinear coordinate transfor-
mation that yields a standard singularly perturbed form. The results were
exemplified through a chemical reactor example with several reactions having
rates of different orders of magnitude.
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Summary. We consider two basic types of coarse-graining: the Ehrenfests’ coarse-
graining and its extension to a general principle of non-equilibrium thermodynamics,
and the coarse-graining based on uncertainty of dynamical models and ε-motions
(orbits). Non-technical discussion of basic notions and main coarse-graining theo-
rems are presented: the theorem about entropy overproduction for the Ehrenfests’
coarse-graining and its generalizations, both for conservative and for dissipative sys-
tems, and the theorems about stable properties and the Smale order for ε-motions of
general dynamical systems including structurally unstable systems. Computational
kinetic models of macroscopic dynamics are considered. We construct a theoreti-
cal basis for these kinetic models using generalizations of the Ehrenfests’ coarse-
graining. General theory of reversible regularization and filtering semigroups in ki-
netics is presented, both for linear and non-linear filters. We obtain explicit expres-
sions and entropic stability conditions for filtered equations. A brief discussion of
coarse-graining by rounding and by small noise is also presented.

1 Introduction

Almost a century ago, Paul and Tanya Ehrenfest in their paper for scientific
Encyclopedia [1] introduced a special operation, the coarse-graining. This op-
eration transforms a probability density in phase space into a “coarse-grained”
density, that is a piece-wise constant function, a result of density averaging in
cells. The size of cells is assumed to be small, but finite, and does not tend to
zero. The coarse-graining models uncontrollable impact of surrounding (of a
thermostat, for example) onto ensemble of mechanical systems.

To understand reasons for introduction of this new notion, let us take a
phase drop, that is, an ensemble of mechanical systems with constant probabil-
ity density localized in a small domain of phase space. Let us watch evolution
of this drop in time according to the Liouville equation. After a long time,
the shape of the drop may be very complicated, but the density value remains
the same, and this drop remains “oil in water.” The ensemble can tend to the
equilibrium in the weak sense only: average value of any continuous function
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Fig. 1: The Ehrenfests’ coarse-graining: two “motion – coarse-graining” cycles in 1D
(a, values of probability density are presented by the height of the columns) and one
such cycle in 2D (b, values of probability density are presented by hatching density).

tends to its equilibrium value, but the entropy of the distribution remains
constant. Nevertheless, if we divide the phase space into cells and supplement
the mechanical motion by the periodical averaging in cells (this is the Ehren-
fests’ idea of coarse-graining), then the entropy increases, and the distribution
density tends uniformly to the equilibrium. This periodical coarse-graining is
illustrated by Fig. 1 for one-dimensional (1D)1 and two-dimensional (2D)
phase spaces.

Recently, we can find the idea of coarse-graining everywhere in statistical
physics (both equilibrium and non-equilibrium). For example, it is the central
idea of the Kadanoff transformation, and can be considered as a background

1 Of course, there is no mechanical system with one-dimensional phase space, but
dynamics with conservation of volume is possible in 1D case too: it is a motion
with constant velocity.
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of the Wilson renormalization group [6] and modern renormalisation group
approach to dissipative systems [7, 8]. 2 It gave a simplest realization of the
projection operators technique [2] long before this technic was developed. In
the method of invariant manifold [3, 4] the generalized Ehrenfests’ coarse-
graining allows to find slow dynamics without a slow manifold construction.
It is also present in the background of the so-called equation-free methods
[9]. Applications of the Ehrenfests’ coarse-graining outside statistical physics
include simple, but effective filtering [10]. The Gaussian filtering of hydrody-
namic equations that leads to the Smagorinsky equations [14] is, in its essence,
again a version of the Ehrenfests’ coarse-graining. In the first part of this paper
we elaborate in details the Ehrenfests’ coarse-graining for dynamical systems.

The central idea of the Ehrenfests’ coarse-graining remains the same in
most generalizations: we combine the genuine motion with the periodic par-
tial equlibration. The result is the Ehrenfests’ chain. After that, we can find
the macroscopic equation that does not depend on an initial distribution and
describes the Ehrenfests’ chains as results of continuous autonomous motion
[5, 11]. Alternatively, we can just create a computational procedure without
explicit equations [9]. In the sense of entropy production, the resulting macro-
scopic motion is “more dissipative” than initial (microscopic) one. It is the
theorem about entropy overproduction. In its general form it was proven in
[12].

Kinetic models of fluid dynamics become very popular during the last
decade. Usual way of model simplification leads from kinetics to fluid dynam-
ics, it is a sort of dimension reduction. But kinetic models go back, and it is the
simplification also. Some of kinetic equations are very simple and even exactly
solvable. The simplest and most popular example is the free flight kinetics,
∂f(x,v, t)/∂t = −

∑
i vi∂f(x,v, t)/∂xi, where f(x,v, t) is one-particle distri-

bution function, x is space vector, v is velocity. We can “lift” a continuum
equation to a kinetic model, and than approximate the solution by a chain,
each link of which is a kinetic curve with a jump from the end of this curve
to the beginning of the next link. In this paper, we describe how to construct
these curves, chains, links and jumps on the base of Ehrenfests’ idea. Kinetic
model has more variables than continuum equation. Sometimes simplification
in modeling can be reached by dimension increase, and it is not a miracle.

In practice, kinetic models in the form of lattice Boltzmann models are in
use [19]. The Ehrenfests’ coarse-graining provides theoretical basis for kinetic
models. First of all, it is possible to replace projecting (partial equilibration)
by involution (i.e. reflection with respect to the partial equilibrium). This
entropic involution was developed for the lattice Boltzmann methods in [89].
In the original Ehrenfests’ chains, “motion–partial equilibration–motion–...,”
dissipation is coupled with time step, but the chains “motion–involution–
motion–...” are conservative. The family of chains between conservative (with

2 See also the paper of A. Degenhard and J. Javier Rodriguez-Laguna in this vol-
ume.



120 A. N. Gorban

entropic involution) and maximally dissipative (with projection) ones give us a
possibility to model hydrodynamic systems with various dissipation (viscosity)
coefficients that are decoupled with time steps.

Large eddy simulation, filtering and subgrid modeling are very popular
in fluid dynamics [13, 14, 15, 16, 17]. The idea is that small inhomogeneities
should somehow equilibrate, and their statistics should follow the large scale
details of the flow. Our goal is to restore a link between this approach and ini-
tial coarse-raining in statistical physics. Physically, this type of coarse-graining
is transference the energy of small scale motion from macroscopic kinetic en-
ergy to microscopic internal energy. The natural framework for analysis of such
transference provides physical kinetics, where initially exists no difference be-
tween kinetic and internal energy. This difference appears in the continuum
mechanic limit. We proposed this idea several years ago, and an example for
moment equations was published in [18]. Now the kinetic approach for filter-
ing is presented. The general commutator expansion for all kind of linear or
non-linear filters, with constant or with variable coefficients is constructed.
The condition for stability of filtered equation is obtained.

The upper boundary for the filter width Δ that guaranties stability of the
filtered equations is proportional to the square root of the Knudsen number.
Δ/L ∼

√
Kn (where L is the characteristic macroscopic length). This scaling,

Δ/L ∼
√

Kn, was discussed in [18] for moment kinetic equations because
different reasons: if Δ/L �

√
Kn then the Chapman–Enskog procedure for

the way back from kinetics to continuum is not applicable, and, moreover,
the continuum description is probably not valid, because the filtering term
with large coefficient Δ/L violates the conditions of hydrodynamic limit. This
important remark gives the frame for η scaling. It is proven in this paper for
the broad class of model kinetic equations. The entropic stability conditions
presented below give the stability boundaries inside this scale.

Several other notions of coarse-graining were introduced and studied for
dynamical systems during last hundred years. In this paper, we shall consider
one of them, the coarse-graining by ε-motions (ε-orbits, or pseudo orbits) and
briefly mention two other types: coarse-graining by rounding and by small
random noise.

ε-motions describe dynamics of models with uncertainty. We never know
our models exactly, we never deal with isolated systems, and the surrounding
always uncontrollably affect dynamics of the system. This dynamics can be
presented as a usual phase flow supplemented by a periodical ε-fattening: after
time τ , we add a ε-ball to each point, hence, points are transformed into sets.
This periodical fattening expands all attractors: for the system with fattening
they are larger than for original dynamics.

Interest to the dynamics of ε-motions was stimulated by the famous work
of S. Smale [20]. This paper destroyed many naive dreams and expectations.
For generic 2D system the phase portrait is the structure of attractors (sinks),
repellers (sources), and saddles. For generic 2D systems all these attractors
are either fixed point or closed orbits. Generic 2D systems are structurally
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stable. It means that they do not change qualitatively after small perturba-
tions. Our dream was to find a similar stable structure in generic systems for
higher dimensions, but S. Smale showed it is impossible: Structurally stable
systems are not dense! Unfortunately, in higher dimensions there are regions
of dynamical systems that can change qualitatively under arbitrary small per-
turbations.

One of the reasons to study ε-motions (flow with fattening) and systems
with sustained perturbations was the hope that even small errors coarsen the
picture and can wipe some of the thin peculiarities off. And this hope was real-
istic, at least, partially [21, 22, 23]. The thin peculiarities that are responsible
for appearance of regions of structurally unstable systems vanish after the
coarse-graining via arbitrary small periodical fattening. All the models have
some uncertainty, hence, the features of dynamics that are unstable under
arbitrary small coarse-graining are unobservable.

Rounding is a sort of coarse-graining that appears automatically in com-
puter simulations. It is very natural that in era of intensive computer simu-
lation of complex dynamics the coarse-graining by rounding attracted special
attention [24, 25, 26, 27, 28, 29, 30]. According to a very idealized popular
dynamic model, rounding might be represented as restriction of shift in given
time τ onto ε-net in phase space. Of courses, the restriction includes some
perturbation of dynamics (Fig. 2). The formal definition of rounding action
includes a tiling: around any point of the ε-net there is a cell, these cells form
a tiling of the phase space, and rounding maps a cell into corresponding point
of the ε-net. These cells have equal volumes if there are no special reasons
to make their volumes different. If this volume is dynamically invariant then,
for sufficiently large time of motion between rounding steps, all the mixing
dynamical systems with rounding can be described by an universal object.
This is a random dynamical system, the random map of a finite set: any point
of the ε-net can be the image of a given point with probability 1/m (where
m is the number of points in the ε-net). The combinatorial theory of such
random graphs is well–developed [31].

After rounding, some unexpected properties of dynamics appear. For ex-
ample, even for transitive systems with strong mixing significant part of points
of the ε-net becomes transient after rounding. Initially, attractor of such a
continuous system is the whole phase space, but after rounding attractor of
discrete dynamical system on the ε-net includes, roughly speaking, a half of its
points (or, more precisely, the expectation of the number of transient points is
m(e− 1)/e, where m is number of points, e = 2.7...). In some circumstances,
complicated dynamics has a tendency to collapse to trivial and degenerate
behaviour as a result of discretizations [27]. For systems without conserva-
tion of volume, the number of periodic points after discretization is linked to
the dimension of the attractor d. The simple estimates based on the random
map analysis, and numerical experiments with chaotic attractors give ∼ ε−d

for the number of periodic points, and ∼ ε−d/2 for the scale of the expected
period [26, 30]. The first of them is just the number of points in ε-net in
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a)

Rounding

Superposition
“motion & rounding” Motion

(during time )
b)

Fig. 2: Motion, rounding and “motion with rounding” for a dynamical system (a),
and the universal result of motion with rounding: a random dynamical system (b).

d-dimensional compact, the second becomes clear after the following remark.
Let us imagine a random walk in a finite set with m elements (a ε-net). When
the length of the trajectory is of order

√
m then the next step returns the

point to the trajectory with probability ∼ 1/
√
m, and a loop appears with

expected period ∼ √m (a half of the trajectory length). After ∼ √m steps
the probability of a loop appearance is near 1, hence, for the whole system
the expected period is ∼

√
m ∼ ε−d/2.

It is easy to demonstrate the difference between coarse-graining by fat-
tening and coarse-graining by rounding. Let us consider a trivial dynamics
on a connected phase space: let the shift in time be identical transformation.
For coarse-graining by fattening the ε-motion of any point tends to cover the
whole phase space for any positive ε and time t → ∞: periodical ε-fattening
with trivial dynamics transforms, after time nτ , a point into the sum of n ε-
balls. For coarse-graining by rounding this trivial dynamical system generates
the same trivial dynamical system on ε-net: nothing moves.

Coarse-graining by small noise seems to be very natural. We add small
random term to the right hand side of differential equations that describe
dynamics. Instead of the Liouville equation for probability density the Fokker–
Planck equation appears. There is no fundamental difference between various
types of coarse-graining, and the coarse-graining by ε-fattening includes major
results about the coarse-graining by small noise that are insensitive to most
details of noise distribution. But the knowledge of noise distribution gives
us additional tools. The action functional is such a tool for the description
of fluctuations [32]. Let Xε(t) be a random process “dynamics with ε-small
fluctuation” on the time interval [0, T ]. It is possible to introduce such a
functional S[ϕ] on functions x = ϕ(t) (t ∈ [0, T ]) that for sufficiently small
ε, δ > 0

P{‖Xε − ϕ‖ < δ} ≈ exp(−S[ϕ]/ε2).
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Action functional is constructed for various types of random perturbations
[32]. Introduction to the general theory of random dynamical systems with
invariant measure is presented in [33].

In following sections, we consider two types of coarse-graining: the
Ehrenfests’ coarse-graining and its extension to a general principle of non-
equilibrium thermodynamics, and the coarse-graining based on the uncer-
tainty of dynamical models and ε-motions.

2 The Ehrenfests’ Coarse-Graining

2.1 Kinetic Equation and Entropy

Entropy conservation in systems with conservation of phase volume

The Erenfest’s coarse-graining was originally defined for conservative3 sys-
tems. Usually, Hamiltonian systems are considered as conservative ones, but
in all constructions only one property of Hamiltonian systems is used, namely,
conservation of the phase volume dΓ (the Liouville theorem). Let X be phase
space, v(x) be a vector field, dΓ = dnx be the differential of phase volume.
The flow,

dx
dt

= v(x), (1)

conserves the phase volume, if divv(x) = 0. The continuity equation,

∂f

∂t
= −

∑
i

∂(fvi(x))
∂xi

, (2)

describes the induced dynamics of the probability density f(x, t) on phase
space. For incompressible flow (conservation of volume), the continuity equa-
tion can be rewritten in the form

∂f

∂t
= −

∑
i

vi(x)
∂f

∂xi
. (3)

This means that the probability density is constant along the flow: f(x, t +
dt) = f(x− v(x)dt, t). Hence, for any continuous function h(f) the integral

H(f) =
∫
X

h(f(x)) dΓ (x) (4)

3 In this paper, we use the term “conservative” as an opposite term to “dissipative:”
conservative = with entropy conservation. Another use of the term “conservative
system” is connected with energy conservation. For kinetic systems under con-
sideration conservation of energy is a simple linear balance, and we shall use the
first sense only.
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does not change in time, provided the probability density satisfies the con-
tinuity equation (2) and the flow v(x) conserves the phase volume. For
h(f) = −f ln f integral (4) gives the classical Boltzmann–Gibbs–Shannon
(BGS) entropy functional:

S(f) = −
∫
X

f(x) ln(f(x)) dΓ (x). (5)

For flows with conservation of volume, entropy is conserved: dS/dt ≡ 0 .

Kullback entropy conservation in systems with regular invariant distribution

Suppose the phase volume is not invariant with respect to flow (1), but a
regular invariant density f∗(x) (equilibrium) exists:∑

i

∂(f∗(x)vi(x))
∂xi

= 0. (6)

In this case, instead of an invariant phase volume dΓ , we have an invariant
volume f∗(x) dΓ . We can use (6) instead of the incompressibility condition
and rewrite (2):

∂(f(x, t)/f∗(x))
∂t

= −
∑
i

vi(x)
∂(f(x, t)/f∗(x))

∂xi
. (7)

The function f(x, t)/f∗(x) is constant along the flow, the measure f∗(x) dΓ (x)
is invariant, hence, for any continuous function h(f) integral

H(f) =
∫
X

h(f(x, t)/f∗(x))f∗(x) dΓ (x) (8)

does not change in time, if the probability density satisfies the continuity
equation. For h(f) = −f ln f integral (8) gives the Kullback entropy functional
[42]:

SK(f) = −
∫
X

f(x) ln
(
f(x)
f∗(x)

)
dΓ (x). (9)

This situation does not differ significantly from the entropy conservation in
systems with conservation of volume. It is just a kind of change of variables.

General entropy production formula

Let us consider the general case without assumptions about phase volume
invariance and existence of a regular invariant density (6). In this case, let a
probability density f(x, t) be a solution of the continuity equation (2). For
the BGS entropy functional (5)

dS(f)
dt

=
∫
X

f(x, t)divv(x) dΓ (x), (10)
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if the left hand side exists. This entropy production formula can be easily
proven for small phase drops with constant density, and then for finite sums
of such distributions with positive coefficients. After that, we obtain formula
(10) by limit transition.

For a regular invariant density f∗(x) (equilibrium) entropy S(f∗) exists,
and for this distribution dS(f)/dt = 0, hence,∫

X

f∗(x)divv(x) dΓ (x) = 0. (11)

Entropy production in systems without regular equilibrium

If there is no regular equilibrium (6), then the entropy behaviour changes
drastically. If volume of phase drops tends to zero, then the BGS entropy (5)
and any Kullback entropy (9) goes to minus infinity. The simplest example
clarifies the situation. Let all the solutions converge to unique exponentially
stable fixed point x = 0. In linear approximation dx/dt = Ax and S(t) =
S(0) + t trA. Entropy decreases linearly in time with the rate trA (trA =
divv(x), trA < 0), time derivative of entropy is trA and does not change in
time, and the probability distribution goes to the δ-function δ(x). Entropy of
this distribution does not exist (it is “minus infinity”), and it has no limit
when f(x, t)→ δ(x).

Nevertheless, time derivative of entropy is well defined and constant, it is
trA. For more complicated singular limit distributions the essence remains the
same: according to (10) time derivative of entropy tends to the average value
of divv(x) in this limit distribution, and entropy goes linearly to minus infinity
(if this average in not zero, of course). The order in the system increases. This
behaviour could sometimes be interpreted as follows: the system is open and
produces entropy in its surrounding even in a steady–state. Much more details
are in review [41].4

Starting point: a kinetic equation

For the formalization of the Ehrenfests’ idea of coarse-graining, we start from
a formal kinetic equation

df
dt

= J(f) (12)

with a concave entropy functional S(f) that does not increase in time. This
equation is defined in a convex subset U of a vector space E.
4 Applications of this formalism are mainly related to Hamiltonian systems in so-

called force thermostat, or, in particular, isokinetic thermostat. These thermostats
were invented in computational molecular dynamics for acceleration of compu-
tations, as a technical trick. From the physical point of view, this theory can be
considered as a theory about a friction of particles on the space, the “ether fric-
tion.” For isokinetic thermostats, for example, this “friction” decelerates some of
particles, accelerates others, and keeps the kinetic energy constant.
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Let us specify some notations: ET is the adjoint to the E space. Adjoint
spaces and operators will be indicated by T , whereas the notation ∗ is ear-
marked for equilibria and quasi-equilibria.

We recall that, for an operator A : E1 → E2, the adjoint operator, AT :
ET1 → ET2 is defined by the following relation: for any l ∈ ET2 and ϕ ∈ E1,
l(Aϕ) = (AT l)(ϕ).

Next, DfS(f) ∈ ET is the differential of the functional S(f), D2
fS(f)

is the second differential of the functional S(f). The quadratic functional
D2
fS(f)(ϕ,ϕ) on E is defined by the Taylor formula,

S(f + ϕ) = S(f) +DfS(f)(ϕ) +
1
2
D2
fS(f)(ϕ,ϕ) + o(‖ϕ‖2). (13)

We keep the same notation for the corresponding symmetric bilinear form,
D2
fS(f)(ϕ, ψ), and also for the linear operator, D2

fS(f) : E → ET , defined by
the formula (D2

fS(f)ϕ)(ψ) = D2
fS(f)(ϕ, ψ). In this formula, on the left hand

side D2
fS(f) is the operator, on the right hand side it is the bilinear form.

Operator D2
fS(f) is symmetric on E, D2

fS(f)T = D2
fS(f).

In finite dimensions the functional DfS(f) can be presented simply as a
row vector of partial derivatives of S, and the operator D2

fS(f) is a matrix
of second partial derivatives. For infinite–dimensional spaces some complica-
tions exist because S(f) is defined only for classical densities and not for all
distributions. In this paper we do not pay attention to these details.

We assume strict concavity of S, D2
fS(f)(ϕ,ϕ) < 0 if ϕ �= 0. This means

that for any f the positive definite quadratic form −D2
fS(f)(ϕ,ϕ) defines a

scalar product
〈ϕ, ψ〉f = −(D2

fS)(ϕ, ψ). (14)

This entropic scalar product is an important part of thermodynamic formal-
ism. For the BGS entropy (5) as well as for the Kullback entropy (9)

〈ϕ, ψ〉f =
∫

ϕ(x)ψ(x)
f(x)

dx. (15)

The most important assumption about kinetic equation (12) is: entropy
does not decrease in time:

dS
dt

= (DfS(f))(J(f)) ≥ 0. (16)

A particular case of this assumption is: the system (12) is conservative and
entropy is constant. The main example of such conservative equations is the
Liouville equation with linear vector field J(f) = −Lf = {H, f}, where {H, f}
is the Poisson bracket with Hamiltonian H .

For the following consideration of the Ehrenfests’ coarse-graining the un-
derlying mechanical motion is not crucial, and it is possible to start from the
formal kinetic equation (12) without any mechanical interpretation of vec-
tors f . We develop below the coarse-graining procedure for general kinetic
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equation (12) with non-decreasing entropy (16). After coarse-graining the en-
tropy production increases: conservative systems become dissipative ones, and
dissipative systems become “more dissipative.”

2.2 Conditional Equilibrium Instead of Averaging in Cells

Microdescription, macrodescription and quasi-equilibrium state

Averaging in cells is a particular case of entropy maximization. Let the phase
space be divided into cells. For the ith cell the population Mi is

Mi = mi(f) =
∫

celli

f(x) dΓ (x).

The averaging in cells for a given vector of populations M = (Mi) produces
the solution of the optimization problem for the BGS entropy:

S(f)→ max, m(f) = M, (17)

where m(f) is vector (mi(f)). The maximizer is a function f∗M (x) defined by
the vector of averages M .

This operation has a well-known generalization. In the more general state-
ment, vector f is a microscopic description of the system, vector M gives a
macroscopic description, and a linear operator m transforms a microscopic
description into a macroscopic one: M = m(f). The standard example is
the transformation of the microscopic density into the hydrodynamic fields
(density–velocity–kinetic temperature) with local Maxwellian distributions as
entropy maximizers (see, for example, [4]).

For any macroscopic descriptionM , let us define the correspondent f∗M as a
solution to optimization problem (17) with an appropriate entropy functional
S(f) (Fig. 3). This f∗M has many names in the literature: MaxEnt distribu-
tion, reference distribution (reference of the macroscopic description to the
microscopic one), generalized canonical ensemble, conditional equilibrium, or
quasi-equilibrium. We shall use here the last term.

The quasi-equilibrium distribution f∗M satisfies the obvious, but important
identity of self-consistency:

m(f∗M ) = M, (18)

or in differential form

m(DMf∗M ) = 1, i.e. m((DMf∗M )a) ≡ a. (19)

The last identity means that the infinitesimal change in M calculated through
differential of the quasi-equilibrium distribution f∗M is simply the infinitesimal
change in M . For the second differential we obtain

m(D2
Mf∗M ) = 0, i.e. m((D2

Mf∗M )(a, b)) ≡ 0. (20)
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Fig. 3: Relations between a microscopic state f , a corresponding macroscopic state
M = m(f), and a quasi-equilibrium state f∗

M .

Following [4] let us mention that most of the works on nonequilibrium
thermodynamics deal with quasi-equilibrium approximations and corrections
to them, or with applications of these approximations (with or without correc-
tions). This viewpoint is not the only possible but it proves very efficient for
the construction of a variety of useful models, approximations and equations,
as well as methods to solve them.

From time to time it is discussed in the literature, who was the first to in-
troduce the quasi-equilibrium approximations, and how to interpret them. At
least a part of the discussion is due to a different role the quasi-equilibrium
plays in the entropy-conserving and in the dissipative dynamics. The very
first use of the entropy maximization dates back to the classical work of G.
W. Gibbs [47], but it was first claimed for a principle of informational sta-
tistical thermodynamics by E. T. Jaynes [48]. Probably, the first explicit and
systematic use of quasiequilibria on the way from entropy-conserving dynam-
ics to dissipative kinetics was undertaken by D. N. Zubarev. Recent detailed
exposition of his approach is given in [49].

For dissipative systems, the use of the quasi-equilibrium to reduce descrip-
tion can be traced to the works of H. Grad on the Boltzmann equation [50]. A
review of the informational statistical thermodynamics was presented in [51].
The connection between entropy maximization and (nonlinear) Onsager rela-
tions was also studied [52, 53]. Our viewpoint was influenced by the papers by
L. I. Rozonoer and co-workers, in particular, [54, 55, 56]. A detailed exposition
of the quasi-equilibrium approximation for Markov chains is given in the book
[34] (Chap. 3, Quasi-equilibrium and entropy maximum, pp. 92-122), and for
the BBGKY hierarchy in the paper [57].
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The maximum entropy principle was applied to the description of the uni-
versal dependence of the three-particle distribution function F3 on the two-
particle distribution function F2 in classical systems with binary interactions
[58]. For a discussion of the quasi-equilibrium moment closure hierarchies for
the Boltzmann equation [55] see the papers [59, 60, 61]. A very general discus-
sion of the maximum entropy principle with applications to dissipative kinetics
is given in the review [62]. Recently, the quasi-equilibrium approximation with
some further correction was applied to the description of rheology of polymer
solutions [64, 65] and of ferrofluids [66, 67]. Quasi-equilibrium approximations
for quantum systems in the Wigner representation [70, 71] was discussed very
recently [63].

We shall now introduce the quasi-equilibrium approximation in the most
general setting. The coarse-graining procedure will be developed after that as
a method for enhancement of the quasi-equilibrium approximation [5].

Quasi-equilibrium manifold, projector and approximation

A quasi-equilibrium manifold is a set of quasi-equilibrium states f∗M parame-
terized by macroscopic variables M . For microscopic states f the correspon-
dent quasi-equilibrium states are defined as f∗m(f). Relations between f , M ,
f∗M , and f∗m(f) are presented in Fig. 3.

A quasi-equilibrium approximation for the kinetic equation (12) is an equa-
tion for M(t):

dM
dt

= m(J(f∗M )). (21)

To define Ṁ in the quasi-equilibrium approximation for given M , we find the
correspondent quasi-equilibrium state f∗M and the time derivative of f in this
state J(f∗M ), and then return to the macroscopic variables by the operator m.
If M(t) satisfies (21) then f∗M(t) satisfies the following equation

df∗M
dt

= (DMf∗M )
(

dM
dt

)
= (DMf∗M )(m(J(f∗M ))). (22)

The right hand side of (22) is the projection of vector field J(f) onto the
tangent space of the quasi-equilibrium manifold at the point f = f∗M . After
calculating the differential DMf∗M from the definition of quasi-equilibrium
(17), we obtain df∗M/dt = πf∗

M
J(f∗M ), where πf∗

M
is the quasi-equilibrium

projector:

πf∗
M

= (DMf∗M )m =
(
D2
fS
)−1

f∗
M

mT
(
m
(
D2
fS
)−1

f∗
M

mT
)−1

m. (23)

It is straightforward to check the equality π2
f∗

M
= πf∗

M
, and the self-adjointness

of πf∗
M

with respect to entropic scalar product (14). In this scalar product,
the quasi-equilibrium projector is the orthogonal projector onto the tangent
space to the quasi-equilibrium manifold. The quasi-equilibrium projector for
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Fig. 4: Quasi-equilibrium manifold Ω, tangent space Tf∗
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M
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a quasi-equilibrium approximation was first constructed by B. Robertson [68].
Thus, we have introduced the basic constructions: quasi-equilibrium man-

ifold, entropic scalar product, and quasi-equilibrium projector (Fig. 4).

Preservation of dissipation

For the quasi-equilibrium approximation the entropy is S(M) = S(f∗M ). For
this entropy,

dS(M)
dt

=
(

dS(f)
dt

)
f=f∗

M

, (24)

Here, on the left hand side stands the macroscopic entropy production for the
quasi-equilibrium approximation (21), and the right hand side is the micro-
scopic entropy production calculated for the initial kinetic equation (12). This
equality implies preservation of the type of dynamics [34, 35]:

•If for the initial kinetics (12) the dissipativity inequality (16) holds then
the same inequality is true for the quasi-equilibrium approximation (21);

• If the initial kinetics (12) is conservative then the quasi-equilibrium ap-
proximation (21) is conservative also.

For example, let the initial kinetic equation be the Liouville equation for a
system of many identical particles with binary interaction. If we choose as
macroscopic variables the one-particle distribution function, then the quasi-
equilibrium approximation is the Vlasov equation. If we choose as macroscopic
variables the hydrodynamic fields, then the quasi-equilibrium approximation
is the compressible Euler equation with self–interaction of liquid. Both of these
equations are conservative and turn out to be even Hamiltonian systems [69].
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Measurement of accuracy

Accuracy of the quasi-equilibrium approximation near a given M can be mea-
sured by the defect of invariance (Fig. 4):

Δf∗
M

= J(f∗M )− πf∗
M
J(f∗M ). (25)

A dimensionless criterion of accuracy is the ratio ‖Δf∗
M
‖/‖J(f∗M)‖ (a “sine”

of the angle between J and tangent space). If Δf∗
M
≡ 0 then the quasi-

equilibrium manifold is an invariant manifold, and the quasi-equilibrium ap-
proximation is exact. In applications, the quasi-equilibrium approximation is
usually not exact.

The Gibbs entropy and the Boltzmann entropy

For analysis of micro-macro relations some authors [77, 78] call entropy S(f)
the Gibbs entropy, and introduce a notion of the Boltzmann entropy. Boltz-
mann defined the entropy of a macroscopic system in a macrostate M as the
log of the volume of phase space (number of microstates) corresponding to
M . In the proposed level of generality [34, 35], the Boltzmann entropy of the
state f can be defined as SB(f) = S(f∗m(f)). It is entropy of the projection of f
onto quasi-equilibrium manifold (the “shadow” entropy). For conservative sys-
tems the Gibbs entropy is constant, but the Boltzmann entropy increases [35]
(during some time, at least) for motions that start on the quasi-equilibrium
manifold, but not belong to this manifold.

These notions of the Gibbs or Boltzmann entropy are related to micro-
macro transition and may be applied to any convex entropy functional, not
the BGS entropy (5) only. This may cause some terminological problems (we
hope, not here), and it may be better just to call S(f∗m(f)) the macroscopic
entropy.

Invariance equation and the Chapman–Enskog expansion

The first method for improvement of the quasi-equilibrium approximation
was the Chapman–Enskog method for the Boltzmann equation [79]. It uses
the explicit structure of singularly perturbed systems. Many other methods
were invented later, and not all of them use this explicit structure (see, for
example review in [4]). Here we develop the Chapman–Enskog method for
one important class of model equations that were invented to substitute the
Boltzmann equation and other more complicated systems when we don’t know
the details of microscopic kinetics. It includes the well-known Bhatnagar–
Gross–Krook (BGK) kinetic equation [38] , as well as wide class of generalized
model equations [39].

As a starting point we take a formal kinetic equation with a small para-
meter ε

df
dt

= J(f) = F (f) +
1
ε
(f∗m(f) − f). (26)
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The term (f∗m(f) − f) is non-linear because nonlinear dependency f∗m(f) on
m(f).

We would like to find a reduced description valid for macroscopic vari-
ables M . It means, at least, that we are looking for an invariant manifold
parameterized by M , f = fM , that satisfies the invariance equation:

(DMfM )(m(J(fM ))) = J(fM ). (27)

The invariance equation means that the time derivative of f calculated
through the time derivative of M (Ṁ = m(J(fM ))) by the chain rule co-
incides with the true time derivative J(f). This is the central equation for the
model reduction theory and applications. First general results about existence
and regularity of solutions to that equation were obtained by Lyapunov [83]
(see review in [3, 4]). For kinetic equation (26) the invariance equation has a
form

(DMfM )(m(F (fM ))) = F (fM ) +
1
ε
(f∗M − fM ), (28)

because the self-consistency identity (18).
Due to presence of small parameter ε in J(f), the zero approximation is

obviously the quasi-equilibrium approximation: f (0)
M = f∗M . Let us look for fM

in the form of power series: fM = f
(0)
M + εf

(1)
M + . . .; m(f (k)

M ) = 0 for k ≥ 1.
From (28) we immediately find:

f
(1)
M = F (f (0)

M )− (DMf
(0)
M )(m(F (f (0)

M ))) = Δf∗
M
. (29)

It is very natural that the first term of the Chapman–Enskog expansion for
model equations (26) is just the defect of invariance for the quasi-equilibrium
approximation. Calculation of the following terms is also straightforward.

The correspondent first–order in ε approximation for the macroscopic
equations is:

dM
dt

= m(F (f∗M )) + εm((DfF (f))f∗
M
Δf∗

M
). (30)

We should remind that m(Δf∗
M

) = 0. The last term in (28) vanishes in macro-
scopic projection for all orders.

The typical situation for the model equations (26) is: the vector field F (f)
is conservative, (DfS(f))F (f) = 0. In that case, the first term m(F (f∗M )) also
conserves the correspondent Boltzmann (i.e. macroscopic, but not obligatory
BGS) entropy S(f∗M ). But the straightforward calculation of the Boltzmann
entropy S(f∗M ) production for the first-order Chapman–Enskog term in equa-
tion (30) gives us for conservative F (f):

dS(M)
dt

= ε〈Δf∗
M
, Δf∗

M
〉f∗

M
≥ 0. (31)

where 〈•, •〉f is the entropic scalar product (14). The Boltzmann entropy
production in the first Chapman–Enskog approximation is zero if and only if
Δf∗

M
= 0, i.e. if at point M the quasi-equilibrium manifold is locally invariant.
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M
dM/dt=F(M)  ??? 
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The chain

df/dt=J(f) QE manifold 

Fig. 5: The Ehrenfests’ chain.

To prove (31) we differentiate the conservativity identity:

(DfS(f))F (f) ≡ 0 (32)
(D2

fS(F ))(F (f), a) + (DfS(f))((DfF (f))a) ≡ 0
(DfS(f))((DfF (f))a) ≡ 〈F (f), a〉f ,

use the last equality in the expression of the entropy production, and take
into account that the quasi-equilibrium projector is orthogonal, hence

〈F (f∗M ), Δf∗
M
〉f∗

M
= 〈Δf∗

M
, Δf∗

M
〉f∗

M
.

Below we apply the Chapman–Enskog method to the analysis of filtered
BGK equation.

2.3 The Ehrenfests’ Chain, Macroscopic Equations and Entropy
production

The Ehrenfests’ Chain and entropy growth

Let Θt be the time shift transformation for the initial kinetic equation (12):

Θt(f(0)) = f(t).

The Ehrenfests’ chain (Fig. 5) is defined for a given macroscopic variables
M = m(f) and a fixed time of coarse-graining τ . It is a chain of quasi-
equilibrium states f0, f1, . . .:

fi+1 = f∗m(Θτ (fi))
. (33)



134 A. N. Gorban

To get the next point of the chain, fi+1, we take fi, move it by the time shift
Θτ , calculate the corresponding macroscopic state Mi+1 = m(Θτ (fi)), and
find the quasi-equilibrium state f∗Mi+1

= fi+1.
If the point Θτ (fi) is not a quasi-equilibrium state, then S(Θτ (fi)) <

S(f∗m(Θτ (fi))
) because of quasi-equilibrium definition (17) and strict concavity

of entropy. Hence, if the motion between fi and Θτ (fi) does not belong to
the quasi-equilibrium manifold, then S(fi+1) > S(fi), entropy in the Ehren-
fests’ chain grows. The entropy gain consists of two parts: the gain in the
motion (from fi to Θτ (fi)), and the gain in the projection (from Θτ (fi) to
fi+1 = f∗m(Θτ (fi))

). Both parts are non-negative. For conservative systems the
first part is zero. The second part is strictly positive if the motion leaves
the quasi-equilibrium manifold. Hence, we observe some sort of duality be-
tween entropy production in the Ehrenfests’ chain and invariance of the quasi-
equilibrium manifold. The motions that build the Ehrenfests’ chain restart pe-
riodically from the quasi-equilibrium manifold and the entropy growth along
this chain is similar to the Boltzmann entropy growth in the Chapman–Enskog
approximation, and that similarity is very deep, as the exact formulas show
below.

The natural projector and macroscopic dynamics

How to use the Ehrenfests’ chains? First of all, we can try to define the macro-
scopic kinetic equations for M(t) by the requirement that for any initial point
of the chain f0 the solution of these macroscopic equations with initial con-
ditions M(0) = m(f0) goes through all the points m(fi): M(nτ) = m(fn)
(n = 1, 2, . . .) (Fig. 5) [5] (see also [4]). Another way is an “equation–free
approach” [9] to the direct computation of the Ehrenfests’ chain with a com-
bination of microscopic simulation and macroscopic stepping.

For the definition of the macroscopic equations only the first link of the
Ehrenfests’ chain is necessary. In general form, for an ansatz manifold Ω, pro-
jector π : U → Ω of the vicinity of Ω onto Ω, phase flow of the initial kinetic
equation Θt, and macroscopic phase flow Θ̃t on Ω the matching condition is
(Fig. 6):

π(Θτ (f)) = Θ̃τ (f) for any f ∈ Ω. (34)

We call this projector of the flow Θ onto an ansatz manifold Ω by fragments
of trajectories of given duration τ the natural projector in order to distinguish
it from the standard infinitesimal projector of vector fields on tangent spaces.

Let us look for the macroscopic equations of the form

dM
dt

= Ψ(M) (35)

with the phase flow Φt: M(t) = ΦtM(0). For the quasi-equilibrium manifold
and projector the matching condition (34) gives

m(Θτ (f∗M )) = Φτ (M) for any macroscopic state M. (36)
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Fig. 6: Projection of segments of trajectories: The microscopic motion above the
manifold Ω and the macroscopic motion on this manifold. If these motions begin
in the same point on Ω, then, after time τ , projection of the microscopic state
onto Ω should coincide with the result of the macroscopic motion on Ω. For quasi-
equilibrium Ω, projector π : E → Ω acts as π(f) = f∗

m(f).

This condition is the equation for the macroscopic vector field Ψ(M). The
solution of this equation is a function of τ : Ψ = Ψ(M, τ ). For sufficiently
smooth microscopic vector field J(f) and entropy S(f) it is easy to find the
Taylor expansion of Ψ(M, τ ) in powers of τ . It is a straightforward exercise
in differential calculus. Let us find the first two terms: Ψ(M, τ ) = Ψ0(M) +
τΨ1(M) + o(τ ). Up to the second order in τ the matching condition (36) is

m(J(f∗M ))τ +m((DfJ(f))f=f∗
M

(J(f∗M )))
τ 2

2

= Ψ0(M)τ + Ψ1(M)τ2 + (DMΨ0(M))(Ψ0(M))
τ2

2
. (37)

From this condition immediately follows:

Ψ0(M) = m(J(f∗M )); (38)

Ψ1(M) =
1
2
m[(DfJ(f))f=f∗

M
(J(f∗M ))− (DMJ(f∗M ))(m(J(f∗M )))]

= m((DfJ(f))f=f∗
M
Δf∗

M
)

where Δf∗
M

is the defect of invariance (25). The macroscopic equation in the
first approximation is:
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dM
dt

= m(J(f∗M )) +
τ

2
m((DfJ(f))f=f∗

M
Δf∗

M
). (39)

It is exactly the first Chapman–Enskog approximation (30) for the model ki-
netics (26) with ε = τ/2. The first term m(J(f∗M )) gives the quasi-equilibrium
approximation, the second term increases dissipation. The formula for entropy
production follows from (39) [11]. If the initial microscopic kinetic (12) is con-
servative, then for macroscopic equation (39) we obtain as for the Chapman–
Enskog approximation:

dS(M)
dt

=
τ

2
〈Δf∗

M
, Δf∗

M
〉f∗

M
, (40)

where 〈•, •〉f is the entropic scalar product (14). From this formula we see
again a duality between the invariance of the quasi-equilibrium manifold and
the dissipativity: entropy production is proportional to the square of the defect
of invariance of the quasi-equilibrium manifold.

For linear microscopic equations (J(f) = Lf) the form of the macroscopic
equations is

dM
dt

= mL
[
1 +

τ

2
(1− πf∗

M
)L
]
f∗M , (41)

where πf∗
M

is the quasi-equilibrium projector (23).

The Navier–Stokes equation from the free flight dynamics

The free flight equation describes dynamics of one-particle distribution func-
tion f(x,v) due to free flight:

∂f(x,v, t)
∂t

= −
∑
i

vi
∂f(x,v, t)

∂xi
. (42)

The difference from the continuity equation (2) is that there is no velocity
field v(x), but the velocity vector v is an independent variable. Equation (42)
is conservative and has an explicit general solution

f(x,v, t) = f0(x− vt,v). (43)

The coarse-graining procedure for (42) serves for modeling kinetics with an
unknown dissipative term I(f)

∂f(x,v, t)
∂t

= −
∑
i

vi
∂f(x,v, t)

∂xi
+ I(f). (44)

The Ehrenfests’ chain realizes a splitting method for (44): first, the free flight
step during time τ , than the complete relaxation to a quasi-equilibrium dis-
tribution due to dissipative term I(f), then again the free flight, and so on.
In this approximation the specific form of I(f) is not in use, and the only
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parameter is time τ . It is important that this hypothetical I(f) preserves
all the standard conservation laws (number of particles, momentum, and en-
ergy) and has no additional conservation laws: everything else relaxes. Fol-
lowing this assumption, the macroscopic variables are: M0 = n(x, t) =

∫
fdv,

Mi = nui =
∫
vifdv (i = 1, 2, 3), M4 = 3nkBT

m + nu2 =
∫
v2fdv. The zero-

order (quasi-equilibrium) approximation (21) gives the classical Euler equa-
tion for compressible non-isothermal gas. In the first approximation (39) we
obtain the Navier–Stokes equations:

∂n

∂t
= −

∑
i

∂(nui)
∂xi

,

∂(nuk)
∂t

= −
∑
i

∂(nukui)
∂xi

− 1
m

∂P

∂xk

+
τ

2
1
m

∑
i

∂

∂xi

[
P

(
∂uk
∂xi

+
∂ui
∂xk
− 2

3
δkidivu

)]
, (45)

∂E
∂t

= −
∑
i

∂(Eui)
∂xi

− 1
m

∑
i

∂(Pui)
∂xi

+
τ

2
5kB

2m2

∑
i

∂

∂xi

(
P
∂T

∂xi

)
,

where P = nkBT is the ideal gas pressure, E = 1
2

∫
v2f dv = 3nkBT

2m + n
2u

2 is
the energy density per unite mass (P = 2m

3 E −
mn
3 u2, T = 2m

3nkB
E − m

3kB
u2),

and the underlined terms are results of the coarse-graining additional to the
quasi-equilibrium approximation.

The dynamic viscosity in (45) is μ = τ
2nkBT . It is useful to compare this

formula to the mean–free–path theory that gives μ = τcolnkBT = τ colP ,
where τ col is the collision time (the time for the mean–free–path). According
to these formulas, we get the following interpretation of the coarse-graining
time τ for this example: τ = 2τcol.

The equations obtained (45) coincide with the first–order terms of the
Chapman–Enskog expansion (30) applied to the BGK equations with τ col =
τ/2 and meet the same problem: the Prandtl number (i.e., the dimensionless
ratio of viscosity and thermal conductivity) is Pr = 1 instead of the value
Pr = 2

3 verified by experiments with perfect gases and by more detailed theory
[80] (recent discussion of this problem for the BGK equation with some ways
for its solution is presented in [81]).

In the next order in τ we obtain the stable post–Navier–Stokes equa-
tions instead of the unstable Burnett equations that appear in the Chapman–
Enskog expansion [11, 76]. Here we can see the difference between two ap-
proaches.

Persistence of invariance and mistake of differential pursuit

L.M. Lewis called a generalization of the Ehrenfest’s approach a “unifying
principle in statistical mechanics,” but he created other macroscopic equa-
tions: he produced the differential pursuit (Fig. 7a)
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a)

M

dM/dt=(m(f( ))-M)/
  Differential pursuit 

df/dt=J(f)
QE manifold

m(f( ))M=m(f(0))

b)

M

df/dt=J(f)

Invariant QE manifold

True motion

Differential pursuit

Fig. 7: Differential pursuit of the projection point (a). The mistake of differential
pursuit (b): invariant manifold should preserve its invariance, but it does not!

dM
dt

=
m(Θτ (f∗M ))−M

τ
(46)

from the full matching condition (34). This means that the macroscopic mo-
tion was taken in the first-order Tailor approximation, while for the micro-
scopic motion the complete shift in time (without the Taylor expansion) was
used. The basic idea of this approach is a non-differential time separation: the
infinitesimal shift in macroscopic time is always such a significant shift for
microscopic time that no Taylor approximation for microscopic motion may
be in use. This sort of non-standard analysis deserves serious attention, but
its realization in the form of the differential pursuit (46) does not work prop-
erly in many cases. If the quasi-equilibrium manifold is invariant, then the
quasi-equilibrium approximation is exact and the Ehrenfests’ chain (Fig. 5)
just follows the quasi-equilibrium trajectory. But the differential pursuit does
not follow the trajectory (Fig. 7b); this motion leaves the invariant quasi-
equilibrium manifolds, and the differential pursuit does not approximate the
Ehrenfests’ chain, even qualitatively.

Ehrenfests’ coarse-graining as a method for model reduction

The problem of model reduction in dissipative kinetics is recognized as a
problem of time separation and construction of slow invariant manifolds. One
obstacle on this way is that the slow invariant manifold is the thing that
many people would like to find, but nobody knows exactly what it is. There
is no conventional definition of slow invariant manifold without explicit small
parameter that tends to zero. It seems now that the most reasonable way for
such a definition is the analysis of induced dynamics of manifolds immersed
into phase space. Fixed points of this dynamics are invariant manifolds, and
asymptotically stable (stable and attracting) fixed points are slow invariant
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Initial ansatz manifold

Hypothetic attractive invariant manifold

Fig. 8: Natural projector and attractive invariant manifolds. For large τ , the natural
projector gives the approximation of projection of the genuine motion from the
attractive invariant manifold onto the initial ansatz manifold Ω.

manifolds. This concept was explicitly developed very recently [84, 3, 4], but
the basic idea was used in earlier applied works [35, 85].

The coarse-graining procedure was developed for erasing some details of
the dynamics in order to provide entropy growth and uniform tendency to
equilibrium. In this sense, the coarse-graining is opposite to the model reduc-
tion, because for the model reduction we try to find slow invariant manifolds
as exactly, as we can. But unexpectedly the coarse-graining becomes a tool
for model reduction without any “erasing.”

Let us assume that for dissipative dynamics with entropy growth there
exists an attractive invariant manifold. Let us apply the Ehrenfests’ coarse-
graining to this system for sufficiently large coarse-graining time τ . For the
most part of time τ the system will spend in a small vicinity of the attractive
invariant manifold. Hence, the macroscopic projection will describe the projec-
tion of dynamics from the attractive invariant manifold onto ansatz manifold
Ω. As a result, we shall find a shadow of the proper slow dynamics without
looking for the slow invariant manifold. Of course, the results obtained by
the Taylor expansion (37–39) are not applicable for the case of large coarse-
graining time τ , at least, directly. Some attempts to utilize the idea of large
τ asymptotic are presented in [4] (Ch. 12).

One can find a source of this idea in the first work of D. Hilbert about
the Boltzmann equation solution [40] (a recent exposition and development of
the Hilbert method is presented in [86] with many examples of applications).
In the Hilbert method, we start from the local Maxwellian manifold (that is,
quasi-equilibrium one) and iteratively look for “normal solutions.” The nor-
mal solutions fH(v, n(x, t), u(x, t), T (x, t)) are solutions to the Boltzmann
equation that depend on space and time only through five hydrodynamic
fields. In the Hilbert method no final macroscopic equation arises. The next
attempt to utilize this idea without macroscopic equations is the “equation
free” approach [9, 87].
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The Ehrenfests’ coarse-graining as a tool for extraction of exact macro-
scopic dynamics was tested on exactly solvable problems [73]. It gives also a
new approach to the fluctuation–dissipation theorems [72].

2.4 Kinetic Models, Entropic Involution, and the Second–Order
“Euler Method”

Time-step – dissipation decoupling problem

Sometimes, the kinetic equation is much simpler than the coarse-grained dy-
namics. For example, the free flight kinetics (42) has the obvious exact ana-
lytical solution (43), but the Euler or the Navier–Stokes equations (45) seem
to be very far from being exactly solvable. In this sense, the Ehrenfests’ chain
(33) (Fig. 5) gives a stepwise approximation to a solution of the coarse-grained
(macroscopic) equations by the chain of solutions of the kinetic equations.

If we use the second-order approximation in the coarse-graining proce-
dure (37), then the Ehrenfests’ chain with step τ is the second–order (in
time step τ ) approximation to the solution of macroscopic equation (39). It
is very attractive for hydrodynamics: the second–order in time method with
approximation just by broken line built from intervals of simple free–flight
solutions. But if we use the Ehrenfests’ chain for approximate solution, then
the strong connection between the time step τ and the coefficient in equations
(39) (see also the entropy production formula (40)) is strange. Rate of dissipa-
tion is proportional to τ , and it seems to be too restrictive for computational
applications: decoupling of time step and dissipation rate is necessary. This
decoupling problem leads us to a question that is strange from the Ehrenfests’
coarse-graining point of view: how to construct an analogue to the Ehrenfests’
coarse-graining chain, but without dissipation? The entropic involution is a
tool for this construction.

Entropic involution

The entropic involution was invented for improvement of the lattice–
Boltzmann method [89]. We need to construct a chain with zero macroscopic
entropy production and second order of accuracy in time step τ . The chain
consists of intervals of solution of kinetic equation (12) that is conservative.
The time shift for this equation is Θt. The macroscopic variables M = m(f)
are chosen, and the time shift for corresponding quasi-equilibrium equation is
(in this section) Θ̃t. The standard example is: the free flight kinetics (42,43)
as a microscopic conservative kinetics, hydrodynamic fields (density–velocity–
kinetic temperature) as macroscopic variables, and the Euler equations as a
macroscopic quasi-equilibrium equations for conservative case (see (45), not
underlined terms).

Let us start from construction of one link of a chain and take a point
f1/2 on the quasi-equilibrium manifold. (It is not an initial point of the link,
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f0, but a “middle” one.) The correspondent value of M is M1/2 = m(f1/2).
Let us define M0 = m(Θ−τ/2(f1/2)), M1 = m(Θτ/2(f1/2)). The dissipative
term in macroscopic equations (39) is linear in τ , hence, there is a symme-
try between forward and backward motion from any quasiequilibrium initial
condition with the second-order accuracy in the time of this motion (it be-
came clear long ago [35]). Dissipative terms in the shift from M0 to M1/2

(that decrease macroscopic entropy S(M)) annihilate with dissipative terms
in the shift from M1/2 to M1 (that increase macroscopic entropy S(M)). As
the result of this symmetry, M1 coincides with Θ̃τ (M0) with the second-order
accuracy. (It is easy to check this statement by direct calculation too.)

It is necessary to stress that the second-order accuracy is achieved on the
ends of the time interval only: Θ̃τ (M0) coincides with M1 = m(Θτ (f0)) in the
second order in τ

m(Θτ (f0))− Θ̃τ (M0) = o(τ 2).

On the way Θ̃t(M0) from M0 to Θ̃τ (M0) for 0 < t < τ we can guarantee the
first-order accuracy only (even for the middle point). It is essentially the same
situation as we had for the Ehrenfests’ chain: the second order accuracy of the
matching condition (36) is postulated for the moment τ , and for 0 < t < τ the
projection of the m(Θt(f0)) follows a solution of the macroscopic equation (39)
with the first order accuracy only. In that sense, the method is quite different
from the usual second–order methods with intermediate points, for example,
from the Crank–Nicolson schemes. By the way, the middle quasi-equilibrium
point, f1/2 appears for the initiation step only. After that, we work with the
end points of links.

The link is constructed. For the initiation step, we used the middle
point f1/2 on the quasi-equilibrium manifold. The end points of the link,
f0 = Θ−τ/2(f1/2) and f1 = Θτ/2(f1/2) don’t belong to the quasi-equilibrium
manifold, unless it is invariant. Where are they located? They belong a surface
that we call a film of non-equilibrium states [74, 75, 4]. It is a trajectory of the
quasi-equilibrium manifold due to initial microscopic kinetics. In [74, 75, 4]
we studied mainly the positive semi-trajectory (for positive time). Here we
need shifts in both directions.

A point f on the film of non-equilibrium states is naturally parameterized
by M, τ : f = qM,τ , where M = m(f) is the value of the macroscopic variables,
and τ (f) is the time of shift from a quasi-equilibrium state: Θ−τ (f) is a quasi-
equilibrium state. In the first order in τ ,

qM,τ = f∗M + τΔf∗
M
, (47)

and the first-order Chapman–Enskog approximation (29) for the model BGK
equations is also here with τ = ε. (The two–times difference between kinetic
coefficients for the Ehrenfests’ chain and the first-order Chapman–Enskog ap-
proximation appears because for the Ehrenfests’ chain the distribution walks
linearly between qM,0 and qM,τ , and for the first-order Chapman–Enskog ap-
proximation it is exactly qM,τ .)
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For each M and positive s from some interval ]0, ς[ there exist two such
τ±(M, s) (τ+(M, s) > 0, τ−(M, s) < 0) that

S(qM,τ±(M,s)) = S(M)− s. (48)

Up to the second order in τ±

s =
τ2
±
2
〈Δf∗

M
, Δf∗

M
〉f∗

M
+ o(τ2

±) (49)

(compare to (40)), and

τ+ = −τ− + o(τ−); |τ±| =
√

s

〈Δf∗
M
, Δf∗

M
〉f∗

M

(1 + o(1)). (50)

Equation (48) describes connection between entropy change s and time co-
ordinate τ on the film of non-equilibrium states, and (49) presents the first
non-trivial term of the Taylor expansion of (48).

The entropic involution IS is the transformation of the film of non-
equilibrium states:

IS(qM,τ±) = qM,τ∓ . (51)

This involution transforms τ+ into τ−, and back. For a given macroscopic
state M , the entropic involution IS transforms the curve of non-equilibrium
states qM,τ into itself.

In the first order in τ it is just reflection qM,τ → qM,−τ . A partial lineariza-
tion is also in use. For this approximation, we define nonlinear involutions of
straight lines parameterized by α, not of curves:

I0
S(f) = f∗m(f) − α(f − f∗m(f)), α > 0, (52)

with condition of entropy conservation

S(I0
S(f)) = S(f). (53)

The last condition serves as equation for α. The positive solution is unique and
exists for f from some vicinity of the quasi-equilibrium manifold. It follows
from the strong concavity of entropy. The transformation I0

S (53) is defined
not only on the film of non-equilibrium states, but on all distributions (mi-
croscopic) f that are sufficiently closed to the quasi-equilibrium manifold.

In order to avoid the stepwise accumulation of errors in entropy produc-
tion, we can choose a constant step in a conservative chain not in time, but in
entropy. Let an initial point in macro-variables M0 be given, and some s > 0
be fixed. We start from the point f0 = qM,τ−(M0,s). At this point, for t = 0,
S(m(Θ0(f0)))) − s = S((Θ0(f0))) (Θ0 = id). Let the motion Θt(f0) evolve
until the equality S(m(Θt(f0))) − s = S(Θt(f0)) is satisfied next time. This
time will be the time step τ , and the next point of the chain is:
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a)
M0 M1/2 M1

f0
f1

(f1)
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Fig. 9: The regular (a) and irregular (b) conservative chain. Dissipative terms for the
regular chain give zero balance inside each step. For the irregular chain, dissipative
term of part I (the first step) annihilates with dissipative term of part IV (the second
step), as well, as annihilate dissipartive terms for parts II and III.

f1 = IS(Θτ (f0)). (54)

We can present this construction geometrically (Fig. 9a). The quasi-
equilibrium manifold, M∗ = {qM,0}, is accompanied by two other manifolds,
M∗
±(s) = {qM,τ±(M,s)}. These manifolds are connected by the entropic invo-

lution: ISM∗
±(s) = M∗

∓(s). For all points f ∈M∗
±(s)

S(f) = S(f∗m(f))− s.

The conservative chain starts at a point on f0 ∈M∗
−(s), than the solution of

initial kinetic equations, Θt(f0), goes to its intersection with M∗
+(s), the mo-

ment of intersection is τ . After that, the entropic involution transfers Θτ (f0)
into a second point of the chain, f1 = IS(Θτ (f0)) ∈M∗

−(s).

Irregular conservative chain

The regular geometric picture is nice, but for some generalizations we need
less rigid structure. Let us combine two operations: the shift in time Θτ and
the entropic involution IS . Suppose, the motions starts on a point f0 on the
film of non-equilibrium states, and

fn+1 = IS(Θτ (fn)). (55)

This chain we call an irregular conservative chain, and the chain that moves
from M∗

−(s) to M∗
+(s) and back, the regular one. For the regular chain the

dissipative term is zero (in the main order in τ) already for one link because
this link is symmetric, and the macroscopic entropy (S(M)) loose for a motion
from M∗

−(s) to M∗ compensate the macroscopic entropy production on a way
from M∗ to M∗

+(s). For the irregular chain (55) with given τ (that may be
constant) such a compensation occurs in two successive links (Fig. 9b) in main
order in τ .
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a)
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+ (f0)

IS

*M

*M

*M
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b)
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f0 IS( (f0))
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Fig. 10: Realization of dissipative chain by the extra time ϑ on the base of a regular
conservative chain (a), and by the incomplete involution on the base of an irregular
conservative chain (b).

Warning. The doubled–step rule: In the conservative irregular chains (that
are more convenient in use), the second order accuracy emerges in steps that
consist from two successive links.

Kinetic modeling for non-zero dissipation. 1. Extension of regular chains

The conservative chain of kinetic curves approximates the quasi-equilibrium
dynamics. A typical example of quasi-equilibrium equations (21) is the Euler
equation in fluid dynamics. Now, we combine conservative chains construction
with the idea of the dissipative Ehrenfests’ chain in order to create a method
for kinetic modeling of dissipative hydrodynamics (“macrodynamics”) (39)
with arbitrary kinetic coefficient that is decoupled from the chain step τ :

dM
dt

= m(J(f∗M )) + κ(M)m[(DfJ(f))f=f∗
M
Δf∗

M
]. (56)

Here, a kinetic coefficient κ(M) ≥ 0 is a non-negative function of M . The
entropy production for (10) is:

dS(M)
dt

= κ(M)〈Δf∗
M
, Δf∗

M
〉f∗

M
. (57)

Let us start from a regular conservative chain and deform it. A chain that
approximates solutions of (56) can be constructed as follows (Fig. 10a). The
motion starts from f0 ∈ M∗

−(s), goes by a kinetic curve to intersection with
M∗

+(s), as for a regular conservative chain, and, after that, follows the same
kinetic curve an extra time ϑ. This motion stops at the moment τ + ϑ at the
point Θτ+ϑ(f0) (Fig. 10a). The second point of the chain, f1 is the unique
solution of equation

m(f1) = m(Θτ+ϑ(f0)), f1 ∈M∗
−(s). (58)

The time step is linked with the kinetic coefficient:
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κ =
ϑ

2
+ o(τ + ϑ). (59)

For entropy production we obtain the analogue of (40)

dS(M)
dt

=
ϑ

2
〈Δf∗

M
, Δf∗

M
〉f∗

M
+ o(τ + ϑ). (60)

All these formulas follow from the first–order picture. In the first order of the
time step,

qM,τ = f∗M + τΔf∗
M

;
IS(f∗M + τΔf∗

M
) = f∗M − τΔf∗

M
;

f0 = f∗M0
− τ

2
Δf∗

M0
;

Θt(f0) = f∗M(t) +
(
t− τ

2

)
Δf∗

M0
, (61)

and up to the second order of accuracy (that is, again, the first non-trivial
term)

S(qM,τ ) = S(M) +
τ2

2
〈Δf∗

M
, Δf∗

M
〉f∗

M
. (62)

For a regular conservative chains, in the first order

f1 = f∗M(τ) −
τ

2
Δf∗

M0
. (63)

For chains (58), in the first order

f1 = f∗M(τ+ϑ) −
τ

2
Δf∗

M0
. (64)

Kinetic modeling for non-zero dissipation. 2. Deformed involution in
irregular chains

For irregular chains, we introduce dissipation without change of the time step
τ . Let us, after entropic involution, shift the point to the quasi-equilibrium
state (Fig. 10) with some entropy increase σ(M). Because of entropy produc-
tion formula (57),

σ(M) = τκ(M)〈Δf∗
M
, Δf∗

M
〉f∗

M
. (65)

This formula works, if there is sufficient amount of non-equilibrium entropy,
the difference S(Mn)− S(fn) should not be too small. In average, for several
(two) successive steps it should not be less than σ(M). The Ehrenfests’ chain
gives a limit for possible value of κ(M) that we can realize using irregular
chains with overrelaxation:

κ(M) <
τ

2
. (66)

Let us call the value κ(M) = τ
2 the Ehrenfests’ limit. Formally, it is possible

to realize a chain of kinetic curves with time step τ for κ(M) > τ
2 on the other

side of the Ehrenfests’ limit, without overrelaxation (Fig. 11).
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f0
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f1

< /2

f0

(f0)

f1

= /2

f0

(f0)

f1

> /2

*M
*M

Fig. 11: The Ehrenfests’ limit of dissipation: three possible links of a dissipative

chain: overrelaxation, κ(M) < τ
2

(〈σ〉 = sτ − 2
�

sτ 〈s0〉), Ehrenfests’ chain, κ(M) =
τ
2

(σ = sτ ), and underrelaxation, κ(M) > τ
2

(〈σ〉 = sτ + 2
�

sτ 〈s0〉).

Let us choose the following notation for non-equilibrium entropy: s0 =
S(M0) − S(f0), s1 = S(M1) − S(f1), sτ (M) = τ2

2 〈Δf∗
M
, Δf∗

M
〉f∗

M
. For the

three versions of steps (Fig. 11) the entropy gain σ = s(f1) − S(IS(Θτ (f0)))
in the main order in τ is:

• For overrelaxation (κ(M) < τ
2 ) σ = sτ + s0 − s1 − 2

√
sτs0;

• For the Ehrenfests’ chain (full relaxation, κ(M) = τ
2 ) s0 = s1 = 0 and

σ = sτ ;
• For underrelaxation (κ(M) > τ

2 ) σ = sτ + s0 − s1 + 2
√
sτs0.

After averaging in successive steps, the term s0 − s1 tends to zero, and
we can write the estimate of the average entropy gain 〈σ〉: for overrelaxation
〈σ〉 = sτ − 2

√
sτ 〈s0〉 and for underelaxation 〈σ〉 = sτ + 2

√
sτ 〈s0〉.

In the really interesting physical problems the kinetic coefficient κ(M)
is non-constant in space. Macroscopic variables M are functions of space,
κ(M) is also a function, and it is natural to take a space-dependent step of
macroscopic entropy production σ(M). It is possible to organize the involu-
tion (incomplete involution) step at different points with different density of
entropy production step σ.

Which entropy rules the kinetic model?

For linear kinetic equations, for example, for the free flight equation (42) there
exist many concave Lyapunov functionals (for dissipative systems) or integrals
of motion (for conservative systems), see, for example, (4).

There are two reasonable conditions for entropy choice: additivity with
respect to joining of independent systems, and trace form (sum or integral of
some function h(f, f∗)). These conditions select a one-parametric family [43,
44], a linear combination of the classical Boltzmann–Gibbs–Shannon entropy
with h(f) = −f ln f and the Burg Entropy with h(f) = ln f , both in the
Kullback form:
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Sα = −α
∫

f ln
f

f∗
dΓ (x) + (1− α)

∫
f∗ ln

f

f∗
dΓ (x),

where 1 ≥ α ≥ 0, and f∗dΓ is invariant measure. Singularity of the Burg term
for f → 0 provides the positivity preservation in all entropic involutions.

If we weaken these conditions and require that there exists such a
monotonic (nonlinear) transformation of entropy scale that in one scale en-
tropy is additive, and in transformed one it has a trace form, then we get
additionally a family of Renyi–Tsallis entropies with h(f) = 1−fq

1−q [44] (these
entropies and their applications are discussed in details in [45]).

Both the Renyi–Tsallis entropy and the Burge entropy are in use in the
entropic lattice Boltzmann methods from the very beginning [89, 46]. The
connection of this entropy choice with Galilei invariance is demonstrated in
[46].

Elementary examples

In the most popular and simple example, the conservative formal kinetic
equations (12) is the free flight equation (42). Macroscopic variables M are
the hydrodynamic fields: n(x) =

∫
f(x,v) dv, n(x)u(x) =

∫
vf(x,v) dv,

3n(x)kBT/2m = 1
2

∫
v2f(x,v) dv − 1

2n(x)u2(x), where m is particle mass.
In 3D at any space point we have five independent variables.

For a given value of five macroscopic variables M = {n,u, T } (3D), the
quasi-equilibrium distribution is the classical local Maxwellian:

f∗M (x,v) = n

(
2πkBT

m

)−3/2

exp
(
−m(v − u)2

2kBT

)
, (67)

The standard choice of entropy for this example is the classical Boltzmann–
Gibbs–Shannon entropy (5) with entropy density s(x). All the involution op-
erations are performed pointwise: at each point x we calculate hydrodynamic
moments M , the correspondent local Maxwellian (67) f∗M , and find the en-
tropic inversion at this point with the standard entropy. For dissipative chains,
it is useful to take the dissipation (the entropy density gain in one step) pro-
portional to the S(M)− S(f), and not with fixed value.

The special variation of the discussed example is the free flight with finite
number of velocities: f(x,v) =

∑
i fi(x)δ(v−vi). Free flight does not change

the set of velocities {v1, . . . . . .vn}. If we define entropy, then we can define an
equilibrium distribution for this set of velocity too. For the entropy definition
let us substitute δ-functions in expression for f(x,v) by some “drops” with
unite volume, small diameter, and fixed density that may depend on i. After
that, the classical entropy formula unambiguously leads to expression:

s(x) = −
∑
i

fi(x)
(

ln
fi(x)
f0
i

− 1
)
. (68)
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This formula is widely known in chemical kinetics (see elsewhere, for example
[34, 35, 36]). After classical work of Zeldovich [37] (1938), this function is
recognized as a useful instrument for analysis of chemical kinetic equations.
Vector of values f0 = f0

i gives us a “particular equilibrium:” for M = m(f0)
the conditional equilibrium (s→ max, M = m(f0)) is f0. With entropy (68)
we can construct all types of conservative and dissipative chains for discrete
set of velocities. If we need to approximate the continuous local equilibria
and involutions by our discrete equilibria and involutions, then we should
choose a particular equilibrium distribution

∑
i f

0
i δ(v − vi) in velocity space

as an approximation to the Maxwellian f∗0(v) with correspondent value of
macroscopic variables M0 calculated for the discrete distribution f0: n =∑

i f
0
i , ... This approximation of distributions should be taken in the weak

sense. It means that vi are nodes, and f0
i are weights for a cubature formula

in 3D space with weight f∗0(v):∫
p(v)f∗0(v) dv ≈

∑
i

p(vi)f0
i . (69)

There exist a huge population of cubature formulas in 3D with Gaussian
weight that are optimal in various senses [95]. Each of them contains a hint
for a choice of nodes vi and weights f0

i for the best discrete approximation of
continuous dynamics. Applications of this entropy (68) to the lattice Boltz-
mann models are developed in [93].

There is one more opportunity to use entropy (68) and related involutions
for discrete velocity systems. If for some of components fi = 0, then we can
find the correspondent positive equilibrium, and perform the involution in the
whole space. But there is another way: if for some of velocities fi = 0, then we
can reduce the space, and find an equilibrium for non-zero components only,
for the shortened list of velocities. These boundary equilibria play important
role in the chemical thermodynamic estimations [96].

This approach allows us to construct systems with variable in space set
of velocities. There could be “soft particles” with given velocities, and the
density distribution in these particles changes only when several particles
collide. In 3D for the possibility of a non-trivial equilibrium that does not
obligatory coincide with the current distribution we need more than 5 different
velocity vectors, hence, a non-trivial collision (≈ entropic inversion) is possible
only for 6 one-velocity particles. If in a collision participate 5 one-velocity
particles or less, then they are just transparent and don’t interact at all. For
more moments, if we add some additional fields (stress tensor, for example),
the number of velocity vectors that is necessary for non-trivial involution
increases.

Lattice Boltzmann models: lattice is not a tool for discretization

In this section, we presented the theoretical backgrounds of kinetic modeling.
These problems were discussed previously for development of lattice Boltz-
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mann methods in computational fluid dynamics. The “overrelaxation” ap-
peared in [88]. In papers [90, 91] the overrelaxation based method for the
Navier–Stokes equations was further developed, and the entropic involution
was invented in [89]. Due to historical reasons, we propose to call it the Karlin–
Succi involution. The problem of computational stability of entropic lattice
Boltzmann methods was systematically analyzed in [93, 94]. H-theorem for
lattice Boltzmann schemes was presented with details and applications in [92].
For further discussion and references we address to [19].

In order to understand links from the Ehrenfests’ chains to the lattice
Boltzmann models, let us take the model with finite number of velocity vec-
tors and entropy (68). Let the velocities from the set {v1, . . . . . .vn} be auto-
morphisms of some lattice L: L + vi = L. Then the restriction of free flight
in time τ on the functions on the lattice τL is exact. It means that the free
flight shift in time τ , f(x, v) �→ f(x − vτ , v) is defined on functions on the
lattice, because viτ are automorphisms of τL. The entropic involution (com-
plete or incomplete one) acts pointwise, hence, the restriction of the chains
on the lattice τL is exact too. In that sense, the role of lattice here is essen-
tially different from the role of grid in numerical methods for PDE. All the
discretization contains in the velocity set {v1, . . . . . .vn}, and the accuracy of
discretization is the accuracy of cubature formulas (69).

The lattice τL is a tool for presentation of velocity set as a subset of L
automorphism group. At the same time, it is a perfect screen for presentation
of the chain dynamics, because restriction of that dynamics on this lattice is
an autonomous dynamic of lattice distribution. (Here we meet a rather rare
case of exact model reduction.)

The boundary conditions for the lattice Boltzmann models deserve special
attention. There were many trials of non-physical conditions until the proper
(and absolutely natural) discretization of well-known classical kinetic bound-
ary conditions (see, for example, [80]) were proposed [97]. It is necessary and
sufficient just to describe scattering of particles on the boundary with maxi-
mal possible respect to the basic physics (and given proportion between elastic
collisions and thermalization).

3 Coarse-Graining by Filtering

The most popular area for filtering applications in mathematical physics is
the Large Eddy Simulation (LES) in fluid dynamics [17]. Perhaps, the first
attempt to turbulence modeling was done by Boussinesq in 1887. After that,
Taylor (1921, 1935, 1938) and Kolmogorov (1941) have provided the bases of
the statistical theory of turbulence. The Kolmogorov theory of turbulence self
similarity inspired many attempts of so-called subgrid-scale modeling (SGS
model): only the large scale motions of the flow are solved by filtering out the
small and universal eddies. For the dynamic subgrid-scale models a filtering
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step is required to compute the SGS stress tensor. The filtering a hydrody-
namic field is defined as convoluting the field functions with a filtering kernel,
as it is done in electrical engineering:

{n, nu, nT }(x) =
∫

G(x− y){n, nu, nT }(y) dy. (70)

Various filter kernels are in use. Most popular of them are:

1. The box filter G(x) = H(Δ/2− |x|)/Δ;
2. The Gaussian filter G(x) = 1

Δ

√
6/π exp (−6x2/Δ2),

where Δ is the filter width (for the Gaussian filter, Δ/2 =
√

3σ, this conven-
tion corresponds to 91.6% of probability in the interval [−Δ/2,+Δ/2] for the
Gaussian distribution) , H is the Heaviside function, G(x) =

∏
iG(xi).

In practical applications, implicit filtering is sometimes done by the grid
itself. This filtering by grids should be discussed in context of the Whittaker–
Nyquist–Kotelnikov–Shannon sampling theory [98, 99]. Bandlimited functions
(that is, functions which Fourier transform has compact support) can be ex-
actly reconstructed from their values on a sufficiently fine grid by the Nyquist-
Shannon interpolation formula and its multidimensional analogues. If, in 1D,
the Fourier spectrum of f(x) belongs to the interval [−kmax, kmax], and the
grid step h is less than π/kmax (it is, twice less than the minimal wave length),
then this formula gives the exact representation of f(x) for all points x:

f(x) =
+∞∑

n=−∞
f(nh)sinc

(
π
[x
h
− n
])

, (71)

where sinc(x) = sin x
x . That interpolation formula implies an exact differenti-

ation formula in the nodes:

df(x)
dx

∣∣∣∣
x=nh

= 2π
∞∑
k=1

(−1)k+1 f((n + k)h)− f((n− k)h)
2kh

. (72)

Such “long tail” exact differentiation formulas are useful under assumption
about bounded Fourier spectrum.

As a background for SGS modeling, the Boussinesq hypothesis is widely
used. This hypothesis is that the turbulent terms can be modeled as di-
rectly analogues to the molecular viscosity terms using a “turbulent viscosity.”
Strictly speaking, no hypothesis are needed for equation filtering, and below a
sketch of exact filtering theory for kinetic equations is presented. The idea of
reversible regularization without apriory closure assumptions in fluid dynam-
ics was proposed by Leray [13]. Now it becomes popular again [100, 102, 103].

3.1 Filtering as Auxiliary Kinetics

Idea of filtering in kinetics

The variety of possible filters is too large, and we need some fundamental
conditions that allow to select physically reasonable approach.
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Let us start again from the formal kinetic equation (12) df/dt = J(f)
with concave entropy functional S(f) that does not increase in time and is
defined in a convex subset U of a vector space E.

The filter transformation ΦΔ : U → U , where Δ is the filter width, should
satisfy the following conditions:

1. Preservation of conservation laws: for any basic conservation law of the
form C[f ] = const filtering does not change the value C[f ]: C[ΦΔ(f)] =
C[f ]. This condition should be satisfied for the whole probability or for
number of particles (in most of classical situations), momentum, energy,
and filtering should not change the center of mass, this is not so widely
known condition, but physically obvious consequence of Galilei invariance.

2. The Second Law (entropy growth): S(ΦΔ(f)) ≥ S(f).

It is easy to check the conservation laws for convoluting filters (70), and here
we find the first benefit from the kinetic equation filtering: for usual kinetic
equations and all mentioned conservation laws functionals C[f ] are linear,
and the conservation preservation conditions are very simple linear restric-
tions on the kernel G (at least, far from the boundary). For example, for the
Boltzmann ideal gas distribution function f(x,v), the number of particles,
momentum, and energy conserve in filtering f(x,v) =

∫
G(x− y)f(y,v) dy,

if
∫
G(x) dx = 1; for the center of mass conservation we need also a symmetry

condition
∫

xG(x) dx = 0. It is necessary to mention that usual filters extend
the support of distribution, hence, near the boundary the filters should be
modified, and boundary can violate the Galilei invariance, as well, as momen-
tum conservation. We return to these problems in this paper later.

For continuum mechanics equations, energy is not a linear functional, and
operations with filters require some accuracy and additional efforts, for ex-
ample, introduction of spatially variable filters [101]. Perhaps, the best way
is to lift the continuum mechanics to kinetics, to filter the kinetic equation,
and then to return back to filtered continuum mechanics. On kinetic level,
it becomes obvious how filtering causes the redistribution of energy between
internal energy and mechanical energy: energy of small eddies and of other
small-scale inhomogeneities partially migrates into internal energy.

Filtering semigroup

If we apply the filtering twice, it should lead just just to increase of the filter
width. This natural semigroup condition reduces the set of allowed filters
significantly. The approach based on filters superposition was analyzed by
Germano [15] and developed by many successors. Let us formalize it in a form

ΦΔ′ (ΦΔ(f)) = ΦΔ′′ (f), (73)

where Δ′′(Δ′, Δ) is a monotonic function, Δ′′ ≥ Δ′ and Δ′′ ≥ Δ.
The semigroup condition (73) holds for the Gaussian filter with Δ′′2 =

Δ′2 +Δ2, and does not hold for the box filter. It is convenient to parameterize
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the semigroup {ΦΔ|Δ ≥ 0} by an additive parameter η ≥ 0 (“auxiliary time”):
Δ = Δ(η), Φη ◦ Φη′ = Φη+η′ , Φ0 = id. Further we use this parameterization.

Auxiliary kinetic equation

The filtered distribution f(η) = Φη(f0) satisfies differential equation

df(η)
dη

= φ(f(η)), where φ(f) = lim
η→0

Φη(f)− f

η
. (74)

For Gaussian filters this equation is the simplest diffusion equation
df(η)/dη = Δf (here Δ is the Laplace operator).

Due to physical restrictions on possible filters, auxiliary equation (74) has
main properties of kinetic equations: it respects conservation laws and the
Second Law. It is also easy to check that in the whole space (without boundary
effects) diffusion, for example, does not change the center of mass.

So, when we discuss filtering of kinetics, we deal with two kinetic equations
in the same space, but in two times t and η: initial kinetics (12) and filtering
equation (74). Both have the same conservation laws and the same entropy.

3.2 Filtered Kinetics

Filtered kinetic semigroup

Let Θt be the semigroup of the initial kinetic phase flow. We are looking for
kinetic equation that describes dynamic of filtered distribution Φηf for given
η. Let us call this equation with correspondent dynamics the filtered kinetics.
It is the third kinetic equation in our consideration, in addition to the initial
kinetics (12) and the auxiliary filtering kinetics (74). The natural phase space
for this filtered kinetics is the set of filtered distributions Φη(U). For the phase
flow of the filtered kinetics we use notation Ψ(η) t This filtered kinetics should
be the exact shadow of the true kinetics. It means that the motion Ψ(η) t(Φηf0)
is the result of filtering of the true motion Θt(f0): for any f0 ∈ U and t > 0

Ψ(η) t(Φηf0) = Φη(Θt(f0)). (75)

This equality means that

Ψ(η) t = Φη ◦Θt ◦ Φ−η (76)

The transformation Φ−η is defined on the set of filtered distributions Φη(U),
as well as Ψ(η) t is. Now it is necessary to find the vector field

ψ(η)(f) =
dΨ(η) t(f)

dt

∣∣∣∣
t=0

on the base of conditions (75), (76). This vector field is the right-hand side of
the filtered kinetic equations
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df
dt

= ψ(η)(f). (77)

From (76) immediately follows:

dψ(η)(f)
dη

= (Dfφ(f))ψ(η)(f)− (Dfψ(η)(f))φ(f) = [ψ(η), φ](f), (78)

where [ψ, φ] is the Lie bracket of vector fields.
In the first approximation in η

ψ(η)(f) = J(f)+η((Dfφ(f))J(f)− (DfJ(f))φ(f)) = J(f)+η[J, φ](f), (79)

the Taylor series expansion for ψ(η)(f) is

ψ(η)(f) = J(f) + η[J, φ](f) +
η2

2
[[J, φ], φ](f) + . . .+

ηn

n!
[. . . [J, φ], ...φ]︸ ︷︷ ︸

n

(f) + . . .

(80)
We should stress again that filtered equations (77) with vector field ψ(η)(f)
that satisfies (78) is exact and presents just a shadow of the original kinetics.
Some problems may appear (or not) after truncating the Taylor series (80),
or after any other approximation.

So, we have two times: physical time t and auxiliary filtering time η, and
four different equations of motion in these times:

• initial equation (12) (motion in time t),
• filtering equation (74) (motion in time η),
• filtered equation (77) (motion in time t),
• and equation for the right hand side of filtered equation (78) (motion in

time η).

Toy example: advection + diffusion

Let us consider kinetics of system that is presented by one scalar density in
space (concentration), with only one linear conservation law, the total number
of particles.

In the following example the filtering equation (74) is

∂f(x, η)
∂η

= Δf(x, η) (= φ(f)). (81)

The differential of φ(f) is simply the Laplace operator Δ. The correspondent
3D heat kernel (the fundamental solution of (81)) is

K(η,x− ξ) =
1

(4πη)3/2
exp
(
− (x− ξ)2

4η

)
. (82)

After comparing this kernel with the Gaussian filter we find the filter width
Δ =

√
24η.
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Here we consider the diffusion equation (81) in the whole space with zero
conditions at infinity. For other domains and boundary conditions the filtering
kernel is the correspondent fundamental solution.

The equation for the right hand side of filtered equation (78) is

dψ(η)(f)
dη

= Δ(ψ(η)(f))− (Dfψ(η)(f))(Δf) (= [ψ, φ](f)). (83)

For the toy example we select the advection + diffusion equation

∂f(x, t)
∂t

= κΔf(x, t)− div(v(x)f(x, t)) (= J(f)). (84)

where κ > 0 is a given diffusion coefficient, v(x) is a given velocity field. The
differential DfJ(f) is simply the differential operator from the right hand
side of (84), because this vector field is linear. After simple straightforward
calculation we obtain the first approximation (79) to the filtered equation:

[J, φ](f) = Δ(J(f)) − (DfJ(f))(Δf) = −Δ[div(vf)] + div(vΔf) (85)

= div[vΔf −Δ(vf)] = −div

[
fΔv + 2

∑
r

∂v

∂xr

∂f

∂xr

]

= −div(fΔv)−
∑
i

∂

∂xi

[∑
r

(
∂vi
∂xr

+
∂vr
∂xi

)
∂f

∂xr

−
∑
r

∂f

∂xr

(
∂vi
∂xr
− ∂vr
∂xi

)]

= −
∑
i

∂

∂xi

[∑
r

(
∂vi
∂xr

+
∂vr
∂xi

)
∂f

∂xr

]
−
∑
r

∂

∂xr

(
f
∂divv

∂xr

)
.

The resulting equations in divergence form are

∂f(x, t)
∂t

= J(f) + η[J, φ](f) (86)

= −div

(
−κ∇f + (v + ηΔv)f + 2η

∑
r

∂v

∂xr

∂f

∂xr

)
= div((κ− 2ηS(x))∇f(x, t))− div((v(x) + η∇divv(x))f(x, t)),

where S(x) = (Sij) = 1
2

(
∂vi

∂xj
+ ∂vj

∂xi

)
is the strain tensor. In filtered equations

(86) the additional diffusivity tensor −2ηS(x) and the additional velocity
η∇divv(x) are present. The additional diffusivity tensor −2ηS(x) may be
not positive definite. The positive definiteness of the diffusivity tensor κ −
2ηS(x) may be also violated. For arbitrary initial condition f0(x) it may
cause some instability problems, but we should take into account that the
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filtered equations (86) are defined on the space of filtered functions for given
filtering time η. On this space the negative diffusion (∂tf = −Δf) is possible
during time η. Nevertheless, the approximation of exponent (80) by the linear
term (79) can violate the balance between smoothed initial conditions and
possible negative diffusion and can cause some instabilities.

Some numerical experiments with this model (86) for incompressible flows
(divv = 0) are presented in [103].

Let us discuss equation (83) in more details. We shall represent it as the
dynamics of the filtered advection flux vector Π . The filtered equation for
any η should have the form: ∂f/∂t = −div(−κ∇f + Π(f)), where

Π(f) =

⎛⎝ ∑
j1,j2,j3≥0

aj1j2j3(x, η)∂
j1j2j3
x

⎞⎠ f(x), (87)

where

∂j1j2j3x =
(

∂

∂x1

)j1 ( ∂

∂x2

)j2 ( ∂

∂x3

)j3
(88)

For coefficients aj1j2j3(x, η) equation (83) is

∂aj1j2j3(x, η)
∂η

= Δaj1j2j3(x, η) (89)

+ 2
∂aj1−1 j2j3(x, η)

∂x1
+ 2

∂aj1j2−1 j3(x, η)
∂x2

+ 2
∂aj1j2j3−1(x, η)

∂x3
.

The initial conditions are: a000(x, 0) = v(x), aj1j2j3(x, 0) = 0 if at least one
of jk > 0. Let us define formally aj1j2j3(x, η) ≡ 0 if at least one of jk is
negative.

We shall consider (89) in the whole space with appropriate conditions at
infinity. There are many representation of solution to this system. Let us use
the Fourier transformation:

∂âj1j2j3(k, η)
∂η

= −k2âj1j2j3(k, η) (90)

+2i(k1âj1−1 j2j3(k, η) + k2âj1j2−1 j3(k, η) + k3âj1j2j3−1(k, η)).

Elementary straightforward calculations give us:

âj1j2j3(k, η) = (2iη)|j|e−k
2η k

j1
1 kj22 kj33
j1!j2!j3!

v̂(k), (91)

where |j| = j1 + j2 + j3. To find this answer, we consider all monotonic
paths on the integer lattice from the point (0, 0, 0) to the point (j1, j2, j3). In
concordance with (90), every such a path adds a term

(2iη)|j|

|j|! e−k
2ηkj11 kj22 kj33 v̂(k)
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to âj1j2j3(k, η). The number of these paths is |j|!/(j1!j2!j3!).
The inverse Fourier transform gives

aj1j2j3(x, η) = (2η)|j|−3/2 ∂j1j2j3x

j1!j2!j3!

∫
exp− (x− y)2

4η
v(y) dy. (92)

Finally, for Π we obtain

Π(f) (93)

=
∑

j1,j2,j3≥0

(2η)|j|−3/2

j1!j2!j3!

(
∂j1j2j3x

∫
exp− (x− y)2

4η
v(y) dy

)
∂j1j2j3x f(x).

By the way, together with (93) we received the following formula for the
Gaussian filtering of products [103]. If the semigroup Φη is generated by the
diffusion equation (81), then for two functions f(x), g(x) in Rn (if all parts
of the formula exist):

Φη(fg) =
∑

j1,j2,...jn≥0

(2η)|j|−n/2

j1!j2! . . . jn!
(∂j1j2...jnx Φη(f))(∂j1j2...jnx Φη(g)). (94)

Generalization of this formula for a broader class of filtering kernels for con-
volution filters is described in [16]. This is simply the Taylor expansion of the
Fourier transformation of the convolution equality Ψt = Φ ◦ Θt ◦ Φ−1, where
Φ is the filtering transformation (see (76)).

For filtering semigroups all such formulas are particular cases of the com-
mutator expansion (80), and calculation of all orders requires differentiation
only. This case includes non-convolution filtering semigroups also (for exam-
ple, solutions of the heat equations in a domain with given boundary condi-
tions, it is important for filtering of systems with boundary conditions), as
well as semigroups of non-linear kinetic equation.

Nonlinear filtering toy example

Let us continue with filtering of advection + diffusion equation (84) and accept
the standard assumption about incompressibility of advection flow v: divv =
0. The value of density f does not change in motion with the advection flow,
and for diffusion the maximum principle exists, hence, it makes sense to study
bounded solutions of (84) with appropriate boundary conditions, or in the
whole space. Let us take max f < A. This time we use the filtering semigroup

∂f(x, η)
∂η

= −div(−(A− f)∇f) = (A− f)Δf(x, η)− (∇f)2 (= φ(f)). (95)

This semigroup has slightly better properties of reverse filtering (at least, no
infinity in values of f). The first-order filtered equation (79) for this filter is
(compare to (85)):
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∂f(x, t)
∂t

= J(f) + η[J, φ](f) (96)

= −div[−κ∇(f + η(∇f)2) + 2η(A− f)S∇f + vf ].

Here, S is the strain tensor, the term −2η(A− f)S is the additional (nonlin-
ear) tensor diffusivity, and the term ηκ∇(∇f)2 describes the flux from areas
with high f gradient. Because this flux vanishes near critical points of f , it
contributes to creation of a patch structure.

In the same order in η, it is convenient to write:

∂f(x, t)
∂t

= −div[−(κ− 2η(A− f)S)∇(f + η(∇f)2) + vf ].

The nonlinear filter changes not only the diffusion coefficient, but the
correspondent thermodynamic force also: instead of −∇f we obtain −∇(f +
η(∇f)2). This thermodynamic force depends on f gradient and can participate
in the pattern formation.

LES + POD filters

In the title, LES stands for Large Eddy Simulation, as it is before, and POD
stands for Proper Orthogonal Decomposition. POD [104] is an application of
principal component analysis [105] for extraction of main components from
the flow dynamics. The basic procedure is quite simple. The input for POD is
a finite set of flow images (a sample) {f1, . . . , fn}. These images are functions
in space, usually we have the values of these function on a grid. In the space of
functions an inner product is given. The first choice gives the L2 inner product∫
fg dx, or energetic one, or one of the Sobolev’s space inner products. The

mean point ψ0 =
∑

i fi/n minimizes the sum of distance squares
∑

i(fi−ψ0)
2.

The first principal component ψ1 minimizes the sum of distance squares from
points fi to a straight line {ψ0+αψ1 | α ∈ R}, the second principal component,
ψ2, is orthogonal to ψ1 and minimizes the sum of distance squares from points
fi to a plain {ψ0 + α1ψ1 + α2ψ2 | α1,2 ∈ R}, and so on. Vectors of principal
components ψi are the eigenvectors of the sample covariance matrix Σ, sorted
by decreasing eigenvalue λi, where

Σ =
1
n

∑
i

(fi − ψ0)⊗ (fi − ψ0)
T =

1
n

∑
i

|fi − ψ0〉〈fi − ψ0|. (97)

The projection of a field f on the plane of the k first principal components is
ψ0 + Pk(f − ψ0), where Pk is the orthogonal projector on the space spanned
by the first k components:

Pk(φ) =
∑

1≤j≤k
ψj(ψj , φ). (98)

The average square distance from the sample points fi to the plane of the k
first principal components is
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σ2
k =

∑
j>k

λj = trΣ −
∑

1≤j≤k
λj

(
trΣ =

1
n

∑
i

(fi − ψ0)
2

)
. (99)

This number, σk, measures the error of substitution of the typical (in this sam-
ple) field f by its projection on the plane of the k first principal components.
The relative average squared error is σ2

k/trΣ.
Among many applications of POD in fluid dynamics at least two have

direct relations to the coarse-graining:

• Postprocessing, that is, analysis of an experimentally observed or numer-
ically computed flow regime in projection on the finite-dimensional space
of the first principal components;

• Creation of “optimal” Galerkin approximations (Galerkin POD, [106]). In
this approach, after finding principal components from sampled images
of flow, we project the equations on the first principal components, and
receive a reduced model.

In addition to radical and irreversible step from initial equations to Galerkin
POD, we can use POD filtering semigroup. It suppresses the component of
field orthogonal to selected k first principal components, but makes this re-
versibly. The filtering semigroup is generated by auxiliary equation

df(η)
dη

= φ(f(η)) = −(1− Pk)(f − ψ0). (100)

The filter transformation in explicit form is

Uη(f) = ψ0 + (Pk + e−η(1− Pk))(f − ψ0). (101)

with explicit reverse transformation U−η.
For equations of the form (12) ḟ = J(f), the POD filtered equations are

df
dt

= (DfUη(f))U−η(f)(J(U−η(f))) = (Pk + e−η(1− Pk))(J(U−ηf)). (102)

These equations have nonconstant in space coefficients, because Pk is com-
bined from functions ψi. They are also non-local, because Pk includes inte-
gration, but this non-locality appears in the form of several inner products
(moments) only. Of course, this approach can be combined with usual filter-
ing, projector operator technic from statistical physics [2], nonlinear Galerkin
approximations [107], and non-linear principal manifold approaches [108].

Main example: the BGK model kinetic equation

The famous BGK model equation substitutes the Boltzmann equation in all
cases when we don’t care about exact collision integral (and it is rather often,
because usually it is difficult to distinguish our knowledge about exact collision
kernel from the full ignorance).
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For the one-particle distribution function f(x,v, t) the BGK equation
reads:

∂f(x,v, t)
∂t

+
∑
i

vi
∂f(x,v, t)

∂xi
=

1
τcol

(f∗m(f)(x,v)− f(x,v, t)), (103)

where m(f) = M(t) is the cortege of the hydrodynamic fields that corresponds
to f(x,v, t), and f∗m(f) is the correspondent local Maxwellian. Let us rescale
variables x, v, t: we shall measure x in some characteristic macroscopic units
L, v in units of thermal velocity vT for a characteristic temperature, t in units
L/vT . Of course, there is no exact definition of the “characteristic time” or
length, but usually it works if not take it too serious. After rescaling, the BGK
equation remains the same, only the parameter becomes dimensionless:

∂f(x,v, t)
∂t

+
∑
i

vi
∂f(x,v, t)

∂xi
=

1
Kn

(f∗m(f)(x,v)− f(x,v, t)), (104)

where Kn = l/L is the dimensionless Knudsen number (and l is the mean–free–
path). It is the small parameter in the kinetics – fluid dynamics transition. If
the Kn � 1 then the continuum assumption of fluid mechanics is no longer a
good approximation and kinetic equations must be used.

It is worth to mention that the BGK equation is non-linear. The term
f∗m(f) depends non-linearly on moments m(f), and, hence, on the distribution
density f too. And f∗m(f) is the only term in (103) that don’t commute with
the Laplace operator from the filtering equation (81). All other terms do not
change after filtering.

According to (79), in the first order in η the filtered BGK equation is

∂f

∂t
+
∑
i

vi
∂f

∂xi
(105)

=
1

Kn
(f∗m(f) − f) +

η

Kn
(D2

Mf∗M )M=m(f)(∇M,∇M)M=m(f).

The last notation may require some explanations: (D2
Mf∗M ) is the second dif-

ferential of f∗M , for the BGK model equation it is a quadratic form in R5 that
parametrically depends on moment value M = {M0,M1,M2,M3,M4}. In the
matrix form, the last expression is

(D2
Mf∗M )M=m(f)(∇M,∇M)M=m(f) (106)

=
3∑
r=1

4∑
i,j=0

(
∂2f∗M
∂MiMj

)
M=m(f)

∂Mi

∂xr

∂Mj

∂xr
.

This expression depends on the macroscopic fields M only. From identity
(20) it follows that the filtering term gives no inputs in the quasi-equilibrium
approximation, because m(D2

Mf∗M ) = 0.
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This fact is a particular case of the general commutation relations for
general quasi-equilibrium distributions. Let a linear operator B acts in the
space of distributions f , and there exists such a linear operator b which acts
in the space of macroscopic states M that mB = bm. Then

m(Bf∗m(f) − (Dff
∗
m(f))(Bf)) = 0. (107)

This means that the macroscopic projection of the Lie bracket for the vector
fields of equations ∂ηf = Bf (a field φ) and ∂tf = f∗m(f) − f (a field θ) is
zero: m([θ, φ]) = 0.5 These commutation relations follow immediately from
the self-consistency identities (18), (19), if we use relations mB = bm to
carry m through B. In the case of BGK equation, relations (107) hold for
any linear differential or pseudodifferential operator B = Q(x, ∂/∂x) that
acts on functions of x. In this case, b = B, if we use the same notation for
differentiation of functions and of vector-functions.

Relations (107) imply a result that deserves special efforts for physical
understanding: the filtered kinetic equations in zero order in the Knudsen
number produce the classical Euler equations for filtered hydrodynamic fields
without any trace of the filter terms. At the same time, direct filtering of the
Euler equation adds new terms.

To obtain the next approximation we need the Chapman–Enskog method
for equation (105). We developed a general method for all equations of this
type (29), and now apply this method to the filtered BGK equation. Let us
take in (26) ε = Kn, F (f) = F0(f) + Ffilt(f), where F0 = −v∂/∂x is the free
flight operator and

Ffilt(f) =
η

Kn
(D2

Mf∗M )M=m(f)(∇M,∇M)M=m(f). (108)

In these notations, for the zero term in the Chapman–Enskog expansion we
have f (0)

M = f∗M , and for the first term

f
(1)
M = fNS

M + ffilt
M = ΔNS

f∗
M

+Δfilt
f∗

M
, (109)

fNS
M = ΔNS

f∗
M

= F0(f∗M )− (DMf∗M )(m(F0(f∗M )))

ffilt
M = Δfilt

f∗
M

= Ffilt(f) (because m(Ffilt(f)) = 0),

where NS stands for Navier–Stokes. The correspondent continuum equations
(30) are

dM
dt

= m(F0(f∗M )) + Knm(F0(ΔNS
f∗

M
+Δfilt

f∗
M

)). (110)

Here, the first term includes non-dissipative terms (the Euler ones) of the
Navier–Stokes equations, and the second term includes both the dissipative
terms of the Navier–Stokes equations and the filtering terms. Let us collect
all the classical hydrodynamic terms together:
5 The term −f gives zero input in these Lie brackets for any linear operator B.
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∂M(x, t)
∂t

= . . . . . . . . . . . .︸ ︷︷ ︸
NS terms

+Knm
(

v
∂

∂x
Ffilt(f)

)
(111)

= . . . . . . . . . . . .︸ ︷︷ ︸
NS terms

+ηm

⎛⎝v
∂

∂x

3∑
r=1

4∑
i,j=0

∂2f∗M
∂MiMj

∂Mi

∂xr

∂Mj

∂xr

⎞⎠ ,

The NS terms here are the right hand sides of the Navier–Stokes equations
for the BGK kinetics (45) (with τ = 2τcol = 2Kn). Of course, (111) is one of
the tensor viscosity – tensor diffusivity models. Its explicit form for the BGK
equation and various similar model equations requires several quadratures:

Cij = m

(
v

∂2f∗M
∂MiMj

)
(112)

(for the Maxwell distributions f∗M that are just Gaussian integrals).

Entropic stability condition for the filtered kinetic equations

Instability of filtered equations is a well-known problem. It arises because
the reverse filtering is an ill-posed operation, the balance between filter and
reverse filter in (76) may be destroyed by any approximation, as well as a
perturbation may move the hydrodynamic field out of space of pre-filtered
fields. (And the general filtered equations are applicable for sure in that space
only.)

Analysis of entropy production is the first tool for stability check. This is a
main thermodynamic realization of the Lyapunov functions method (invented
in physics before Lyapunov).

The filtration term Ffilt(f) (108) in the filtered BGK equation (105) does
not produce the Boltzmann (i.e. macroscopic) entropy S(f∗m(f)), but is not
conservative. In more details:

1. (DMS(f∗M ))(m(Ffilt(f∗m(f)))) ≡ 0, because m(Ffilt(f)) ≡ 0;
2. (DfS(f))f∗

m(f)
(Ffilt(f∗m(f))) = (DMS(f∗M ))(m(Ffilt(f∗m(f)))) ≡ 0;

3. (DfS(f))f∗
m(f)

(Ffilt(f)) = (DfS(f))f∗
m(f)

(Ffilt(f∗m(f))) ≡ 0, because
Ffilt(f) depends on f∗m(f) only;

4. But for any field Ffilt(f) that depends on f∗m(f) only, if the conservativ-
ity identity (32) (DfS(f))f (Ffilt(f)) ≡ 0 is true even in a small vicinity
of quasi-equilibria, then Ffilt(f) ≡ 0. Hence, the non-trivial filter term
Ffilt(f) cannot be conservative, the whole field F (f) = F0(f) + Ffilt(f) is
not conservative, and we cannot use the entropy production formula (31).

Instead of (31) we obtain

dS(M)
dt

= Kn〈ΔNS
f∗

M
, ΔNS

f∗
M
〉f∗

M
+ η〈ΔNS

f∗
M
, Δfilt

f∗
M
〉f∗

M
. (113)

The entropic stability condition for the filtered kinetic equations is:
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dS(M)/dt ≥ 0, i.e. Kn〈ΔNS
f∗

M
, ΔNS

f∗
M
〉f∗

M
+ η〈ΔNS

f∗
M
, Δfilt

f∗
M
〉f∗

M
≥ 0. (114)

There exists a plenty of convenient sufficient conditions, for example,

η ≤ Kn
|〈ΔNS

f∗
M
, Δfilt

f∗
M
〉f∗

M
|

〈ΔNS
f∗

M
, ΔNS

f∗
M
〉f∗

M

; or η ≤ Kn

√√√√〈Δfilt
f∗

M
, Δfilt

f∗
M
〉f∗

M

〈ΔNS
f∗

M
, ΔNS

f∗
M
〉f∗

M

. (115)

The upper boundary for η that guaranties stability of the filtered equa-
tions is proportional to Kn. For the Gaussian filter width Δ this means
Δ = L

√
24η ∼

√
Kn (where L is the characteristic macroscopic length). This

scaling, Δ/L ∼
√

Kn, was discussed in [18] for moment kinetic equations be-
cause different reasons: if Δ/L�

√
Kn then the Chapman–Enskog procedure

is not applicable, and, moreover, the continuum description is probably not
valid, because the filtering term with large coefficient η violates the conditions
of hydrodynamic limit. This important remark gives the frame for η scaling,
and (114), (115) give the stability boundaries inside this scale.

4 Errors of Models, ε-trajectories and Stable Properties
of Structurally Unstable Systems

4.1 Phase Flow, Attractors and Repellers

Phase flow

In this section, we return from kinetic systems to general dynamical systems,
and lose such specific tools as entropy and quasi-equilibrium. Topological dy-
namics gives us a natural language for general discussion of limit behavior and
relaxation of general dynamical systems [109]. We discuss a general dynami-
cal system as a semigroup of homeomorphisms (phase flow transformations):
Θ(t, x) is the result of shifting point x in time t.

Let the phase space X be a compact metric space with the metrics ρ,

Θ : [0,∞[×X → X (116)

be a continuous mapping for any t ≥ 0; let mapping Θ(t, ·) : X → X be
homeomorphism of X into subset of X and let these homeomorphisms form
a one-parameter semigroup:

Θ(0, ·) = id, Θ(t, Θ(t′, x)) = Θ(t + t′, x) (117)

for any t, t′ ≥ 0, x ∈ X .
Below we call the semigroup of mappings Θ(t, ·) a semiflow of homeomor-

phisms (or, for short, semiflow), or simply system (116). We assume that the
continuous map Θ(t, x) is continued to negative time t as far as it is possible
with preservation of the semigroup property (117). For phase flow we use also
notations Θt and Θt(x). For any given x ∈ X , x-motion is a function of time
Θ(t, x), x-motion is the whole motion if the function is defined on the whole
axis t ∈]−∞,∞[. The image of x-motion is the x-trajectory.
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Attractors and repellers

First of all, for the description of limit behaviour we need a notion of an
ω-limit set.

A point p ∈ X is called ω- (α-)-limit point of the x-motion (correspondingly
of the whole x-motion), if there is such a sequence tn →∞ (tn → −∞) that
Θ(tn, x)→ p as n→∞. The totality of all ω- (α-)-limit points of x-motion is
called its ω- (α-)-limit set and is denoted by ω(x) (α(x)).

A set W ⊂ X is called invariant set, if, for any x ∈ W , the x-motion is
whole and the whole x-trajectory belongs to W .

The sets ω(x), α(x) (the last in the case when x-motion is whole) are
nonempty, closed, connected, and invariant.

The set of all ω-limit points of the system ωΘ =
⋃
x∈X ω(x) is nonempty

and invariant, but may be disconnected and not closed. The sets ω(x) might
be considered as attractors, and the sets α(x) as repellers (attractors for t→
−∞). The system of these sets represents all limit behaviours of the phase
flow.

Perhaps, the most constructive idea of attractor definition combines pure
topological (metric) and measure points of view. A weak attractor [113] is a
closed (invariant) set A such that the set B(A) = {x | ω(x) ⊂ A} (a basin
of attraction) has strictly positive measure. A Milnor attractor [112] is such
a weak attractor that there is no strictly smaller closed A′ � A so that B(A)
coincides with B(A′) up to a set of measure zero. If A is a Milnor attractor
and for any closed invariant proper subset A′ � A the set B(A′) has zero
measure, then we say that A is a minimal Milnor attractor.

Below in this section we follow a purely topological (metric) point of view,
but keep in mind that its combination with measure–based ideas create a
richer theory.

The dream of applied dynamics

Now we can formulate the “dream of applied dynamics.” There is such a finite
number of invariant sets A1, . . . An that:

• Any attractor or repeller is one of the Ai;
• The following relation between sets A1, . . . An is acyclic: Ai � Aj if there

exists such x that α(x) = Ai and ω(x) = Aj ;
• The system A1, . . . An with the preorder Ai � Aj does not change qual-

itatively under sufficiently small perturbations of the dynamical system:
all the picture can be restored by a map that is close to id.

For generic two-dimensional systems this dream is the reality: there is a finite
number of fixed points and closed orbits such that any motion goes to one of
them at t→∞, and to another one at t→ −∞ for a whole motion.

The multidimensional analogues of generic two-dimensional systems are
the Morse–Smale systems. For them all attractors and repellers are fixed
points or closed orbits. The relation Ai � Aj for them is the Smale order.
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But the class of the Morse–Smale systems is too narrow: there are many
systems with more complicated attractors, and some of these systems are
structurally stable and do not change qualitatively after sufficiently small
perturbations.6 It is necessary to take into account that typically some of mo-
tions have smaller attractors (for example, in Ai exists a dense set of closed
orbits), and ω(x) = Aj not for all, but for almost all x. Finally, the “dream
of applied dynamics” was destroyed by S. Smale [20]. He demonstrated that
“structurally stable systems are not dense.” It means that even the last item
of this dream contradicts the multidimensional reality.

4.2 Metric Coarse-Graining by ε-motions

ε-motions

The observable picture must be structurally stable. Any real system exists
under the permanent perturbing influence of the external world. It is hardly
possible to construct a model taking into account all such perturbations. Be-
sides that, the model describes the internal properties of the system only
approximately. The discrepancy between the real system and the model aris-
ing from these two circumstances is different for different models. So, for the
systems of celestial mechanics it can be done very small. Quite the contrary,
for chemical engineering this discrepancy can be if not too large but not such
small to be neglected. Structurally unstable features or phase portrait should
be destroyed by such an unpredictable divergence of the model and reality.
The perturbations “conceal” some fine details of dynamics, therefore these
details become irrelevant to analysis of real systems.

There are two traditional approaches to the consideration of perturbed
motions. One of them is to investigate the motion in the presence of small
sustained perturbations [119, 120, 122], the other is the study of fluctuations
under the influence of small stochastic perturbations [32, 33]. In this section,
we join mainly the first direction.

A small unpredictable discrepancy between the real system and the dy-
namical model can be simulated by periodical “fattening.” For a set A ⊂ X
its ε-fattening is the set

Aε = {x | ρ(x, y) < ε for all y ∈ A}. (118)

Instead of one x-motion we consider motion of a set, A(t) = ΘtA, and combine
this motion with periodical ε-fattening for a given period τ . For superposition
of Θτ with ε-fattening we use the notation Θε

τ :

Θε
τA = (ΘτA)ε (119)

For t ∈ [nτ, (n+1)τ [ We need to generalize this definition for t ∈ [nτ, (n+1)τ [:

6 Review of modern dynamics is presented in [110, 111]
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a)

(t0)

-tube

(t, (t0))

(t0+t)

0 t
b)

-tube

( , )-motion (t)

Fragments of genuine 
motions duration

Fig. 12: An (ε, τ)-motion Θε(t0 + t) (t ∈ [0, τ ]) in the ε-tube near a genuine motion
Θ(t, Θε(t0)) (t ∈ [0, τ ]) duration τ (a), and an (ε, τ)-motion Θε(t) with fragments
of genuine motions duration τ in the ε-tube near Θε(t) (b).

Θε
tA = Θt−nτ ((Θε

τ )
nA). (120)

Analysis of these motions of sets gives us the information about dynamics
with ε-uncertainty in model. Single-point sets are natural initial conditions
for such motions.

One can call this coarse-graining the metric coarse-graining, and the Eren-
fest’s coarse-graining for dynamics of distribution function might be called the
measure coarse-graining. The concept of metric–measure spaces (mm-spaces
[123]) gives the natural framework for analysis of various sorts of coarse-
graining.

It is convenient to introduce individual ε-motions. A function of time Θε(t)
with values in X , defined at t ≥ 0, is called (ε, x)-motion (ε > 0), if Θε(0) = x
and for any t0 ≥ 0, t ∈ [0, τ ] the inequality ρ(Θε(t0 + t), Θ(t, Θε(t0))) < ε
holds. In other words, if for an arbitrary point Θε(t0) one considers its motion
due to phase flow of dynamical system, this motion will diverge Θε(t0 + t)
from no more than at ε for t ∈ [0, τ ]. Here [0, τ ] is a certain interval of time, its
length τ is not very important (it is important that it is fixed), because later
we shall consider the case ε→ 0. For a given τ we shall call the (ε, x)-motion
(ε, x, τ)-motion when reference to τ is necessary. On any interval [t0, t0 +τ ] an
(ε, x, τ)-motion deviates from a genuine motion not further than on distance
ε if these motions coincide at time moment t0 (Fig. 12a). If a genuine motion
starts from a point of an (ε, x, τ)-trajectory, it remains in the ε-tube near that
(ε, τ )-motion during time τ (Fig. 12b).

Limit sets of ε-motions

Let us study the limit behaviour of the coarse-grained trajectories Θε
tA, and

than take the limit ε→ 0. For systems with complicated dynamics, this limit
may differ significantly from the limit behaviour of the original system for
ε = 0. This effect of the perturbation influence in the zero limit is a “smile of
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a Cheshire cat:” the cat tends to disappear, leaving only its smile hanging in
the air.

For any Θε(t) the ω-limit set ω(Θε) is the set of all limit points of Θε(t)
at t → ∞. For any x ∈ X a set ωε(x) is a totality of all ω-limit points of all
(ε, x)-motions:

ωε(x) =
⋃

Θε(0)=x

ω(Θε).

For ε→ 0 we obtain the set

ω0(x) =
⋂
ε>0

ωε(x).

Firstly, it is necessary to notice that ωε(x) does not always tend to ω(x) as
ε→ 0: the set ω0(x) may not coincide with ω(x, k).

The sets ω0(x) are closed and invariant. Let x ∈ ω0(x). Then for any ε > 0
there exists periodical (ε, x)-motion (This is a version of Anosov’s C0-closing
lemma [114, 111]).

The function ω0(x) is upper semicontinuous. It means that for any se-
quence xi → x all limit points of all sequences yi ∈ ω0(xi) belong to ω0(x).

In order to study the limit behaviour for all initial conditions, let us join
all ω0(x):

ω0 =
⋃
x∈X

ω0(x) =
⋃
x∈X

⋂
ε>0

ωε(x) =
⋂
ε>0

⋃
x∈X

ωε(x). (121)

The set ω0 is closed and invariant. If y ∈ ω0 then y ∈ ω0(y). If Q ⊂ ω0 and Q
is connected, then Q ⊂ ω0(y) for any y ∈ Q.7

The ε-motions were studied earlier in differential dynamics, in connection
with the theory of Anosov about ε-trajectories and its applications [114, 115,
116, 117, 118]. For systems with hyperbolic attractors an important ε-motion
shadowing property was discovered: for a given η > 0 and sufficiently small
ε > 0 for any ε-motion Θε(t) there exists a motion of the non-perturbed
system Θ(t, x) that belongs to η - neighborhood of Θε(t):

ρ(Θε(φ(t)), Θ(t, x)) < η,

for t > 0 and some monotonous transformation of time φ(t) (t−φ(t) = O(εt)).
The sufficiently small coarse-graining changes nothing in dynamics of systems
with this shadowing property, because any ε-motion could be approximated
uniformly by genuine motions on the whole semiaxis t ∈ [0,∞[.

Preorder and equivalence generated by dynamics

Let x1, x2 ∈ X . Let us say x1 �Θ x2 if for any ε > 0 there exists such a
(ε, x1)-motion Θε(t) (Θε(0) = x1) that Θε(t0) = x2 for some t0 ≥ 0.
7 For all proofs here and below in this section we address to [22, 23].
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Let x1, x2 ∈ X . Say that points x1 and x2 are Θ-equivalent (denotation
x1 ∼Θ x2), if x1 �Θ x2 and x2 �Θ x1.

The relation �Θ is a closed Θ-invariant preorder relation on X :

• It is reflexive: x �Θ x for all x ∈ X ;
• It is transitive: x1 �Θ x2 and x2 �Θ x3 implies x1 �Θ x3;
• The set of pairs (x1, x2), for which x1 ∼Θ x2 is closed in X ;
• If x1 �Θ x2 then Θ(t, x1) �Θ Θ(t, x2) for any t > 0.

The necessary and sufficient conditions for the preorder �Θ relation are as
follows: x1 �Θ x2 if and only if either x2 ∈ ω0(x1) or x2 = Θ(t, x1) for some
t ≥ 0. Therefore,

ω0(x) = {y ∈ ω0 | x �Θ y} (122)

The relation ∼Θ is a closed Θ-invariant equivalence relation:

• The set of pairs (x1, x2), for which x1 ∼Θ x2 is closed in X ;
• If x1 ∼ x2 and x1 �= x2, then x1- and x2-motions are whole and∼Θ Θ(t, x2)

for any t ∈]−∞,∞[ Θ(t, x1).

If x1 �= x2, then x1 ∼Θ x2 if and only if ω0(x1) = ω0(x2) , x1 ∈ ω0(x1), and
x2 ∈ ω0(x2).

Compare with [32], where analogous theorems are proved for relations
defined by action functional for randomly perturbed dynamics.

The coarsened phase portrait

We present the results about the coarsened phase portrait as a series of the-
orems.

Let us remind, that topological space is called totally disconnected if there
exist a base of topology, consisting of sets which are simultaneously open
and closed. Simple examples of such spaces are discrete space and Cantor’s
discontinuum. In a totally disconnected space all subsets with more than one
element are disconnected. Due to the following theorem, in the coarsened
phase portrait we have a totally disconnected space instead of finite set of
attractors mentioned in the naive dream of applied dynamics.

Theorem 1. The quotient space ω0/ ∼Θ is compact and totally disconnected.

The space ω0/ ∼Θ with the factor-relation �Θ on it is the generalized
Smale diagram with the generalized Smale order on it [22, 23].

Attractors and basins of attraction are the most important parts of a
phase portrait. Because of (122), all attractors are saturated downwards. The
set Y ⊂ ω0 is saturated downwards, if for any y ∈ Y ,

{x ∈ ω0 | y �Θ x} ⊂ Y.

Every saturated downwards subset in ω0 is saturated also for the equivalence
relation ∼Θ and includes with any x all equivalent points. The following the-
orem states that coarsened attractors Y (open in ω0 saturated downwards
subsets of ω0) have open coarsened basins of attraction B0(Y ).
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Theorem 2. Let Y ⊂ ω0 be open (in ω0) saturated downwards set. Then the
set B0(Y ) = {x ∈ X | ω0(x) ⊂ Y } is open in X.

There is a natural expectation that ω-limit sets can change by jumps on
boundaries of basins of attraction only. For the coarsened phase portrait it is
true.

Theorem 3. The set B of all points of discontinuity of the function ω0(x) is
the subset of first category in X.8 If x ∈ B then Θ(t, x) ∈ B for all t when
Θ(t, x) is defined.

Theorem 4. Let x ∈ X be a point of discontinuity of the function ω0(x).
Then there is such open in ω0 saturated downwards set W that x ∈ ∂B0(W ).

The function ω0(x) is upper semicontinuous, hence, in any point x∗ of
its discontinuity the lower semicontinuity is broken: there exist a point y∗ ∈
ω0(x∗), a number η > 0, and a sequence xi → x∗ such that

ρ(y∗, y) > η for any y ∈ ω0(xi) and all i.

The classical Smale order for hyperbolic systems was defined on a finite
totality A1, . . . An of basic sets that are closed, invariant, and transitive (i.e.
containing a dense orbit). Ai � Aj if there exists such x ∈ X that x-trajectory
is whole, α(x) ⊂ Ai, ω(x) ⊂ Aj . Such special trajectories exist in the general
case of coarsened dynamical system also.

Theorem 5. Let X be connected, ω0 be disconnected. Then there is such x ∈
X that x-motion is whole and x �∈ ω0. There is also such partition of ω0 that

ω0 = W1 ∪W2, W ∩W2 = ∅, αf (x) ⊂W1, ω
0(x) ⊂W2,

and W1,2 are open and, at the same time, closed subsets of ω0 (it means that
W1,2 are preimages of open–closed subsets of the quotient space ω0/ ∼Θ).

This theorem can be applied, by descent, to connected closures of coarsened
basins of attraction B0(Y ) (see Theorem 2).

Theorems 1–5 give us the picture of coarsened phase portrait of a general
dynamical system, and this portrait is qualitatively close to phase portraits of
structurally stable systems: rough 2D systems, the Morse–Smale systems and
the hyperbolic Smale systems. For proofs and some applications we address
to [22, 23].

8 A set of first category, or a meagre set is a countable union of nowhere dense
sets. In a complete metric space a complement of a meagre set is dense (the Baire
theorem).
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Stability of the coarsened phase portrait under smooth perturbations of vector
fields

In order to analyze stability of this picture under the perturbation of the
vector field (or the diffeomorphism, for discrete time dynamics) it is necessary
to introduce Ck ε-fattening in the space of smooth vector fields instead of
periodic ε-fattening of phase points. We shall discuss a Ck-smooth dynamical
system Θ on a compact Cm-manifold M(0 ≤ k ≤ m). Let Θt be the semigroup
of phase flow transformations (shifts in time t ≥ 0) and Uε(Θ) be the set
of phase flows that corresponds to a closed ε-neighborhood of system Θt in
the Ck-norm topology of vector fields. The positive semi-trajectory of phase
point x is a set Θ(x) = {Θt(x) : t ≥ 0}. The Ck ε-fattened semi-trajectory is
Θε(x) =

⋃
Φ∈Uε(Θ) Φ(x). Let us take this set with all limits for t → ∞. It is

the closure Θε(x). After that, let us take the limit ε → 0: Px =
⋂
ε>0 Θ

ε(x)
(it is an analogue of Θ(x)∪ω0(x) from our previous consideration for general
dynamical systems). Following [21] let us call this set Px a prolongation of the
semi-trajectory Θ(x).

A trajectory of a dynamical system is said to be stable under Ck constantly-
acting perturbations if its prolongation is equal to its closure: Px = Θ(x)

For a given dynamical system let L(Θ) denote the union of all trajectories
that are stable in the above sense and let L1 be the set of all dynamical systems
Θ for which L(Θ) is dense in phase space: L(Θ) = M . All structurally stable
systems belong to L1. The main result of [21] is as follows:

Theorem 6. The set L1 is a dense Gδ in the space of Ck dynamical systems
with the Ck norm.9

So, for almost all smooth dynamical systems almost all trajectories are
stable under smooth constantly-acting perturbations: this type of stability is
typical.

5 Conclusion

Two basic ideas of coarse-graining are presented. In the Ehrenfests’ inspired
approach the dynamics of distributions with averaging is studied. In the metric
approach the starting point of analysis is dynamics of sets with periodical ε-
fattening.

The main question of the Ehrenfests’ coarse-graining is: where should we
take the coarse-graining time τ? There are two limit cases: τ → 0 and τ →∞
(physically, ∞ here means the time that exceeds all microscopic time scales).
The first limit, τ → 0, returns us to the quasi-equilibrium approximation. The
9 In a topological space a Gδ set is a countable intersection of open sets. A com-

plement of a dense Gδ set is a countable union of nowhere dense sets. It is a set
of first category, or a meagre set.
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second limit is, in some sense, exact (if it exists). Some preliminary steps in
the study of this limit are made in [74, 75, 4]. On this way, the question about
proper values of the Prandtl number, as well, as many other similar questions
about kinetic coefficients, has to be solved.

The constructed family of chains between conservative (with the Karlin–
Succi involution) and maximally dissipative (with Ehrenfests’ projection) ones
give us a possibility to model hydrodynamic systems with various dissipation
(viscosity) coefficients that are decoupled with time steps. The collision inte-
gral is successfully substituted by combinations of the involution and projec-
tion.

The direct descendant of the Ehrenfests’ coarse-graining, the kinetic ap-
proach to filtering of continuum equations, seems to be promising and phys-
ically reasonable: if we need to include the small eddies energy into internal
energy, let us lift the continuum mechanics to kinetics where all the energies
live together, make there the necessary filtering, and then come back. Two
main questions: when the obtained filtered continuum mechanics is stable, and
when there is way back from filtered kinetics to continuum mechanics, have
unexpectedly the similar answer: the filter width Δ should be proportional to
the square root of the Knudsen number. The coefficient of this proportionality
is calculated from the entropic stability conditions.

The metric coarse-graining by ε-motions in the limit ε→ 0 gives the stable
picture with the totally disconnected system of basic sets that form sources
and sinks structure in the phase space. Everything looks nice, but now we
need algorithms for effective computation and representation of the coarsened
phase portrait even in modest dimensions 3-5 (for discrete time systems in
dimensions 2-4).

It is necessary to build a bridge between theoretical topological picture
and applied computations. In some sense, it is the main problem of modern
theory of dynamical systems to develop language and tools for constructive
analysis of arbitrary dynamics. Of course, the pure topological point of view
is unsufficient, and we need an interplay between measure and topology of
dynamical systems, perhaps, with inclusion of some physical and probabilistic
ideas.
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66. P. Ilg, M. Kröger: Magnetization dynamics, rheology, and an effective descrip-
tion of ferromagnetic units in dilute suspension, Phys. Rev. E 66, 021501
(2002); Erratum, Phys. Rev. E 67, 049901(E) (2003)

67. P. Ilg, I.V. Karlin: Combined micro–macro integration scheme from an invari-
ance principle: application to ferrofluid dynamics. J. Non–Newtonian Fluid
Mech. 120, 33–40 (2004)

68. B. Robertson: Equations of motion in nonequilibrium statistical mechanics.
Phys. Rev. 144, 151–161 (1966)

69. P.J. Morrison: Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70,
467-521 (1998)

70. E. Wigner: On the quantum correction for thermodynamic equilibrium. Phys.
Rev. 40, 749–759 (1932)

71. A.O. Caldeira, A.J. Leggett: Influence of damping on quantum interference:
An exactly soluble model. Phys. Rev. A 31, 1059–1066 (1985)

72. A.N. Gorban, I.V. Karlin: Reconstruction lemma and fluctuation–dissipation
theorem. Revista Mexicana de Fisica 48, 238–242 (2002)

73. A.N. Gorban, I.V. Karlin: Macroscopic dynamics through coarse–graining: A
solvable example. Phys. Rev. E 56 026116 (2002)

74. A.N. Gorban, I.V. Karlin: Geometry of irreversibility. in: Recent Developments
in Mathematical and Experimental Physics, vol. C, ed. by F. Uribe, 19–43
(Kluwer, Dordrecht 2002)

75. A.N. Gorban, I.V. Karlin: Geometry of irreversibility: The film of nonequilib-
rium states, Preprint IHES/P/03/57, Institut des Hautes Études Scientifiques
in Bures-sur-Yvette (France) (2003) Preprint on-line: http://arXiv.org/abs/
cond-mat/0308331

76. I.V. Karlin, L.L. Tatarinova, A.N. Gorban, H.C. Öttinger: Irreversibility in the
short memory approximation. Physica A 327, 399–424 (2003)

77. J.L. Lebowitz: Statistical Mechanics: A Selective Review of Two Central Issues.
Rev. Mod. Phys. 71, S346 (1999)

78. S. Goldstein, J.L. Lebowitz: On the (Boltzmann) Entropy of Nonequilibrium
Systems. Physica D 193, 53–66 (2004)

79. S. Chapman, T. Cowling: Mathematical theory of non-uniform gases, Third
edition (Cambridge University Press 1970)



Basic Types of Coarse-Graining 175

80. C. Cercignani: The Boltzmann equation and its applications, (Springer, Berlin
Heidelberg New York 1988)

81. L. Mieussens, H. Struchtrup: Numerical Comparison of Bhatnagar–Gross–
Krook models with proper Prandtl number. Phys. Fluids 16, 2797–2813 (2004)

82. R.M. Lewis: A unifying principle in statistical mechanics. J. Math. Phys. 8 ,
1448–1460 (1967)

83. A.M. Lyapunov: The general problem of the stability of motion (Taylor & Fran-
cis, London 1992)

84. L.B. Ryashko, E.E. Shnol: On exponentially attracting invariant manifolds of
ODEs Nonlinearity 16, 147–160 (2003)

85. C. Foias, M.S. Jolly, I.G. Kevrekidis, G.R. Sell, E.S. Titi: On the computation
of inertial manifolds. Phys. Lett. A 131, 433–436 (1988)

86. Y. Sone: Kinetic theory and fluid dynamics (Birkhäuser, Boston 2002)
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Summary. We review some applications of the renormalization group (RG) to the
coarse-graining of evolution equations. These techniques allow simulations with a
lower computational cost. The idea behind real space RG is discussed in the first
part, along with the background for its relation to coarse-graining. The rest of the
article deals with their application to the selection of relevant degrees of freedom
in discretized partial evolution equations, both linear and non-linear, and to the
evolution of many-body systems, focusing on stochastic lattice models for reaction-
diffusion.

1 Introduction and Basic Formalism

In this section we provide a brief introduction to the historical development
and the basic concepts of the renormalization group (RG). A reader familiar
with the foundations of RG theory is invited to skip this section.

1.1 A Short History

In 1966 the basic formulation of the ideas underlying the renormalization
group (RG) concept were published in a paper by Leo P. Kadanoff [1]. Within
this pioneering work a method was proposed allowing to extract the critical
behaviour without computing the partition function explicitly. The introduced
method was then referred to as the block spin picture and applications were
carried out in various fields in the physical sciences [2]. A particularly nice
illustration is provided in the original context of critical phenomena [3, 4].
The main difficulty in the quantitative understanding of critical behaviour
are the infinitely many degrees of freedom relevant in this cooperative phe-
nomenon. Self-similarity at the critical point, i.e.: fluctuations over an infinite
hierarchy of length scales need to be taken into account. For a description of
the characteristic critical long range behaviour it then suffices to consider the
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critical system to consist of “large blocks” interacting among themselves in
a way that resembles that of the former small scale variables. Spin variables
are often considered as a simple example, yielding the term “block spin”. By
forming block spins one “simplifies” the system by removing a large number
of degrees of freedom expected to be irrelevant for macroscopic physics. The
block spins approach is, therefore, a coarse graining of the original system.

In 1971 Kenneth G. Wilson converted this idea into an efficient compu-
tational method. In [5] he reformulated Kadanoff’s block spin approach in
infinitesimal form, yielding a set of differential equations termed as renormal-
ization group equations. This reformulation allowed for a careful mathematical
analysis and to present the universal character of the method. In [6] he made
usage of the momentum space description of the block spin picture to ana-
lyze Ginzburg-Landau’s model. Taking the momentum space concept further,
Wilson solved the Kondo problem, which dealt with the effect of a magnetic
impurity on the conduction band electrons of a metal [7]. He remarked that
it was the first example where the renormalization group program had been
carried out in full. His solution was based on the division into shells of the
whole lattice around the impurity (center), where the shells were integrated
outwards iteratively. This method is now termed Wilson’s RG approach.

Following Wilson’s first application of RG ideas to critical phenomena and
the Kondo problem, various variants of the Wilson renormalization group were
introduced in both momentum and position space, the latter known as real
space RG (RSRG). These techniques include the Migdal-Kadanoff bond mov-
ing techniques [8, 9], the Monte Carlo renormalization group (MCRG) initially
suggested by Ma [10] and further developed as the large-cell renormalization
transformation by Friedman and Felsteiner [11] and also Lewis [12], the real
space dynamic renormalization group (RSDRG) in which the coarse grained
description preserves the information about the long range and slowly vary-
ing degrees of freedom [13, 14] and finally the dynamic renormalization group
(DRG) formulated in momentum space [15, 16].

Applications of Wilson’s RG and its real space variants range from prob-
lems in percolations [17], polymer research [18], material sciences [19] and
quantum field theory [20, 21] to strongly correlated electron systems and spin
chains [22]. However, in particular the application to the latter exhibited an
unexpected failure of the Wilson renormalization group. Investigating this
failure it was found by S.R. White and R.M Noack that taking into account
the low energy states of the block spins is not sufficient [23]. Contrarily they
demonstrated, that it is essential to capture the most probable states in consti-
tuting global ground state, thereby defining an example for a target state [24].
It was shown by these authors that the optimal states to represent the target
state are computed as the eigenstates of the density matrix instead of the
Hamiltonian itself. This approach has given birth to the density matrix renor-
malization group (DMRG) algorithm. Here we summarize the basic thoughts
in the next section, whereas in the last chapters of this review we discuss
recent advances and modifications of the DMRG.
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1.2 The Failure of RSRG for Quantum Lattice Problems

A simple example to illustrate this failure was suggested by Wilson and later
explored by S.R. White and R.M. Noack [23]. The model considered is a
spinless particle in a one dimensional lattice, with the following hamiltonian
with fixed boundary conditions

H1D =

{
2 if i = j ,

−1 if |i− j| = 1
and 0 otherwise . (1)

The problem, which is fairly simple, is to find the ground state of this
system. The standard block spin RG approach considers a coarse grained
lattice of block spins. This is equivalent to integrating out the fine scale details,
so each block will only contain low energy information. The basic block spin
procedure divides the lattice into two parts and finds the ground states for
each of them. Afterwards the global ground state is found within the linear
subspace spanned by the ground states for each block. The higher energy
states for the block are neglected, considering that they do not contribute
much to the global low energy properties.

However, this procedure yields quite poor results. The problem, in this
case, stems in the fixed boundary conditions. Each block state is zero in the
boundary. But the right boundary of the left block (respectively, the left
boundary of the right block) is the center of the global system, which is forced
to contain a high energy kink in that position.

In more general terms, the problem is to have isolated blocks. Somehow, the
blocks must have some knowledge about its environment in order to choose
the best states, which need not be the lowest energy states for the block.
From a technical point of view this can be achieved in a number of ways,
as shown in figure 1. Four different types of blocking schemes are illustrated.

d)  Block in a Superblock Environment

a)  Isolated Blocks

c)  Isolated Blocks with Inter−Blocks

b)  Overlapping Blocks

Fig. 1: Four different types of standard blocking schemes.

In case a) the blocks are isolated, leading to failure. Case b) shows an early
solution: to let the blocks overlap. In c) a more advanced scheme is pictured, in
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which neighbouring blocks are connected by means of additional inter-blocks.
Finally in d) the superblock concept is illustrated, in which each single block is
incorporated within a larger superblock. This latter is the principle underlying
the DMRG algorithm which is investigated in the last section of this review.

1.3 Renormalization Group Transformations

The previous section has provided insight into the reasons for the failure of
RG schemes. This section is more constructive, and it explains how to build
proper renormalization group transformations (RGTs). The definition of an
RGT depends on the problem at hand, although various recipes exist. In
particular we discuss how inter-block correlations introduced in the preceding
section are to be taken into account.

RG is not universal scheme in which one always works out a RGT by means
of a general algorithm, which will then be applied to the problem at hand.
The effective usage of the RG requires a correct choice of the RGT depending
of the physics of the system. A simple example of a RGT is to average over
the sites in the block to construct an effective site. This particular RGT has
the practical advantage of linearity. But it is by no means the only option. It
is this ambiguity that makes it obvious that a RGT is not just a mathematical
procedure, because the particular transformation will depend on the intuition
of the physicist. This may be a reason why it is often difficult to formulate
the general framework of RG in a rigorous mathematical context.

The optimal and most natural definition of a RGT is to make it as phys-
ically and as mathematically well defined as possible, which in general turns
out to be an unattainable goal. In most of the interesting cases, where the
interaction part of the Lagrangian L turns out to be very complicated, one is
forced to use rather crude transformations. The aim of this work is to define
RGTs which are motivated by physical considerations and are also mathe-
matically well defined procedures. This has clearly not been achieved by a
straightforward improvement of already existing transformations and for this
purpose a new mathematical formalism is introduced in this section. It is thus
necessary to give a definition of an RGT as general as possible. Such a uni-
versal formulation allows to search for the optimum among a larger number
of possible RGTs.

Figure 2 gives an example of this basic idea concerning the definition of
RGT, which is sometimes referred to as coarse graining. Of course figure 2
only provides a graphical representation of this change of scales and we have
to define the precise mapping prescription. This is precisely the part where by
physical assumptions we get a mathematical description, which in most cases
we can work out approximately or numerically.

To capture as many approaches as possible we define a renormalization
group transformation (RGT) in terms of a general map:

R : ({σl},k) −→ ({μm},k′) , (2)
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RGT

Fig. 2: Visualization of a RG transformation (RGT).

on a set of physical variables {σl} and a further set of parameters k =
(k1, k2, . . . ), where {l} and {m} are not necessarily equal indexing sets. The
{μm} denote the new variables and k′ contains the effective parameters.

The fundamental requirement for the R transformation is to keep the
physics of the problem invariant. This in turn includes several constraints
as for example the conservation of the symmetries, the maintenance of the
structure of the Hamiltonian and the values of physical observables, such as
the free energy. Providing such a transformation in rigorous mathematical
terms is not only a difficult task: sometimes it is impossible to obey all the
constraints at the same time. This is the reason for the enormous variety
of transformations developed in the last decades with corresponding results
ranging from totally unphysical to exact physical numbers.

It should also be mentioned that the methods for implementation of con-
straints can be very different. The aim of this work is to propose new trans-
formations which should include nearly all constraints and we will point out
the missing ones and discuss the effect of the approximations. Here we adopt
a notation in which we will express the foregoing statements. The RGT is
always introduced by applying it on a functional dependence O({σl},k) given
by physics. By applying the transformation R, this function O should not
change and therefore leaves the physics invariant. Thus we obtain the first
class of constraints as

R [O ({σl},k)] = O ({μm},k′) . (3)

In some known RGT this functional dependence is given by the Lagrangian
or the Hamiltonian themselves, and the sets of physical variables will then
correspond to the original and the block variables.

In an infinite system the number of original variables is infinite, and so is
the number of block variables. Therefore, in the thermodynamical limit there
is no reduction in the number of degrees of freedom. This leads us to study the
RG-flow of the system [25], i.e.: to extract information about just how does the
description of the physical system changes with the blocking operation. This
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change is restricted to a few parameters –called running coupling constants– in
the most favourable cases. In those cases, the thermodynamic limit is analyzed
via the fixed points of the RGT. The examples we shall analyze are not of this
kind, and the number of running coupling constants shall be too large for a
fixed point analysis to be practical. Therefore, we shall attach to the finite-size
picture and provide examples of effective reduction of degrees of freedom and
coarse-graining.

2 RSRG for the Selection of Relevant Degrees of
Freedom

Soon after the considerable success of the RG for equilibrium systems, gener-
alizations of the method were introduced to handle non-equilibrium systems,
based on Monte Carlo approaches [10] or perturbative series expansions, such
as the the dynamic RG (DRG) [26], inherently defined as a Fourier space tech-
nique, which was used to study the dynamics of the Burgers equation [27, 28]
and the related KPZ equation [29, 30]. However, the impact of dimension-
ality on applying the DRG method to the KPZ or the Burgers equation is
crucial [31, 32].

2.1 Projection Operator Concept

The attempt to adapt RSRG techniques for systems far from equilibrium
started with a work by N. Goldenfeld, A. McKane and Q. Hou in which the
usage of RSRG methods to solve partial differential equations (PDEs) was
investigated numerically [33, 34]. Utilizing the operator concept of the RSRG
and replacing the equilibrium Hamiltonian operator by the time evolution
operator of a partial differential equation, a coarse-graining procedure was
devised which did not depend on the details of the dynamical system. However,
Goldenfeld et al. pointed out that the approach is not as well-defined and
systematic as it should. In particular, the geometric construction of the coarse-
to-fine operator assumes the relevant degrees of freedom to be distributed
within the long wavelength fluctuations. This is not necessarily the case for
the evolution of many systems with non-linear dynamics.

Contrarily to DRG in momentum space, we will show non-perturbative
approaches for effective coarse-graining, allowing to compute the relevant de-
grees of freedom which are difficult to examine when the modes mixing is
non-trivial. In this section we consider systems that are described by partial
differential equations (PDEs) of the form

∂tφ = H̃φ, (4)

with φ = φ(x, t) a function of 1D space x and time t and the operator H̃
acting as the generator of the evolution. Spatial and temporal dependence of
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the discretized function f will in turn be denoted by indexing sets i, i+ 1, . . .
and t, t + 1, . . . respectively. Sites which are not necessarily neighbours are
denoted as i, j and by using capital letters I, J we refer to the sites of the
effective lattice. Quantities defined in this effective vector space are equipped
with a prime.

To exemplify our analysis for linear and quadratic evolution operators, H
and Q respectively, we employ the following discretization of equation (4)

φi,t+Δt =
N∑
j=1

(�i,j +Δt · Hi,j)φj,t + Δt
N∑

j,k=1

Qi,j,kφj,tφk,t := fi [φt]

(5)

with i ∈ {1, . . . , N} andN denoting the number of sites in the lattice. The spa-
tial lattice spacing is denoted as Δx and the discrete temporal integration in-
terval as Δt. The field at time t is represented by φt ∈ V N and H : V N → V N

is the discretized evolution operator operating on the N-dimensional vec-
tor space V N . Here we aim to approximate the time-evolution in a lower-
dimensional effective vector space VM (M < N). Let G : V N → VM denote
the truncation operator which takes an element φt of the full vector space
V N and returns an element φ′t of the truncated space VM [35] . Here capital
indexing letters I ∈ {1, . . . ,M} refer to lattice sites in the effective vector
space VM . The application of the embedding operator Gp : VM → V N to an
effective field configuration φ′ yields a field configuration Gpφ′ on the origi-
nal lattice. Ideally we would choose Gp = G−1. Then applying this operator
to φ′ we would recover φ. However, due to our assumption M < N , G has
a non-trivial kernel and the true inverse does not exist. One therefore em-
ploys the pseudo-inverse by defining the embedding operator Gp, satisfying
the Moore-Penrose conditions [36]

GGpG = G , GpGGp = Gp , (GpG)† = GpG , (GGp)† = GGp .

For a given truncation operator G these equations are solved if the embedding
operator Gp is chosen as the singular value decomposition (SVD) pseudo-
inverse of G. Then GGp is the identity operator on VM while R := GpG is
the projection operator on the subspace V rel ⊂ V N spanned by the relevant
degrees of freedom. We like to point out that this operator is fully determined
by its kernel and we may formally write

R = GpG =
M∑
i=1

|vi〉 〈vi| , (6)

where {vi}Mi=1 is an orthonormal basis of V rel. We will refer to such a set as
a set of target states. Using the Dirac notation for vectors, |vi〉 〈vi| denotes
the projection operator on the subspace spanned by the single vector vi. The
projector R is termed the reduction operator and the ratio λ = N/M defines
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the reduction factor λ.
For M < N the functional f ′

[
φ′t
]

: VM � � �� VM is defined as in (5) on
an effective lattice with a reduced number of lattice sites M and

φ′I,t+Δt =
M∑
J=1

(
�I,J +Δt · H ′I,J

)
φ′J,t + Δt

M∑
J,K=1

Q′I,J,Kφ
′
J,tφ

′
K,t . (7)

In equation (7) H ′ and Q′ denote the effective linear and quadratic evolution
operators defined as [37]

H ′I,J := GI,iHi,j G
p
j,J and Q′I,J,K := GI,iQi,j,k G

p
j,J G

p
k,K . (8)

Inserting (7) and (8) into equation (5) an approximate field evolution equation
on a coarse grained lattice is obtained by

φi,t+Δt ≈
[
Gp (� + Δt ·H ′ + Δt ·Q′)Gφt

]
i

, (9)

describing the evolution of the field φ under a reduced number of degrees of
freedom. Equation (9) defines a RG transformation (RGT) within this opera-
tor formalism. Carrying out one RGT is called a RG step (RGS) and accord-
ing to the concept developed in this section is equivalent to an approximate
field evolution using less degrees of freedom. Equation (9) defines the real-
space analogue of a RGT established within the DRG method. The field itself
provides the set of parameters used to establish a RGT [38]. Furthermore,
equation (9) fuses the coarse-graining and the time evolution procedure.

2.2 Geometric Reduction of the Degrees of Freedom

To employ the RGT (9) for practical use, information regarding the operators
Gp andG is requested. In [37] a general geometric approach is introduced using
overlapping blocks or cells as discussed in section 1.2. For regular arranged
partitions of cells one considers an interval together with a regular partition
into n equal cells in each dimension, denoted by Cni ≡ [ i−1

n , in ]. The truncation
operator G is defined by [37]

GIi =
Overlap between cells Ci and CI .

Measure of cell CI .
, (10)

where Ci denotes a block or cell of the previous geometric partition and CI is
part of the coarser one. The idea is to employ overlapping blocks to perform
single degree truncation operators, i.e. to truncate the number of degrees of
freedom from N to N − 1. Such single step sudden transformation are given
analytically by

GIi = δI,i
N − I

N
+ δI,i−1

I

N
. (11)
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Concatenating these operators allows to perform coarse graining operations
of any desired size [37]. Figure 3 (a) illustrates the overlapping of two suc-
cessive regular partitions. The dashed overlaying and coarse grained partition
contains one degree of freedom less in every dimension. The degrees of free-
dom which are retained by the truncation matrix G are plotted in figure 3
(b). They are the EN vectors given by the columns of G. Each of the discrete
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Fig. 3: Two overlapping partitions are depicted in (a). The thicker grey lines refer to
the previous partition whereas the overlaying dashed lines are referring to the coarse
grained one. Some of the degrees of freedom which are retained by the quasi-static
truncation operator proceeding from 80→ 20 sites (b). Cells 1, 5, 10, 15 and 20 are
depicted. Notice that the “cells” are now overlapping and have slightly Gaussian
nature.

functions depicted in figure 3 may be considered to represent a relevant degree
of freedom when truncating with the matrix G from 80 to 20 lattice sites, i.e.
a reduction factor λ = 4. Although the functions representing the degrees
of freedom are now overlapping, they conserve a true real-space nature. It
should be noticed that the width of the leftmost and rightmost cells is smaller
than the one at the middle of the interval. A consequence is the quite exact
representation of the boundary conditions.

2.3 Non-Geometric Reduction of the Degrees of Freedom

In this section we provide a general concept for reducing the degrees of free-
dom in evolutionary systems without geometrically coarse-graining the lat-
tice equations. Including the temporal characteristics of the particular partial
differential equation (PDE) into the construction of the embedding and trun-
cation operators we distinguish between a short-time regime and a long-time
regime.

Short-time evolution. Within the short-time regime we describe the
evolution of the field as a perturbation of the initial field configuration at
time t = 0. Evolving the initial field φ0 for M time steps Δt with respect to
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H̃ = (H + Q) the dynamics within this short-time interval is conserved by
the set of vectors

S := {φ0, H̃φ0, H̃
2φ0, . . . , H̃

M−1φ0} . (12)

Using the set of vectors in (12) as the columns and rows of the linear operators
G and Gp (previously orthonormalized), these can be considered as projection
maps from and into the space VM respectively.
If M ≤ N the relation

φt = Gp
(
�+ΔtH̃ ′

)M
Gφ0 with H̃ ′ = H ′ + Q′ (13)

governs an exact evolution of the field φt on the effective coarse-grained lattice
for t < MΔt. In this case the states in (12) span a subspace VM of the full
vector-space V N conserving the relevant degrees of freedom for the short-
time evolutionary regime. In the considered short-time regime, we may rewrite
equation (13) as [35]

φt =
[
Gp
(
�+ΔtH̃ ′

)
G
]M

φ0 (14)

which determines a RG flow in the short time regime and a RGS is defined
by relation (9).
However, if t ≥ MΔt equation (14) is an approximation to the evolved field
φt. In this case the approach is only applicable if no relevant scale interference
in the evolutionary process occurs. This is unlikely the case for longer times in
nonlinear dynamical systems and relation (14) becomes a crude approximation
giving rise to numerical instabilities.

Long-time evolution. Nonlinear evolution processes exhibit most of
their characteristics in the long-time regime. The asymptotic form of the field
or surface configuration in growth phenomena [29] or the formation of tur-
bulent states out of spiral waves [39] are only two examples. This demands
for the construction of embedding and truncation operators Gp and G by
minimizing the error in the approximate field evolution equation (9) for all
times of the evolution process. To accomplish this task an error operator E is
introduced as

Eφt := (�+ΔtH̃)φt − (Gp)(�+ΔtH̃ ′)Gφt . (15)

which has to be minimized within a proper operator norm, a concept taken
from equilibrium operator RSRG techniques [24, 40]. Using the established
notation within our established operator RSRG, (� + ΔtH)φt is called the
target state [24] and (Gp)(� + ΔtH̃ ′)Gφt an optimal representation of the
target state [24] in the subspace VM ⊂ V N .
We are interested in the limit Eφt → 0 for t � 0 subject to any field config-
uration φ0. To exclude the explicit field dependence from the minimization
procedure we rewrite equation (15) in operator form as
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E = (�+ΔtH) − Gp(1 +ΔtH̃ ′)G . (16)

and minimize E in the matrix notation according to the Frobenius norm †.
Inserting the definitions (8) we rewrite equation (16) using the Frobenius norm
||F as

|E|F :=
{
�− (GpG) + Δt

[
H − (GpG) H̃ (GpG)

]}2

. (17)

According to equation (17) the minimization of the error operator E only de-
pends on the composed operatorGpG since it governs the field evolution under
a reduced number of degrees of freedom. With respect to (6) and rewriting G
and Gp in terms of a Singular Value Decomposition

G =
M∑
i=1

λi |ui〉 〈vi| and Gp =
M∑
i=1

λ−1
i |vi〉 〈ui| , (18)

where {|vi〉}Mi=1 and {|ui〉}Mi=1 are respectively sets of N -dimensional and M -
dimensional vectors we have

R = GpG =
M∑
i=1

|vi〉 〈vi| = �−
N∑

i=M+1

|vi〉 〈vi| . (19)

The reduction operator R is composed of M states in the vector space V N

thereby projecting out those states representing the less relevant degrees of
freedom in the evolution process. Successive dimensional reduction of the tar-
get space then allows for an iterative construction for R as [35]

RM = RM+1 − |vN+1−M 〉 〈vN+1−M | = RM+1 − P|vN+1−M〉 , (20)

with R0 = �. In equation (20) we have denoted by P|vN+1−M〉 the projection
operator onto the state |vN+1−M 〉 which is the target to calculate in the
Mth minimization procedure. Applying the iterative scheme (20) we write
the minimization procedure for the state |vN+1−M 〉 as

|EM |F = �−RM +Δt
(
H̃ − RM H̃RM

)
. (21)

The error operator is therefore minimized by adjusting the components of the
target states |vi〉 for P|vi〉. Figure 4 compares the conventional coarse graining
operator with a reduction operator adapted to the Burgers’ nonlinearity [27].
Whereas the coarse graining operator has only diagonal blocks different from
zero, the computed reduction operator shows off-diagonal elements different

† In principle every matrix norm can be used, although the Frobenius norm can be
easily related to concepts from linear algebra like singular value decomposition.
It is defined to be the sum of the squares of all the entries in a matrix.



188 A. Degenhard and J. Rodŕıguez-Laguna
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Fig. 4: Comparison between conventional coarse graining (a) and the minimization
procedure (b) for Burgers’ nonlinearity coupling constant 0.1 and a reduction factor
λ = 2.

from zero, indicating long range correlations taking small scale details into
account [41].

Long-time evolution with subgrid correction. Recently the method
was compared to the theory of numerical homogenization [42], a technique
essentially based on multiresolution analysis [43]. Numerical homogenization
has repeatedly been used to explore possible reductions of various PDEs [44].
In multiresolution analysis a function f ∈ L2(R), i.e. an element in the space
of square-integrable functions, is decomposed into large scale contributions
(or averages) and details (or fluctuations) [43]. Starting from the large scale
contribution one recovers the original function f by increasing the resolution,
i.e. by successively adding the details corresponding to the next finer scale as
follows [43]: A multiresolution analysis (MRA) of L2(R) is a nested sequence
of closed subspaces (Vj)j∈Z of L2(R), i.e. · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · . A
further requirement is that all spaces Vj are scaled versions of the central
space V0. Thus, Vj can be considered as the subspace of functions that contain
information down to the scale 2j . The scale is denoted by the subscript j and
becomes coarser with an increasing j. Because of the nesting sequence it is
possible to define the orthogonal compliment Wj of Vj in Vj−1 according to
the decomposition Vj−1 = Vj ⊕ Wj . Further we denote the projection
operators onto Vj and Wj by Pj and Qj so that for all f ∈ Vj−1 we write
Pjf = sf ∈ Vj and Qjf = df ∈Wj . By defining

Uj−1 :=
(
Qj
Pj

)
: Vj−1 → Vj ⊕ Wj (22)

f is decomposed into its details and averages as

Uj−1f =
(

df
sf

)
∈ Vj ⊕ Wj (23)

Consider a linear algebraic system Hj−1f = g with f , g ∈ Vj−1. Application
of Uj−1 and U †j−1 yields
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Uj−1Hj−1U
†
j−1 =

(
Aj Bj
Cj Tj

)
: Vj ⊕ Wj → Vj ⊕ Wj , (24)

where Tj = PjHj−1Pj projects Hj−1 onto a coarser scale, thereby resembling
a RG step. In case the A-block possesses an inverse† A−1

j one derives using
equations (23) and (24)

Rjsf = sg − CjA
−1
j dg . (25)

Here the reduced operator Rj is defined as the Schur complement of the block
Tj of the matrix Hj−1 according to

Rj = Tj − CjA
−1
j Bj . (26)

Equation (25) describes the large scale component of the solution regarding
the original algebraic system. In this sense this equation is referred to as the
homogenized equation and the reduction procedure is termed a homogeniza-
tion step. The second term on the right hand side of (26) is a correction to
the projection Tj of the original operator Hj−1 onto a coarser scale. Applying
numerical homogenization recursively produces reduced equations on increas-
ingly coarser scales. In each homogenization step the role of the above operator
Hj−1 is played by the reduced operator Rj of the previous step, corresponding
to an effective evolution operator.
To compute a homogenized version of a PDE we aim to approximately replace
the evolution operator H in a PDE by its reduced or effective counterpart
(26). For the equations of the type (4) with H̃ is a linear evolution operator,
decomposition in averages and details yields

∂

∂t

(
dφ(t)
sφ(t)

)
=
(
A B
C T

)(
dφ(t)
sφ(t)

)
. (27)

Employing the concept of a reduced operator as the Shur complement of the
coarse grained projector we approximate solutions of (27) by solutions of [42]

∂

∂t
sφ(t) = Rsφ(t) . (28)

The concept of the Schur complement can be utilized to define reduction
operators accounting for the effect of the neglected degrees of freedom [42].
An example illustrating fine scale corrections is given by the advection equation

∂

∂t
φ(x, t) = −a(x) · ∂

∂x
φ(x, t) with 0 ≤ x ≤ 1, a(x) > 0

describing wave propagation in the positive x-direction and a(x) a non-
constant function in x. Here a(x) can be regarded as the velocity of a wave
packet at position x. As an example for a(x) consider the slit condition, where
a(x) = 1/6 only for 0.45 < x < 0.55, otherwise a(x) = 1. The target state
|v27〉 that minimizes the error function (21) is shown in figure 5 for a constant
(a) and a non-constant velocity profile (b), the latter adapted to the slit.
† For example, if Hj−1 is positive definite the same holds for Aj and A−1

j exists [44]).
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0 5 10 15 20 25 30 35
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Target State |v27>

0 5 10 15 20 25 30 35
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Target State |v27>(a) (b)

Fig. 5: Selected target states for the advection equation with (a) constant and (b)
non-constant velocity a(x), the latter obviously adapted to the spatial dependence.

3 DMRG and the Time-Evolution of Strongly
Correlated Many-Body Systems

Many physical systems may not be modelled with partial differential equa-
tions or related mathematical tools, since they may not be described as a small
set of interacting classical fields. Most of them belong to the class of strongly
correlated many-body systems. The high correlations prevent us from using lo-
cal field averages as suitable coarse-grained descriptors. Examples range from
non-equilibrium reaction-diffusion equations in low dimension [45], magnetic
and superconducting systems [46, 40] to quantum chromodynamics [47].

This chapter presents the idea behind one of the main tools for the extrac-
tion of the relevant degrees of freedom in those systems: the Density Matrix
Renormalization Group (DMRG), along with its application to the compu-
tation of the evolution of strongly correlated many-body systems. DMRG
techniques are introduced in a rather non-standard way, making extensive
use of the Matrix Product Ansatz. All the essential features needed for un-
derstanding the success of the technique are exposed, but because of lack of
space we do not delve into the technical details necessary to implement an
efficient DMRG algorithm. The interested reader will find them in [48], [49],
[50] or [51].

3.1 Second Quantization Many-Body Formalism

This section introduces the second quantization formalism, which is one of
the most widely used tools in modern physics, through a simple example.
Let us consider a 1D lattice (see [52]) with N sites, any of which may be
either occupied (1) or empty (0). Occupation is related to the presence of
some type of chemical species A which (a) is injected at one of the boundaries
with a given rate, (b) diffuses through the system, and (c) reacts with itself,
annihilating: A+A→ ∅.
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Those three events are probabilistic, i.e.: a particle at a given site may jump
to any of its neighbour sites, if they are empty, with a certain probability Kd

per unit time, which we call the diffusion rate. The probability (per unit time)
of spontaneous appearance of a particle at the chosen injection site shall be
denoted by Ks and the probability (per unit time) of annihilation of two
neighbouring particles by Ka. The three processes are exemplified in figure 6.

Ks

Kd

Ka

Fig. 6: The three elementary probabilistic processes for our system. The shaded
boxes denote occupied sites of a one dimensional lattice.

Let us consider the long-time behaviour of the system. The first natural
approach is mean field theory, i.e.: to neglect fluctuations. In this case we
arrive at the mass-action law [45], which assumes that diffusion achieves a
perfect mixing. In low dimensional systems diffusion is unable to provide such
a perfect homogenization, and fluctuations remain essential.

There are two possible states for each site, thus 2N possible states for a
lattice of N sites. Each of these states (|00 · · · 0〉, |00 · · · 1〉... |11 · · · 1〉) may
be considered to be a basis vector of a Hilbert space Ω = C2N

. Any vector
from that space may be regarded as a probability distribution for our problem
provided that all its components (in the canonical basis) are real, positive and
add up to 1. E.g.: |P 〉 = 1/3 |001〉+2/3 |110〉. Any such probability distribution
evolves under the given probabilistic rules. This evolution is governed by a
linear operator in Ω which we may call the master operator H. Thus, H is a
2N × 2N matrix and the evolution equation is called the master equation [53]:

∂t |P (t)〉 = −H |P (t)〉 (29)

This master equation must conserve probability, i.e.: the components of
|P (t)〉 must add up to 1 for all time. Therefore, the components of H |P (t)〉
must add up to 0 for all time or, equivalently, all columns of the master
operator should add up to zero.

Furthermore, H may be non-symmetric. If, given a couple of states i and
j, Hij �= Hji, it simply means physically that the probability of transitions
i→ j and j → i are different. In our example, e.g., the state |11〉 may decay
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to |00〉 through an annihilation process, although the inverse transition is not
allowed.

In order to write down the master operator H for the problem illustrated
in figure 6, it is convenient to use algebraic language. Let us consider, for each
site i, the creator a+

i and destructor ai operators. The first one returns an
occupied site |1〉 when acting on an empty site |0〉 and returns 0 when acting
on a site which is already full. The second one, ai, is its adjoint. We shall also
employ the occupancy (or number) ni and vacancy vi operators, which project
respectively on the occupied and the empty states for the i-th site. Within
the basis |0〉 and |1〉 we define the one–site operators

a =
(

0 0
1 0

)
a+ =

(
0 1
0 0

)
, n =

(
0 0
0 1

)
and v =

(
1 0
0 0

)
(30)

The operators listed in (30) are not independent and relations among them
are given by: a+ = (a)†, n = a+a and v = I2−n with I2 the identity operator
for a single site (comprising two possible states). Consequently, the matrix
representation of (e.g.) ni for the i-th particle of a N–sites system may be
written as a tensor product:

ni = I2 ⊗ · · · I2 ⊗ n⊗ I2 ⊗ · · · I2 (31)

with n in the i-th position.
Let us consider the annihilation process for a system with two sites. The

only state amenable to annihilation is |11〉. Thus, all basis states should be
taken to zero but |11〉. When the master operator acts on this state, it should
return the rate of change induced into the probability vector. The weight
of state |11〉 should diminish and the weight of state |00〉 should increase
in the same quantity, so as to conserve probability. We, thus, introduce an
annihilation operator whose only nontrivial action is

A |11〉 = |00〉 − |11〉 (32)

This operator fulfills all the properties we considered necessary to con-
struct a master operator. In terms of the elementary operators we introduced
previously, the annihilation operator acting on two sites i and j can be written
as

Aij = aiaj − ninj (33)

This notation assumes that ai and all other operators act on the whole N–
sites lattice, although their action is nontrivial only at their corresponding
site. In matrix representations this is achived by a suitable tensor product
with identity matrices.

Let us define a diffusion operator between two sites. This operator only
acts nontrivially if one of the sites is empty and the other is occupied. In this
case, it swaps the positions of particle and hole. Thus, for two particles, it
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acts on |01〉 yielding |10〉− |01〉, and symmetrically on |10〉. Using eq. (30) we
conclude that the expression in terms of the elementary operators is given by

Dij = a+
i aj − vinj + aia

+
j − nivj (34)

Finally, the one-site operator describing the source is given by:

Si = a+
i − vi (35)

Using the representations (33), (34) and (35), the master operator for the
process is constructed as

H = KsS1 +
∑
i

(KdDi,i+1 +KaAi,i+1) ≡ KsS1 +
∑
i

hi,i+1 (36)

where we have defined a “link” operator between two neighbouring sites as
hi,i+1 ≡ KdDi,i+1 +KaAi,i+1, providing a useful shorthand notation.

The master equation may be solved given an appropriate initial condition.
In general terms, this is a hard problem, since the number of degrees of freedom
grows exponentially with the lattice size.

Measurements on a state. Let us consider a probability vector |P (t)〉
and any observable we wish to measure (e.g.: average particle number, density
correlations between two points, etc.). These observables can be implemented
by suitable operators. For example, the particle number is measured by N =∑

i ni. When this operator acts on |P (t)〉, each component (in the canonical
basis) is multiplied by its contribution to the total average. In order to obtain
the final number, all such weights should be added. This final addition may
be formally obtained employing a summation state 〈s|, with all components
equal to 1 in the canonical basis, such that

〈N〉 =
〈s| N |P〉
〈s|P 〉 (37)

Of course, 〈s|P 〉 = 1, and there is no need to introduce it, but it is convenient
because this way the formula holds even if the states |P 〉 or 〈s| are not appro-
priately normalized. The identity operator provides the simplest example. In
this case, equation (37) reduces to 〈s|P (t)〉 = 1 for all time, i.e.: probability
conservation.

Eigenstates of the master operator. Being in general a non-symmetric
matrix, each eigenvalue is attached to a set of right and left eigenvectors, which
need not coincide. Probability conservation directly yields a left eigenstate for
the eigenvalue zero: 〈s|. Since all columns of H add up to zero, 〈s|H = 0.

The right eigenvectors associated to this eigenvalue are equilibrium states,
since ∂t |P 〉 = −H |P 〉 = 0. If this right null eigenvector is not unique, it means
that the evolution process is not ergodic, i.e.: different initial states may lead
to different stationary states at infinite time [53]. This phenomenon is also
related to spontaneous symmetry breaking [45].
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Let us consider a right eigenvector of the master operator:H |ψi〉 = λi |ψi〉,
where λi may be complex. If we denote |P (0)〉 = |ψi〉 and allow it to evolve
we find

|P (t)〉 = exp(−λit) |ψi〉 (38)

Thus, the real part of the eigenvalue is the inverse of the relaxation time of
the given state. If any eigenvalue had a negative real part, its corresponding
eigenvector would grow up exponentially, making it unable to contribute to a
probability vector. General mathematical arguments prove that there can not
be such unphysical eigenvalues. Moreover, a purely imaginary eigenvalue may
not exist either for a finite number of states (see page 54 of [45] or 110 ff. of
[54]).

Numerical paths into our problem. The physics of the proposed non-
equilibrium problem at large times can be explored using different techniques.
The most straightforward one is, probably, direct Monte-Carlo simulation. Its
problems related to convergence, such as critical slow-down are explained,
e.g. in [55]. The integration of the master equation involves solving a sys-
tem of 2N coupled differential equations, looking for the long-term behaviour
of random initial states. Another possible approach is to obtain the lowest
eigenvalues and corresponding eigenstates of the master operator, which is a
non-symmetric 2N matrix. Although this last approach seems to be out of our
computational reach for large N , with the aid of real space renormalization
group techniques it may yield the most accurate results with the minimum
computational effort.

We have disregarded the analytical approaches to the solution. A few of
these systems are exactly integrable [45], and they provide valuable hints for
the development of approximate methods.

3.2 The Matrix Product Ansatz

The Hilbert space of a many-body problem is usually too large for exact di-
agonalization techniques to be useful. Therefore, alternative approaches have
been developed throughout this century. The first one is perturbation theory,
i.e.: the assumption that the theory is, in a certain sense, close to a free the-
ory, which may be a good starting point for our calculations. Perturbation
theory has provided impressively good results for quantum electrodynamics
and other theories in which correlations are not strong.

The second main technique is the use of variational methods. While per-
turbation theory is highly dependent on the chosen free theory, variational
methods are highly dependent on the chosen Ansatz, which is usually sug-
gested by physical insight. In this section an Ansatz is described which has
proved rather successful for 1D and quasi-1D calculations, paradoxically re-
quiring no previous knowledge about the physics of the system.

Let us consider a many-body 1D system with N sites, each one with (e.g.)
two possible states. Any wavefunction may be written as
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∣∣ΨN〉 =
∑

s1,··· ,sN

Cs1···sN |s1〉 ⊗ · · · ⊗ |sN 〉 (39)

The number of Cs1···sN coefficients grows as 2N . As a variational Ansatz,
the previous expression would be perfect but useless: too many parameters
are involved. Thus, an alternative is required.

Consider a small set of mN−1 states representing the Hilbert space of
sites 1 to N − 1:

∣∣∣ΨN−1
jN−1

〉
, where mN−1 � 2N−1 is much smaller than the

dimension of the full Hilbert space. Let us assume that, for some reason, we
consider these states to be the most relevant in order to represent the target
state with N sites. Now the following Ansatz may be adopted for the full N
sites system ∣∣ΨN〉 =

∑
sN ,jN−1

B(sN ,jN−1) |sN 〉 ⊗
∣∣∣ΨN−1
jN−1

〉
(40)

Pairs of indices in a parenthesis should be considered as a single index,
ranging over possibile combinations. Thus, B(sN ,jN−1) must be thought as a
vector of 2mN−1 components, containing the weights of each tensor product.
Adopting the Russian dolls view, typical in RG, it seems natural to expand
the
∣∣∣Ψ (N−1)
jN−1

〉
in the same way:∣∣∣ΨN−1
jN−1

〉
=

∑
sN−1,jN−2

BjN−1,(sN−1,jN−2) |sN−1〉 ⊗
∣∣∣ΨN−2
jN−2

〉
(41)

Now BjN−1,(sN−1,jN−2) is not a vector but a matrix of dimensions mN−1×
2mN−2. This relation may be now recoursed for all sites in order to obtain
the full fledged Matrix Product Ansatz (MPA) ([59], [56], [60]):

∣∣ΨN〉 =
∑

B
(N)
(sN ,jN−1)

B
(N−1)
jN−1,(sN−1,jN−2)

· · ·B(3)
j3,(s3,j2)

B
(2)
j2,(s2,s1)

|sN 〉⊗· · ·⊗|s1〉
(42)

The sum extends over all repeated indices, i.e.: {s1 . . . sN} and
{j2 . . . jN−1}. The Bk matrices shall be called truncation matrices. The
columns of Bk represent the relevant degrees of freedom for the system of
k sites in the tensor basis of the states of site k with the relevant degrees of
freedom of the system with k − 1 sites.

We may represent equation (42) formally as∣∣ΨN〉 =
∑

B(N)B(N−1) · · ·B(2) |sN · · · s1〉 (43)

With this form, our many-body problem is reduced to finding the values
of the matrix entries for all the B(k) such that certain magnitude, which is
always quadratic in them, is minimum. I.e.: a variational approach using the
entries of the matrices as variational parameters.
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There are two main difficulties: (a) The constraints for the B(k) entries:
their columns must make up an orthonormal set; (b) The high number of
variational parameters. Let us consider all the mk to be equal to a certain
average m. The dimensions of each matrix would be m × 2m. Therefore,
the total number of parameters is ≈ 2Nm2. Both issues are solved in the
most successful practical implementation of the MPA, the DMRG, which is
explained in the following section.

How accurate is this Ansatz? In practice, if m is high, our subspace should
be large enough to contain a good approximation to our target state. This
last assertion is not gratuitous: some theoretical background may be found in
[56, 57, 58]. If the correlation function decays exponentially, then the MPA
gives a good approximation with a low m. If it decays as a power law, results
have worse quality [59].

So, summarizing, the Matrix Product Ansatz is the assumption that our
target state may be written as a product of consecutive truncation matrices,
and the idea of using their elements as variational parameters. Many real
space RG algorithms for many-body problems are based on this idea, from
Wilson’s approach to the Kondo problem [7, 60] up to the DMRG algorithm
and its near-future extensions, described in 3.4.

3.3 The DMRG Implementation

The full technical details of a working DMRG program are out of the scope
of these notes. The ideas exposed in this section are sufficient to write down
a DMRG algorithm, but not a state-of-the-art one. The reader interested in
the technical details is referred to [48]. The application to non-equilibrium
phenomena may be traced back to the works of Hieida [61] and Carlon et al.
[62].

The MPA may, in principle, be implemented by any minimization algo-
rithm which respects the orthonormality of the columns of the B matrices. In
practice, the best known approach is to minimize for each B matrix, keeping
the rest of them fixed, and to iterate this procedure until convergence.

The DMRG algorithm employs this iteration on two series of MPA ma-
trices. One of them advances leftwards and the other one rightwards. They
will be denoted by Bp→p+1 and Bp+1→p. The principal idea is to store not
only the B matrices, but also the matrix representations of other operators,
which are needed so as to perform only local computations, i.e.: to improve
matrix Bp→p+1 using only information which is local to site p. Otherwise, we
might have to use all other B’s to improve matrix Bp→p+1, thus rendering the
number of operations for a single iteration at least O(N).

Let us consider our 1D system divided into a left block, a right block and
two sites between them, e.g. sites p+ 1 and p+ 2, as it is shown in figure 7.

Each block has an active site, i.e.: the rightmost site of the left block and
the leftmost site of the right one. This is the site with a “dangling link”, which
may be used to link the block to another site or block. The active site for the
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Fig. 7: Splitting of a system into left and right parts, with two sites between them.

left block, in our case, is site p. Each block is represented by a set of m states,
and a set of operators: its master operator and the creation operator at the
active site. For the left block in our example, e.g., they are

HL
p = KsS1 +

∑
i<p

hi−1,i and a+
L,p (44)

The states for the blocks are never stored in practice, only the matrix elements
of the restriction of the operators to the subspace spanned by them, i.e.:

(HL)k,l =
〈
ψLk

∣∣∣HL
p

∣∣∣ψLl 〉 and (a+
L,p)k,l =

〈
ψLk

∣∣∣ a+
L

∣∣∣ψLl 〉 . (45)

The terminology for left and right blocks refers to lattice geometry, not to left
and right eigenstates of the master operator. We would also like to remark that
the destruction, occupancy and vacancy operators may be obtained trivially
from a+.

Let us assume that we are given this set of matrices somehow. Now, a
DMRG step consists of the following processes [51, 23, 24]:

Superblock construction. The superblock is the name for the whole
system when it is rebuilt from its constituent blocks. In this stage we will
explain how to write down the master operator for the superblock.

Let us remark that any operator acting on either one of the blocks or one
of the sites may be promoted to act on the whole superblock by multiplying
it tensorially with identity matrices of the appropriate size. From now on we
shall assume all operators to be promoted to act on the appropriate Hilbert
space.

We have the matrix representations of HL
p , HR

p , a+
p,L and a+

p+2,R, all of
them m×m matrices. The superblock master operator has dimension 4m2×
4m2, and may be written as:

HSB = HL
p ⊗ I4m + I4m ⊗HR

p + hL,p+1 + hp+1,p+2 + hp+2,R (46)

I4m is the identity matrix of dimension 4m× 4m. The link hp,p+1 is easy to
write down:

hp+1,p+2 = Im ⊗ (KdD1,2 +KaA1,2)⊗ Im (47)

where D1,2 and A1,2 are the 2 sites operators, given by eq. 34 and eq. 33.
The procedure for hL,p+1, which is the link of the left block to the is the
following: (a) to obtain, from a+

p,L, the full set of operators for site p: ap,L,
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vp,L and np,L; (b) to multiply them tensorially with I4n to promote them
to superblock operators; (c) promote accordingly the single site operators to
become superblock operators for site p+ 1. Now, follow equations 34 and 33.
Of course, the same procedure applies to hp+2,R.

Target state obtention. The left 〈ΨL| and right |ΨR〉 ground states of
the superblock master operator which we have built are an approximation
to the exact ones, which are the target of our calculation. More accurately,
the eigenvalues of the superblock master operator are variational estimates to
the exact ones within the subspace spanned by the 2m2 chosen states. Since
probability conservation is a consequence of the construction of the master
operator, a zero eigenvalue must exist. If the operator is nondegenerate, as
it is in our case, its left associated eigenvector will be the summation state
〈s|. Its right eigenstate will be, of course, the equilibrium state of the system.
The first excited states, i.e. the right eigenvectors with smallest eigenvalues,
correspond to the natural long time contaminations of the equilibrium state,
since they are the slowest ones to disappear.

If only the left and right ground states are targetted, then there is no
need to diagonalize the superblock master operator, which is a 2m2 non-
symmetric matrix. In this case it suffices to solve the homogeneous linear
equation HSB |ΨR〉 = 0 and 〈ΨL|HSB = 0. In general, non-symmetric matrix
diagonalization is a hard problem [36, 63] which one must face only when the
excited states are required.

Density matrix. The procedure might end here, with an estimation of
the ground state, but in order to find the optimal set of B’s it must be iterated.
The procedure to perform this gives its name to the technique.

We have found an estimate for the left and right target states: 〈ΨL| and
|ΨR〉. Our next step will be to split the system so as the central sites are p+2
and p+3, i.e.: the left block swallows the p-th site. We may now try to find the
states in that block which perform best at reproducing both 〈ΨL| and |ΨR〉,
i.e.: the most relevant states of the new block. The way to do it is through
a least squares procedure, and the procedure is easily understood in terms of
density matrices.

Density matrices appear naturally in quantum and statistical mechanics
[64]. If we denote the (normalized) states for the new left block by |l〉 and
those for the rest of the system by |r〉, then any state |ξ〉 for the full system
may be written as

|ξ〉 =
∑
l,r

Cl,r |l〉 ⊗ |r〉 (48)

Its associated density matrix is defined by:

(ρ)(l1,r1),(l2,r2) = Cl1,r1 · Cl2,r2 (49)
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This matrix is self-adjoint, has unit trace and is positive-definite [64]. It
is a density matrix, but it is also a projector. Therefore, its only non-zero
eigenvalue is a unique 1. We now project on the left side through the operation:

(ρl)l1,l2 =
∑
r

ρl1,l2,r,r (50)

This second density matrix shares most properties with the previous one,
but has an important statistical interpretation. Its eigenvalues are always in
the range [0, 1], and they all add up to 1. The eigenvalue of a given eigenvector
represents the “weight” it has in the construction of the full state |ξ〉. Thus,
if we wish to retain the m states which provide a best fit to |ξ〉, all we have
to do is to fetch the m highest eigenvalue states. The sum of the neglected
eigenvalues yields a measure of the error in the truncation.

Now a criterion has been provided in order to choose the m most relevant
states for the left block (out of the 2m that we had), once we know which
global state to target. In our case we would like to focus on two states instead
of one, because both the left and right ground states of the effective master
operator should be well fitted. The solution is to write the density matrix for
each of them, ρlL and ρlR and then find the highest eigenvectors of the linear
combination ρlC = 1/2(ρlL + ρlR).

Now the new Bp→p+1 is built using the most relevant states of the associ-
ated density matrix as columns.

Truncation. Once the matrix Bp→p+1 has been updated, we should move
to matrix Bp+1→p+2. Once the movement procedure has been exposed, the
RG-cycle will be closed.

In order to update matrix Bp+1→p+2 we need the appropriate operators
so as to be able to build up the superblock. This amounts to have a+

p+2,L, the
creation operator for the (p+ 2)-th site and and Hp+1,L, the master operator
for the block containing the first p + 1 sites. The matrix representations of
these operators may be found by applying the basis changing matrix Bp→p+1

on operators employed in the last step:

a+
p+1,L = B+

p→p+1(Im ⊗ a+)Bp→p+1

Hp
L = B+

p→p+1

(
Hp−1
L ⊗ I2 + hL,p+1

)
Bp→p+1

(51)

System Sweeping. Now the procedure may advance and update matrix
Bp→p+1. The sweeping procedure continues until it reaches the end of the
system. Then, the process is reversed, updating the Bp+1→p matrices in turn.

Figure 8 illustrates the sweeping procedure. In our example, we have made
the left block grow at the expense of the right one. The left blocks are improved
this way, while the right ones stay invariant. The process finishes when the
right block takes its minimum possible size. Then the sense is reversed and it
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Left Block Right Block

L(4) + •+ R(5)

L(5) + •+ R(4)

L(6) + •+ R(3)

Fig. 8: Three RG-steps which start a sweeping process. The total system is composed
of N = 10 lattice sites.

is the turn for the right block to grow and to improve its states. A complete
sweeping run is illustrated in figure 9.

Fig. 9: A sweeping run including improvement of the left and right blocks.

The iteration of such sweeps is repeated until convergence, and is ter-
minated when a desired accuracy has been achieved. The number of sweeps
required for convergence does not scale with the lattice size, and in practical
applications is always smaller than 10.

Measurements. When convergence has been attained, we wish to be
able to perform measurements of arbitrary observables. Combinations of the
creation operators for the active sites, stored at each block, make up a broad
set of possible local observables. A caution is needed: all measurements should
be performed using equation 37, i.e.: inserting the desired operator between
the summation state (the left ground state) and a probability vector, such as
the right ground state for equilibrium measurements.

Warmup. An initial set of operators is needed in order to start the sweep-
ing stage. This set is obtained during the warmup. We start with the smallest
possible blocks, consisting of one site. At this step the construction of the
operators is trivial: the creator operator is given by the 2× 2 matrix a+ and
the block master operator is null for the right block and KsS1 for the left one.

The warmup proceeds by inflating the left and the right blocks, thus dupli-
cating the number of stored states. If this number exceeds m, i.e.: the desired
number of states per block, then truncation is necessary. This truncation is
done in a very straightforward way: retaining the lowest eigenstates of the
block master operator.
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More Technical Issues. In order to be able to write down a state-of-
the-art DMRG algorithm a few hints will be needed. The reader is referred to
[48] for the details.

(a) The superblock master operator should never be diagonalized exactly.
A Lanczos or Arnoldi technique should be used instead. These are, basically,
sophisticated versions of the power method which use a seed (either random
or, if possible, informed) which is improved in successive steps.

(b) The target states may be recycled from one RG-step to the next one.
This procedure, which is called wavefunction transformations in the jargon,
provides a good seed for the Lanczos or Arnoldi method.

(c) The superblock master operator should never be written down in full.
Only its action on the states is important, and this may be found without
computing all its matrix elements.

Quantum Many-Body Problems. DMRG was born [24] as a tool to
analyze the low energy properties of quantum many-body systems, and it
is in this field where most of its applications have been implemented. The
problem of finding the equilibrium state of a probabilistic lattice model is
mathematically equivalent to the obtention of the ground state of a quan-
tum hamiltonian. This second problem is usually simpler in practice, since
hamiltonians are always hermitian and, therefore, easier to diagonalize.

Usual quantum hamiltonians studied with DMRG are spin systems (e.g.
Ising model in a transverse field, XY, Heisenberg), fermionic systems (e.g.
t-J or Hubbard models), impurity problems (e.g. Kondo lattices) and even
bosonic problems (phonons). It has been successfully extended to quantum
chemistry problems and to momentum space. An excellent review of this type
of applications may be found in [49].

3.4 Recent Developments of DMRG

This section shows some of the recent developments in the field of DMRG.
Real Time Evolution. In the previous sections we have considered the

long time evolution of a random non-equilibrium system, which we have ar-
gued is equivalent to the ground state of a quantum system. In this section
we discuss briefly how to find the real time evolution of a given state (i.e.:
probability distribution) expressed in the MPA form with DMRG.

Mainly, two different types of problems may be analyzed: (a) The system
is prepared in a certain state and, after that, allowed to evolve freely, or
(b) the system is in its ground state, but a perturbation term is added to
the probability rules (master operator). In any case, let us assume that the
original state has been built in DMRG form, as a set of Bp→p+1 and Bp+1→p
matrices.

As it is exposed in [65], there is an efficient algorithm to apply the master
operator to a DMRG state. Let us consider that we have an estimate of the
target state |Ψ〉 in a certain RG-step, centered on sites p+ 1 and p + 2. Now
we may apply on it the part of the evolution operator, exp(−HΔt) which
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regards only these sites, making use of the Suzuki-Trotter formula. The new
target state is now transformed, using the wavefunction transformations, to
the basis corresponding to sites p+2 and p+3, and the operation is iterated.
If the time steps are taken with due care, at the end of each RG-sweep the
target state will be evolved in Δt.

Towards multidimensional DMRG. The MPA is one-dimensional in
nature, and so is the DMRG. It has been extended to work on tree-like struc-
tures for a long time [66]. In order to work on a multidimensional system,
DMRG proceeds by preparing a pseudo-1D system, with many active sites
per block. The performance of DMRG decreases with the number of links
between the left and right blocks. In the 2D case, for example, of size L× L,
the number of links is O(L). The presence of loops in the system connectivity
also makes the efficience decrease as, e.g. in the case of periodic boundary
conditions [24, 57].

Only recently the necessary ideas to write down a truly multidimensional
DMRG have been put forward. A glimpse of the method was given in [67],
in which the system was divided not into a left and a right parts, but into a
patch and its surroundings. Thus, the number of broken links did not scale
with the system size, but it was applied only to a single particle problem in
quantum mechanics.

Cirac and coworkers explained in [57] the failure of DMRG on systems with
periodic boundary conditions in terms of quantum information, and devised a
modification of DMRG which provided much better results. In the usual MPA
formula, equation (42), the two edge sites are treated in a different footing,
although there is no physical difference between them and the bulk. In their
extension, the MPA is modified so as its rhs becomes:

∑
B

(N)
jN ,(sN ,jN−1)

B
(N−1)
jN−1,(sN−1,jN−2)

· · ·B(2)
j2,(s2,j1)

B
(1)
j1,(s1,jN ) |sN 〉 ⊗ · · · ⊗ |s1〉

(52)
In the 2D case, see [68], the necessary extension of the MPA is more

dramatic. In this case, the matrix for a site with k neighbours is substituted by
a tensor with k indices. Each of them must be contracted with one index of the
tensor sitting in the corresponding nearby site. Now the algorithm proceeds
by minimizing the energy with respect to the tensor entries, with certain
constraints. In [68] an algorithm to carry out this procedure in practice is
explained, although much work is still needed in this project before it reaches
the same efficiency as DMRG for 1D problems.

This approach was suggested by considerations stemming from quantum
information theory, although it may be described, as we have done, without
reference to it. The relation of DMRG, MPA and their extensions to AKLT
states and entanglement is explored in [57, 58, 68].
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4 Conclusions

In this review article we have given a cursory look on some RG techniques re-
lated to the coarse-graining of evolution equations, both for systems described
by partial differential equations and strongly correlated many-body systems.
We have overlooked all the applications stemming from momentum-space RG,
such as the dynamical renormalization group.

The applications to the obtention of the most relevant degrees of freedom
in the case of partial differential equations were described in section 2, where
certain possible approaches were described: a geometric one, which is closest to
standard coarse-graining techniques, and some physically inspired ones, e.g.
the short-time evolution, related to the Lanczos diagonalization scheme, or
the minimization of a certain evolution error, which provides insights into the
long-term dynamics. In section 3, the application of the matrix product Ansatz
(MPA) and its main technical implementation, the density matrix renormal-
ization group (DMRG) were exposed in the context of strongly-correlated
many body systems. In order to make the exposition widely available, we ex-
plained the basic ideas of the method without recourse to quantum problems,
but in a much easier to understand non-equilibrium lattice model, which is
mathematically equivalent in many senses.

As it has been exposed, RG methods are a natural approach to the un-
derstanding of complex spatially distributed systems, since they provide a
toolbox for the selection of local degrees of freedom which are most relevant
in order to describe the global dynamics. Renormalization group transforma-
tions (RGT) play the role of derivatives when dealing with problems involving
different scales. And, as calculus is not an all-embracing recipe, neither is RG
theory. Expertise in calculus costed humankind about two centuries of re-
search. Therefore, it should not be a surprise to realize that RG methods,
despite their successes, are still in a very early stage of development, and that
much work from physicists of different branches and mathematicians is still
needed in order to have a global picture of their applicability.
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62. E. Carlon, M. Henkel, U. Schollwöck: Density matrix renormalization group
and reaction-diffusion processes Eur. Phys. J. B 12, 99–114 (1999)

63. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes
in C (Cambridge University Press 1997) Also at http://www.nr.com

64. R.P. Feynman: Statistical mechanics: a set of lectures (Benjamin, Reading, MA
1972)

65. S.R. White, A.E. Feiguin: Real time evolution using the density matrix renor-
malization group. Phys. Rev. Lett. 93, 076401 (2004)

66. M.A. Mart́ın-Delgado, J. Rodriguez-Laguna, G. Sierra: A density matrix renor-
malization group study of excitons in dendrimers. Phys. Rev. B 65, 155116
(2002)

67. M.A. Mart́ın-Delgado, J. Rodŕıguez-Laguna, G. Sierra: Single block renormal-
ization group: quantum mechanical problems. Nucl. Phys. B 601, 569–590
(2001)

68. F. Verstraete, J.I. Cirac: Renormalization group for quantum many-body sys-
tems in two and higher dimension. Preprint available at cond-mat/0407066

(2004)



A Stochastic Process
Behind Boltzmann’s Kinetic Equation

and Issues of Coarse Graining

H. C. Öttinger
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Summary. We consider a stochastic process behind Boltzmann’s kinetic equation
that is obtained by identifying the infinitesimal generator of a Markov process.
Within an intrinsically probabilistic interpretation, the nonlinear nature of Boltz-
mann’s equation, which can be regarded as an expression of self-consistency, can
be achieved via weakly interacting Markov processes. Whereas the Markov process
associated with the Boltzmann equation is known as a powerful tool both to study
fundamental mathematical issues of existence and to solve practical engineering
problems, we here consider fundamental physical issues of coarse graining and, in
particular, the role of diffusion in hydrodynamic equations. As a provocative con-
clusion, it may be less important to solve the Boltzmann equation than to coarse
grain it.

1 Motivation and Problem

The passage from the reversible equations of motion for a many-particle sys-
tem to the irreversible Boltzmann equation has been a highly controversial
topic for more than a century. Irreversibility arises as a result of coarse grain-
ing from the many-particle system to the single-particle distribution function.
The resulting Boltzmann equation is a milestone in understanding gas dynam-
ics and irreversibility. From the perspective of physical understanding, coarse
graining to obtain the Boltzmann equation is a much bigger achievement than
solving the equations of motion for a many-particle system.

Once we have realized that it may be more important to coarse grain
equations than to solve them, the question arises how we shall proceed with
Boltzmann’s equation. Shall we finally solve it or shall we further coarse grain
it? Human instincts seem to favor solutions. Solution techniques, such as
Grad’s thirteen-moment method or the first-order Chapman-Enskog method,
are commonly employed to produce hydrodynamic equations [1, 2].

By passing from Boltzmann’s kinetic equation to hydrodynamic equations,
one coarse grains from the scale of the particle size (10−10 m) to the scale
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of cars or airplanes (10m). Statistical nonequilibrium thermodynamics sug-
gests that new irreversible processes should arise in such an enormous coarse
graining step [3]. Rapid reversible motions are turned into irreversible fluctu-
ations accompanied by friction. Irreversibility is not produced once and for
all times—additional irreversibility arises in any step of coarse graining. The
controversial step behind the derivation of the Boltzmann equation has to be
repeated again and again, and the usual solution techniques are inappropri-
ate for that purpose. It is hence important to understand systematic coarse
graining techniques [3, 4, 5, 6].

In view of the fact that there exist important intermediate length and time
scales in a gas, namely the mean free path (10−7 m) and the collision time, it
is natural to expect that additional irreversible processes arise in passing from
the Boltzmann equation to hydrodynamics. Indeed, one realizes that diffusion
effects are introduced into the hydrodynamic equations when multicollision
events are taken into account. By solving Boltzmann’s equation we obtain the
Navier-Stokes-Fourier equations of hydrodynamics which contain the viscosity
and the thermal conductivity, but not the diffusion coefficient. More general
equations of hydrodynamics [7, 8, 9] containing all transport coefficients on an
equal footing are obtained only after coarse graining Boltzmann’s equation.
These issues provide our motivation to look at the Boltzmann equation from
the illuminating perspective of stochastic processes in this paper.

Boltzmann’s kinetic equation describes the time-evolution of the single-
particle distribution function pt(r,p), that is, the probability density for find-
ing a particle in a rarefied gas at the time t with momentum p at the position
r within a volume V . The question that we first need to address in this pa-
per is how one can construct a stochastic process (Rt,P t)t≥0 in V 3 × IR3

(equipped with the Borel σ-algebra) for which, at any time t ≥ 0, pt(r,p) is
the probability density of the random variable (Rt,P t). We refer to such a
stochastic process as a Boltzmann process, and we look for the most natural
construction.

Any stochastic process implies information not only about random vari-
ables at given times, but also about correlations between random variables
at different times. More specifically, a Boltzmann process implies all finite-
dimensional marginal distributions Pt1...tn , which are probability measures on
(V 3 × IR3)

n
, for all n and arbitrary sequences of times 0 ≤ t1 < t2 < . . . < tn.

Conversely, the collection of all finite-dimensional marginal distributions
is sufficient to characterize the distribution of a stochastic process (according
to the Kolmogorov extension theorem; see, for example, Sect. 2.3.1 of [10] or
Sect. 12.1 of [11]). Of course, these finite-dimensional marginal distributions
need to be compatible to characterize a process, that is, if we “integrate out”
the particle position and momentum at one of the times then we obtain the
corresponding lower-dimensional marginal distribution. Only the distribution
of the stochastic process is unique; the random variable at any time can be
altered on any subset with zero probability.
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In general, the construction of a family of compatible finite-dimensional
marginal distributions is a major task. Two special classes of stochastic
processes, however, can be constructed quite elegantly: Markov and Gaussian
processes. Only Boltzmann processes of these categories are considered in this
paper.

As a benefit of constructing a stochastic process behind the nonlinear
Boltzmann equation, we expect to obtain some new perspectives on old prob-
lems (which is much more than old wine in new bottles). In spite of the impres-
sive progress on the initial value problem [12], the development of a rigorous
mathematical theory of the Boltzmann equation is far from complete. A sum-
mary of some rigorous achievements based on the stochastic perspective and a
number of unsolved problems can be found in a recent paper [13]. In the last
20 years, an intrinsically probabilistic approach has considerably enhanced
our understanding of the Boltzmann equation. This approach can be traced
back to the famous work of Kac [14] who formulated a linear master equation
for an ensemble of interacting gas particles. In the limit of large ensembles,
initially independent particles remain independent for all times (“propagation
of chaos”), and the probability density for each particle satisfies the nonlinear
Boltzmann equation; this nonlinearity arises from a mean field effect. Deeper
insight into the “propagation of chaos” was provided in an influential contri-
bution by McKean [15], in particular, through an analogy to the central limit
theorem. Important steps toward a rigorous justification of the “propagation
of chaos” for spatially homogeneous systems were made by Grünbaum [16],
Tanaka [17], and Sznitman [18]. The situation for spatially inhomogeneous
systems has been summarized in a broad educational introduction to proba-
bilistic tools for the Boltzmann equation [19], and even the rate of convergence
to equilibrium has been estimated for the inhomogeneous case [13].

In polymer kinetic theory, the analogous stochastic perspective [10] turned
out to be beneficial to clarify a number of fundamental problems and to de-
velop efficient computer simulation techniques. Moreover, to understand how
the irreversible nature of the Boltzmann equation arises, different concepts of
convergence for random variables are known to be of crucial importance [20] so
that a fully stochastic analysis might be useful to understand coarse graining.
We here develop some thoughts on the procedures to introduce the nonlinear-
ity into the Boltzmann equation, on fundamental coarse graining issues, on
thermodynamic admissibility, and on approximate kinetic equations.

In the following, we first describe some key elements of the theory of
Markov processes, most importantly, the infinitesimal generator. For guid-
ance and comparison, we summarize the situation for the role model of non-
linear Fokker-Planck equations, for which a well-elaborated theory, a whole
range of applications, and appropriate simulation tools exist in the applied
literature (both in the natural sciences and in engineering). After present-
ing Boltzmann’s equation in the usual form, we consider the infinitesimal
generator of the naturally associated Markov process. Even at equilibrium,
the construction of a Gaussian Boltzmann process requires an approximation
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which corresponds to the use of Fokker-Planck equations in kinetic theory.
The calculation of the self-diffusion coefficient for the Boltzmann process il-
lustrates how one can benefit from the formulation of a full stochastic process
in kinetic theory and how an additional irreversible process can arise in the
passage from Boltzmann’s equation to hydrodynamics.

2 Markov Processes

Loosely speaking, a stochastic process or a stochastic dynamical system sat-
isfies the Markov property if the future state of the system at any time t′ > t
is independent of the past behavior of the system at times t′′ < t, given the
present state at time t. In other words, the further evolution of the process
depends on its history only through the current state of the process. This prop-
erty, formulated by the Russian mathematician Andrei Andreievich Markov
(1856–1922) in 1906, plays an important role in the theory of stochastic differ-
ential equations for which, like for ordinary differential equations, the future
time evolution can be expressed in terms of the current state, independent of
previous states of the system.

For Markov processes, the idea of two-time transition probabilities is a
key concept. The finite-dimensional marginal distributions Pt1...tn can be
constructed from the initial distribution and the transition probabilities be-
tween any two successive times tj−1 and tj . The compatibility of the family
of finite-dimensional marginal distributions is guaranteed by the Chapman-
Kolmogorov equation which states that, for t1 < t2 < t3, the transition prob-
ability from t1 to t3 is obtained from the transition probabilities from t1 to t2
and from t2 to t3 after integrating over all possible states at the intermediate
time t2.

The two-parameter family of transition probabilities still contains a large
amount of redundant information, because each time step can be decomposed
into a sequence of smaller time steps. By going to the limit of infinitesimal time
steps one can obtain a one-parameter description of Markov processes and, at
the same time, eliminate the remaining Chapman-Kolmogorov compatibility
condition by avoiding redundant information. A useful concept in studying
infinitesimally small time steps is the infinitesimal generator which, for general
Markov processes (Xt)t≥0, can be defined by

Ltg(x) = lim
Δt↓0

1
Δt

[E(g(Xt+Δt)|Xt = x)− g(x)] , (1)

where E(·|·) is the conditional expectation. The infinitesimal generator Lt is
a linear operator whose domain is the set of measurable functions g for which
the limit on the right side of Eq. (1) exists (see Sect. 2.4 of [21]). Of course, the
domain must be sufficiently rich, for example, dense in the class of bounded
functions (cf. Sect. XIII.9 of [22]). The infinitesimal generator can be deter-
mined from the transition probabilities and, conversely, the transition proba-



Stochastic Process Behind Boltzmann Equation 211

bilities can be reconstructed from the infinitesimal generator. When operating
on a function g, the infinitesimal generator describes the rate of change of the
average of g under the condition that the process starts at a given position
x at time t. The one-parameter family of linear operators Lt, t ≥ 0, together
with the initial distribution P0, yields the most compact characterization of
a general Markov process.

If L†t denotes the adjoint of the operator Lt, then the probability density
pt is governed by the equation

∂

∂t
pt = L†tpt. (2)

This equation provides a recipe to construct a Markov process from the time-
evolution equation for the probability density pt: One first reads off the linear
operator L†t from some given time-evolution equation. Note that the operator
L†t must preserve the normalization and positivity of pt. The adjoint operator
Lt can then be used as an infinitesimal generator to define a Markov process.

Actually, Eq. (2) can also be used to reconstruct the transition probabilities
from the infinitesimal generator if it is solved for a sufficiently rich set of
initial conditions. When considered as an equation for transition probabilities,
Eq. (2) is known as Kolmogorov’s forward equation. In the special case of a
second-order differential operator L†t , we obtain the Fokker-Planck equation.

The infinitesimal generator expresses the trend of a Markov process, and
the remainder is a martingale [10]. For a rigorous treatment of nonlinear
Markov processes it is useful to realize that all Markov processes can hence
be specified by a martingale problem [19]. For example, a weak solution of the
Boltzmann equation follows by averaging the associated martingale problem.

3 Nonlinear Fokker-Planck Equations

Fokker-Planck equations are usually given as time-evolution equations for
probability densities pt(x) on IRd,

∂

∂t
pt(x) = − ∂

∂x
· [At(x)pt(x)] +

1
2
∂

∂x

∂

∂x
: [Dt(x)pt(x)], (3)

where At(x) and Dt(x) are suitable column vector and matrix functions,
respectively. The d × d-matrix Dt(x) must be symmetric and positive-
semidefinite, that is, it can be decomposed in the form

Dt(x) = Bt(x) ·Bt(x)T (4)

with a d × d′-matrix Bt(x) (d′ is conveniently but not necessarily chosen as
the rank of Dt(x)). By comparing the Fokker-Planck equation (3) to Kol-
mogorov’s forward equation, we can identify the second-order differential op-
erator L†t and find the infinitesimal generator of a Markov process,



212 H. C. Öttinger

Lt = At(x) · ∂
∂x

+
1
2
Dt(x) :

∂

∂x

∂

∂x
. (5)

A famous theorem states that the corresponding Markov process coincides
with the solution of the Itô stochastic differential equation [10, 21, 23, 24]

dXt = At(Xt)dt + Bt(Xt) · dW t, (6)

where W t is a d′-dimensional Wiener process. The equivalence between
Fokker-Planck equations and stochastic differential equations is the basis for
Brownian dynamics simulations in kinetic theory.

The Fokker-Planck equation corresponding to a stochastic differential
equation is linear in the probability density. In a number of applications
[10, 25], one is faced with the situation that the diffusion equation is non-
linear in the probability density pt because the drift term and/or the diffusion
tensor in the Fokker-Planck equation depend on averages evaluated with pt.

We here consider the situation in which the coefficients At(x) and Bt(x)
in the stochastic differential equation (6) are replaced by A(x, 〈gA(x,Xt)〉)
and B(x, 〈gB(x,Xt)〉), that is, they depend on expectations of one or sev-
eral real-valued functions. Provided that the functions A, B, gA, and gB
satisfy Lipschitz conditions and suitable growth conditions [26], the existence
of a unique solution of the modified stochastic differential equation can be
established.

We next describe a law of large numbers that is of great importance for the
numerical simulation of such processes with mean field interactions. Consider
the system of n stochastic differential equations,

dX
(j)
t = A

(
X

(j)
t ,

1
n

n∑
k=1

gA(X(j)
t ,X

(k)
t )

)
dt

+ B

(
X

(j)
t ,

1
n

n∑
k=1

gB(X(j)
t ,X

(k)
t )

)
· dW

(j)
t , (7)

for j = 1, 2, . . . , n, where the processes W (j) are independent d′-dimensional
Wiener processes. In other words, the expectations in the drift and diffusion
terms are replaced by ensemble averages. We furthermore assume that the
initial conditions X

(j)
0 are independent, identically distributed random vari-

ables.
If Xt is the solution of the stochastic differential equation with mean field

interactions, where the distribution of the initial condition X0 coincides with
the distribution of the random variables X

(j)
0 and the coefficient functions

satisfy Lipschitz and suitable growth conditions, then we have the following
result for the mean-square limit:

ms- lim
n→∞

1
n

n∑
j=1

g(X(j)
t ) = 〈g(Xt)〉, (8)
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for all bounded continuous functions g : IRd → IR [26]. Convergence theorems
under weaker conditions for the coefficient functions have been described in
[27]. Typical fluctuations for finite n are expected to be of the order of n−1/2;
a detailed discussion of these fluctuations can be found in [28]. In a pioneer-
ing paper on nonlinear diffusions, McKean [29] has shown that, under suitable
smoothness conditions, one has the stronger mode of almost sure convergence
in (8), so that one has a strong law of large numbers. These results for non-
linear Fokker-Planck equations have analogous counterparts in the theory of
Boltzmann processes.

The processes X(j) are often referred to as “weakly interacting stochastic
processes.” The weakness of the interaction between any two of these processes
is obvious from the factor 1/n in front of the interaction terms in (7). For large
n, any finite number of processes becomes essentially independent; this asymp-
totic independence property expresses the previously mentioned “propagation
of chaos” [14, 27, 29, 30].

4 Boltzmann’s Kinetic Equation

Boltzmann’s kinetic equation for the single-particle distribution function can
be written in the form

∂pt(r,p)
∂t

= −
(

p

m
· ∂
∂r
− ∂φ(e)(r)

∂r
· ∂
∂p

)
pt(r,p) +

[
∂pt(r,p)

∂t

]
coll

. (9)

The first term on the right-hand side of this equation corresponds to the free
flight of a single particle of mass m in an external field with potential φ(e). The
second term describes the change of the single-particle distribution function
due to the occurrence of collisions with the other particles in the system.

The collision term in (9) consists of gain and loss contributions. If a particle
with the given momentum p collides with another particle with any momen-
tum p′, this leads to a decrease of pt(r,p). If two particles with momenta q
and q′ collide such that one of the particles acquires the momentum p, this
leads to an increase of pt(r,p). For a precise formulation, we introduce the
transition rate w(q, q′|p,p′) for a pair of particles with initial momenta p,
p′ to the final momenta q, q′. For an elastic collision, w(q, q′|p,p′) vanishes
unless momentum and energy are conserved in a collision,

p + p′ = q + q′, (10)

p2 + p′2 = q2 + q′2. (11)

The two free parameters in the choice of q and q′ [six components minus four
conditions (10), (11)] are determined by the solid angle into which a colliding
particle is scattered. Furthermore, the transition rate w(q, q′|p,p′) has the
following symmetry properties corresponding to time reversal and particle
exchange in the two-particle collisions:
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w(q, q′|p,p′) = w(p,p′|q, q′), (12)

and
w(q, q′|p,p′) = w(q′, q|p′,p). (13)

We can now write[
∂pt(r,p)

∂t

]
coll

= N

∫
w(q, q′|p,p′)[pt(r, q)p̃t(r, q′)

− pt(r,p)p̃t(r,p′)] d3p′ d3q d3q′, (14)

where N is the total number of particles in the system. Equation (9) with the
collision integral (14) is Boltzmann’s famous kinetic equation. In Eq. (14) we
have distinguished between the probability density pt for a test particle and
the probability density p̃t for the ensemble of background scatterers. To arrive
at the Boltzmann equation one needs to assume the self-consistency condition
p̃t = pt.

The assumption that the probability for a two-particle collision is propor-
tional to the product pt(r,p)p̃t(r,p′) is Boltzmann’s famous Stoßzahlansatz.
It has been assumed that the collisions are strictly local so that the same
argument r appears in all single-particle distribution functions occurring in
Boltzmann’s equation. The transition rates w for two-particle collisions are
independent of the number of particles in the system; they only depend on
the interaction potential and on the impact conditions.

5 Boltzmann Process

For a stochastic interpretation, the collision integral (14) in Boltzmann’s ki-
netic equation (9) can be rewritten as[

∂pt(r,p)
∂t

]
coll

=
∫

P (p|q)ν(q)pt(r, q) d3q − ν(p)pt(r,p), (15)

with the collision rate

ν(p) = N

∫
w(q, q′|p,p′)p̃t(r,p′) d3p′ d3q d3q′ (16)

and the single-collision transition probabilities

P (p|q)ν(q) = N

∫
w(p,p′|q, q′)p̃t(r, q′) d3p′ d3q′. (17)

The dependence of ν(p) and P (p|q) on t and r (through the single-particle
distribution function p̃t for the background particles) is suppressed in our
notation.
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If the transition ratesw(q, q′|p,p′) are expressed in terms of the differential
cross section for particle collisions (see, for example, Exercise 171 of [3]), we
obtain the collision rate

ν(p) = N

∫ |p′ − p|
m

σtot(|p′ − p|)p̃t(r,p′) d3p′ (18)

in terms of the total cross section for scattering at a given relative velocity.
For an interaction potential with infinite range, ν(p) would hence be infinite.
To avoid an infinite total cross section σtot we need to truncate the potential
at some large but finite distance. The effect of truncation can be removed
from the final results, for example, for the diffusion coefficient, by letting
the cutoff go to infinity. Also the difference of the gain and loss terms in the
collision integral (15) for increasing cutoff remains finite because the collisions
at large impact parameters have a minor influence on the momenta [for large
impact parameters, the expression in square brackets in the formulation (14)
of Boltzmann’s collision integral hence goes to zero]. Nevertheless, to keep an
underlying Markov process at all stages of the calculation, we eliminate the
cutoff only from the final results. For rigorous mathematical procedures to
eliminate the cutoff, see [31] and references therein.

For given p̃t, Boltzmann’s kinetic equation (9), together with the collision
integral (14), implies a linear operator L†t that preserves the normalization
and positivity of pt. We thus know that there exists a corresponding Markov
process (Rt,P t)t≥0 with infinitesimal generator Lt. The first-order differential
operator in Eq. (9) describes the smooth deterministic evolution under the
influence of an external potential,

dRt =
P t

m
dt, (19)

and

dP t = −∂φ
(e)(Rt)
∂Rt

dt (20)

between collisions, which happen with the rate ν(P t) defined in Eq. (18).
Whenever a collision occurs, the value of P t changes discontinuously in time
according to the transition probabilities in Eq. (17). If one removes the cutoff,
an infinite number of collisions occurs in finite time, but only few of them lead
to significant changes of the particle momentum.

Once we have constructed a Markov process for given p̃t, this process
implies the one-dimensional marginal distributions pt. We can hence try to
establish the self-consistency condition pt = p̃t to obtain the process associ-
ated with the standard Boltzmann equation. As in the theory of nonlinear
Fokker-Planck equations, we consider a large ensemble of weakly interacting
stochastic processes to realize the self-consistency in a natural way. Nonlin-
earity arises through the ensemble averages of

grp(Rt,P t) = δα(r −Rt)δβ(p− P t), (21)
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which, on average, equals pt. Because Dirac δ functions would be too singular
in Eq. (21), we use smoothed versions of these generalized functions with
width α in position space and width β in momentum space. The smoothed
equations are also known as the “mollified problem” (see, for example, [19]).
To be specific, we may use isotropic Gaussians δα, δβ with widths α, β.

In the construction of a trajectory of a test particle, there occur collisions
with the other members of the ensemble which are interpreted as background
scatterers. There is an ambiguity about what should be done with the back-
ground particles in a collision. For theoretical analyses, it is convenient to leave
them unaffected [32] (in the spirit of “true background particles”) whereas, for
practical calculations, a symmetric treatment of test and background particles
is more efficient [33].

The usual formulation of Boltzmann’s equation corresponds to the naive
limits α→ 0, β → 0. Mathematically speaking, the choice of α and β is linked
to the number n of weakly interacting processes; one first needs to perform
the limit n → ∞ before one can consider the limits α → 0, β → 0. Only
for sufficiently large ensembles, the ensemble averages can reproduce expec-
tations. Physically speaking, however, the limits α→ 0, β → 0 cannot really
be justified. The physical counterpart of the number of weakly interacting
processes is the number of particles, which is certainly finite. We therefore
need to keep also α and β finite. For example, the length scale α should be
at least of the order of the mean free path so that a test particle actually has
a chance to interact with the ensemble of background scatterers. This discus-
sion emphasizes some of the subtle aspects associated with the nonlinearity in
Boltzmann’s equation, and it suggests a careful discussion of the limits in the
cutoff of the potential, the number of weakly interacting processes, and the
smearing of the weak interactions in the position and velocity space. Smooth-
ing should not be regarded as a mathematical evil but rather as an essential
part of the physical picture. All these issues are crucial if one wants to es-
tablish and investigate a full stochastic process behind Boltzmann’s nonlinear
kinetic equation.

6 Gaussian Boltzmann Process

We now consider the Boltzmann equation in the absence of an external field.
At equilibrium, the solution is a Maxwellian in momentum space, which is a
Gaussian. Also the uniform distribution in position space may be considered
as a degenerate special case of a Gaussian. If the one-dimensional marginal
distributions are Gaussian then it is natural to ask whether the underlying
stochastic process is Gaussian. More generally, one could consider anisotropic
Gaussians which correspond to the entropic version of Grad’s ten-moment
method [34, 35, 36] (see also Sect. 7.4.3 of [3]). This implies that viscous phe-
nomena can be described by Gaussian single-particle distribution functions,
whereas heat flow must be absent. A further motivation to look at Gaussian
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processes is provided by the idea to construct a coarse grained kinetic theory.
According to the central limit theorem, the description of multicollision events
naturally suggests the use of Gaussian processes.

The most general form of Gaussian Markov processes has been established
in Exercise 2.85 of [10]. It turns out that the infinitesimal generator must
be a second-order differential operator, so that we arrive at a Fokker-Planck
equation with an equivalent stochastic differential equation. This stochastic
differential equation must possess a drift term linear in the configurational
variables and a diffusion term independent of the configurational variables.
Drift and diffusion can, however, depend on time. If we insist on an inertial
formulation, the most general Gaussian Boltzmann process is characterized
by the following set of linear stochastic differential equations:

dRt =
P t

m
dt, (22)

and

dP t = −ζ
(

P t

m
− κt ·Rt

)
dt +BtdW t. (23)

The parameters in the equation of motion can be interpreted as a friction
coefficient (ζ), a velocity gradient tensor (κt), and the amplitude of the noise
(Bt), where the subscript t indicates time dependence. Noise and friction must
be related by the fluctuation-dissipation theorem [3],

Bt =
√

2kBTtζ, (24)

where kB is Boltzmann’s constant and Tt is the time-dependent absolute tem-
perature.

A system of linear stochastic differential equations is clearly inconsistent
with Boltzmann’s kinetic equation, even at equilibrium. For example, the
Gaussian solution of Eq. (23) has continuous trajectories, in contrast to the
characteristic jumps in momentum occurring in collisions according to the
Boltzmann equation. But we can ask whether we can choose the parameters
in Eq. (23) such that we mimic certain features of the Boltzmann equation as
closely as possible.

To identify the parameters, we consider the Fokker-Planck equation for
pt(r,p) associated with the stochastic differential equations (22) and (23).
Kinetic equations of the Fokker-Planck type have a long tradition in kinetic
gas theory [37, 38]. By comparing the equations for the first moment vector
and the second moment tensor from this Fokker-Planck equation to those
from the Boltzmann equation, we realize that κt characterizes a homogeneous
velocity field,

V

∫
p

m
pt(r,p) d3p = κt · r, (25)

and that the friction coefficient ζ is related to the fundamental relaxation time
scale τ̂ of Grad’s moment method,
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ζ =
m

2τ̂
. (26)

If, in the context of coarse grained kinetic theories (from which hydrody-
namic equations can be produced by solution procedures), we are interested
also in noninertial formulations of Gaussian processes, then we can replace
Eqs. (22) and (23) by

dRt = κt ·Rtdt +B′tdW ′
t, (27)

and

dP t = −ζ
(

P t

m
− κt ·Rt

)
dt + Θt ·Rtdt+BtdW t, (28)

where the Wiener process W ′
t is independent of W t and

B′t =
√

2kBTt/ζ. (29)

The deterministic contribution in Eq. (27) describes convection with the ho-
mogeneous average flow field, and the stochastic contribution describes the
diffusion resulting from the fluctuations in the momenta. The new force term
Θt ·Rt in Eq. (28) is introduced to account for inertial effects such as pressure
and vorticity, where we have assumed that the Gaussian is centered at the
origin (that is, 〈Rt〉 = 0, 〈P t〉 = 0). The time evolution of the velocity field
vt = κt · r is obtained from the conditional expectation of P t/m for given r
which suggests the identification (see Exercise 2.60 on p. 58 of [10])

κt =
1
m
〈P tRt〉 · 〈RtRt〉−1. (30)

Similarly, the time evolution of the homogeneous temperature is found from
the conditional variance of P t for given r.

Equations (27) and (28) describe a particle on time scales large compared
to the collision time scale, such that the fluctuations in position and momen-
tum in Eqs. (27) and (28) become decorrelated. This formulation is similar
in spirit to the modified kinetic theory of Klimontovich [39], who also intro-
duced independent noise terms. However, Klimontovich keeps a fully inertial
description which we believe to be inappropriate.

Equations (27) and (28) represent a truly coarse grained description of gas
dynamics. When this coarse grained kinetic theory is used to derive hydrody-
namic equations, a diffusive velocity contribution in addition to vt arises nat-
urally in the mass balance equation. The resulting equations can be brought
into the form postulated by Brenner [7, 8, 9] (see also Section 2.2.5 of [3]),
which contain the diffusion coefficient. It is hence worthwhile to calculate the
diffusion coefficient from the Boltzmann process.
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7 Application: Diffusion Coefficient

The self-diffusion coefficient D can be calculated from the Boltzmann process
by following a single particle through a sequence of collisions until the initial
momentum and hence the correlation between displacements has decayed [40].
We here consider diffusion at equilibrium, that is, we use

p̃t(r,p) =
1
V
p̃eq(p) (31)

with

p̃eq(p) = (2πmkBT )−3/2 exp
{
− p2

2mkBT

}
. (32)

The required calculation of the mean-square displacement of a particle in
a sequence of collisions is analogous to the one of the mean-square end-to-
end distance of polymer molecules with persistence (see, for example, [40] or
Section 2.3.1 of [41]).

After a large number of collisions, Ncoll, the mean square displacement of
a particle is given by

〈Δr2〉 =
1
m2

Ncoll∑
j,k=0

〈P j · P kτ jτk〉

=
Ncoll

m2

⎛⎝〈P 2
0τ

2
0〉+ 2

∞∑
j=1

〈P 0 ·P jτ0τ j〉

⎞⎠ , (33)

where P j is the random particle momentum and τ j the random time period
between collisions j and j + 1. By expressing the conditional expectations of
τ j and τ2

j for given P j in terms of the collision rate ν(P j), we obtain

〈Δr2〉 =
2Ncoll

m2

∞∑
j=0

〈
P 0 ·P j

ν(P 0)ν(P j)

〉

=
2Ncoll

m2

∞∑
j=0

∫
p · q

ν(p)ν(q)
P j(p|q)p̃eq(q) d3p d3q,

(34)

where P j(p|q) is the j-step transition matrix associated with the single-step
matrix P (p|q) defined in Eq. (17). The summation of the geometric series
of P j(p|q) requires the calculation of an inverse matrix which, in view of
continuous momentum labels, implies the solution of an integral equation. It
is useful to introduce a time scale τ(p) for a particle with momentum p as an
average inverse rate,

τ (p)p =
∞∑
j=0

∫
q

ν(q)
P j(q|p) d3q, (35)
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which, by construction, satisfies the integral equation∫ [
τ(p)− τ (q)

p · q
p2

]
ν(p)P (q|p) d3q = 1. (36)

After solving this integral equation for a characteristic time scale τ (p), we
obtain from Eqs. (34) and (35)

〈Δr2〉 =
2Ncoll

m2

∫
p2τ(p)

p̃eq(p)
ν(p)

d3p. (37)

Because the average time required for Ncoll collisions is

t = Ncoll

∫
p̃eq(p)
ν(p)

d3p, (38)

our final result for the diffusion coefficient is

D =
1

3m2

∫
p2τ (p)

p̃eq(p)
ν(p)

d3p

[∫
p̃eq(p)
ν(p)

d3p

]−1

. (39)

For Maxwell molecules, for which ν(p) is independent of p, the integral
equation (36) becomes (see Exercise 174 of [3])

N

V

√
2φ̂
m

∫ [
τ(p)− τ (q)

p · q
p2

]
p̃eq(p′)

b̂(θ′)
sin θ′

∣∣∣∣∣db̂(θ′)ddθ′

∣∣∣∣∣ dΩ′ d3p′ = 1, (40)

where the inverse of the function b̂(θ′) can be expressed in terms of a complete
elliptic integral of the first kind and the final momentum q can be calculated
from the initial momenta p and p′ for the scattering into a given solid angle
Ω′ in the centre-of-mass system.

With the methods described in detail in Exercise 175 of [3], one realizes
that the time scale τ is independent of p and given by

τ2π
N

V

√
2φ̂
m
c̃Maxw = 1 (41)

with

c̃Maxw =
∫ ∞

0

[
sin

θ(b̂)
2

]2

b̂db̂ ≈ 0.42194. (42)

By comparing the diffusion coefficient D = kBTτ/m following from Eq. (39)
for Maxwell molecules with constant τ and ν to the viscosity (7.120) of [3],
we obtain the Schmidt number

η

ρD
=

4
3
c̃Maxw

cMaxw
≈ 0.645, (43)
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which we have evaluated with

cMaxw =
∫ ∞

0

[sin θ(b̂)]2b̂db̂ ≈ 0.87239. (44)

The result (43) coincides with Eq. (23) of [42]. Note that the ratio in Eq. (43)
is equal to the ratio of previously introduced time scales, τ̂/τ .

8 Perspectives

We have constructed and discussed the Markov process naturally associated
with Boltzmann’s kinetic equation. Even for the motion of a test particle
through a given ensemble of scatterers, the existence of a Markov process
with finite collision rate requires a cutoff of the interaction potential at a fi-
nite distance. When nonlinearity is introduced into the Boltzmann equation,
further regularization parameters are required. It is known that the nonlin-
earity of the Boltzmann equation can be reproduced by weakly interacting
Markov processes.

In terms of Boltzmann processes, we found a natural possibility to coarse
grain to the level of multicollision events, which correspond to length scales
larger than the mean free path. In this procedure, diffusion arises and the
knowledge about correlations on top of the one-dimensional marginal distri-
butions of the process is crucial. Only the Boltzmann process allows us to
perform proper coarse graining, and it leads to the modified hydrodynamic
equations as postulated by Brenner [7, 8, 9]. By applying solution techniques
to the Boltzmann equation itself we do not obtain the most general form of
hydrodynamic equations. There is a general lesson about solving versus coarse
graining to be learnt from this example.

The Boltzmann equation for the single-particle distribution function is
known to be thermodynamically consistent [3, 43]. One could hence raise the
question whether also the Boltzmann process is thermodynamically consis-
tent. First of all, however, stochastic processes with mean-field interactions
tend to violate the fluctuation dissipation theorem (see Section 4.2.4 of [10]
and [44, 45]). More importantly, the theory of thermodynamically admissible
stochastic processes is not even fully developed yet. Whereas the meaning
of thermodynamic consistency for stochastic differential equations and the
role of the fluctuation-dissipation theorem are well-understood, this is not
the case for more general Markov processes. The idea of time scale separa-
tion, when formalized through projection-operator techniques, leads to the
GENERIC structure with a Green-Kubo formula for the friction matrix and
the fluctuation-dissipation theorem. We conjecture that additional statistical
tools are required to handle escape problems and other rare events leading to
frictional properties that can be expressed in terms of Kramers-type formulas
for escape rates [46].
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Summary. We consider problems in which there is a separation between the (mi-
croscopic) scale at which the available model is defined, and the (macroscopic) scale
of interest. For time-dependent multi-scale problems of this type, an “equation-free”
framework has been proposed, of which patch dynamics is an essential component.
Patch dynamics is designed to perform numerical simulations of an unavailable
macroscopic equation on macroscopic time and length scales; it only uses appro-
priately initialized simulations of the available microscopic model in a number of
small boxes (patches), which cover a fraction of the space-time domain. We review
some recent convergence results and demonstrate that the method allows to simulate
advection-dominated problems accurately.

1 Introduction

In many problems of current interest, one is interested in the behaviour of
a (physical, chemical) system on macroscopic length and time scales, while
the only valid model is available at a more microscopic scale. For example,
in polymer flow, it is often impossible to find a closed formula for the stress
tensor in terms of the velocity field. Therefore, the macroscopic model (a
partial differential equation, PDE) needs to be supplemented with a Monte
Carlo simulation to estimate the stress tensor [19, 20, 27]. Similar problems
arise in flow through porous media, where it is often hard to obtain an effective
permeability coefficient analytically [2], or bacterial chemotaxis, where a PDE
for the density can only be derived from an individual-based model under
simplifying assumptions which cannot always be fully justified [10].

In this work, we consider situations where only a microscopic model is
known,

∂tu(x, t) = f(u(x, t)), (1)

in which u(x, t) represents the microscopic state variables, x ∈ Dm are the
remaining microscopic independent variables, and ∂t denotes the time deriva-
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tive. We assume that an equivalent macroscopic model exists, but cannot be
obtained in closed form. We denote this model by

∂tU(X, t) = F (U(X, t)), (2)

in which U(X, t) represents the macroscopic state variables, and X ∈ DM

and t are the macroscopic independent variables. If one is only interested in
the macroscopic solution U(X, t), one can construct a so-called coarse-grained
time-stepper as proposed by Kevrekidis et al [21, 35]. We introduce a time-
stepper for the microscopic evolution law (1),

u(x, t+ dt) = s(u(x, t); dt), (3)

where dt is the size of the (microscopic) time-step, and the aim is to obtain a
coarse-grained time-stepper for the variables U(X, t) as

U(X, t + δt) = S̄(U(X , t); δt), (4)

where δt denotes the size of the (coarse-grained) time-step, and the bar has
been introduced to emphasize the fact that the time-stepper for the macro-
scopic variables is only an approximation of a time-stepper for (2), since this
equation is not explicitly known.

To define a coarse-grained time-stepper (4), we need to introduce two oper-
ators that make the transition between microscopic and macroscopic variables.
We define a lifting operator,

μ : U(X, t) �→ u(x, t) = μ(U(X , t)), (5)

which maps macroscopic to microscopic variables, and its complement, the
restriction operator

M : u(x, t) �→ U(X, t) =M(u(x, t)). (6)

The restriction operator can often be determined as soon as the macroscopic
variables are known. For instance, when the microscopic model consists of an
evolving ensemble of many particles, the restriction typically consists of the
computation of the low-order moments of the distribution (density, momen-
tum, energy), which are considered as the macroscopic variables U(X, t). The
assumption that a macroscopic equation exists for these low-order moments,
implies that the higher-order moments become functionals of the low-order
moments on time-scales which are fast compared to the overall system evolu-
tion (slaving).

The construction of the lifting operator is usually more involved. Again
taking the example of a particle model, we need to define a mapping from
a few low-order moments to an initial condition for each of the particles.
We know that the higher-order moments of the resulting particle distribution
should be functionals of the low-order moments, but unfortunately, these func-
tionals are unknown (since the macroscopic evolution law is also unknown).
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Several approaches have been suggested to address this problem. One could
for instance initialize the higher-order moments randomly. This introduces
a lifting error, and one then relies on the separation of time-scales to ensure
that these higher-order moments relax quickly to a functional of the low-order
moments (healing) [13, 24, 34]. We note that, in some cases, this approach can
be shown to produce inaccurate results [22]. In fact, to initialize the higher-
order moments correctly, one should perform a simulation of the microscopic
system, with the additional constraint that the low-order moments should be
kept fixed. How this can be done using only a time-stepper for the original
microscopic system, is explained and analyzed in [11, 12, 23].

Given an initial condition for the macroscopic variables U(X, t∗) at some
time t∗, we can then construct the time-stepper (4) in the following way:

1. Lifting. Using the lifting operator (5), create appropriate initial condi-
tions u(x, t∗) for the microscopic time-stepper (3), consistent with the
macroscopic variables.

2. Simulation. Use the time-stepper (3) to compute the microscopic state
u(x, t) for t ∈ [t∗, t∗ + δt].

3. Restriction. Obtain the macroscopic state U(X, t∗ + δt) from the mi-
croscopic state u(x, t∗ + δt) using the restriction operator (6).

Assuming δt = kdt, this can be written as

U(X, t+ δt) = S̄(U(X, t), δt) =M(sk(μ(U(X , t)), dt)), (7)

where we have represented the k microscopic time-steps by a superscript on
s. If the microscopic model is stochastic, one may need to perform multiple
replica simulations to get an accurate result.

Here, we consider situations where the macroscopic model (2) is assumed
to be a partial differential equation in one space dimension, so X = x. For this
type of problems, the patch dynamics scheme was proposed [21, 31, 32], which
only performs appropriately initialized microscopic simulations in a small frac-
tion of the space-time domain to reduce the computational cost. The general
idea is the following. First, we construct a coarse time-stepper which only
performs simulations of the microscopic model in a number of small boxes,
which can be thought of as macroscopic mesh points. We initialize a micro-
scopic simulation at time t∗ in each of the boxes (lifting); run the time-stepper
(3) until t = t∗ + δt and compute the macroscopic variables in each of the
boxes at time t∗ + δt (restriction). The resulting coarse-grained time-stepper
is called the gap-tooth scheme [21, 32]. Because the microscopic time-stepper
(3) takes very small time-steps of size dt, the coarse-grained time-step δt may
still be very small compared to the slow time-scales of the macroscopic model
(2). Therefore, we use the gap-tooth time-stepper to estimate the macroscopic
time derivative and use this estimate to take a time-step of size Δt� δt.

The performance and accuracy of the patch dynamics scheme are currently
under active investigation. Recently, we have studied the convergence prop-
erties patch dynamics scheme for a model diffusion homogenization problem.
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We showed that the patch dynamics scheme approximates a finite difference
scheme for the effective (homogenized) equation, using only the microscopic
(homogenization) equation in a set of small boxes [30, 31, 32]. A major issue
is the imposition of appropriate box boundary conditions. For example, when
the macroscopic behaviour is governed by diffusion, we can impose the aver-
age gradient as a boundary condition [32], or we can take arbitrary boundary
conditions, provided we surround the computational boxes by buffer boxes
to reduce the artefacts [31]. This latter technique is especially suited when a
(e.g. particle) code is given, with built-in boundary conditions which are im-
possible, or very difficult, to change. Roberts et al. are investigating boundary
conditions that lead to higher order accurate schemes [28].

In this paper, we confine ourselves to homogenization problems for the
purpose of convergence analysis. In this case, the microscopic model is a par-
tial differential equation with coefficients that vary on a small spatial scale,
while the macroscopic model is a partial differential equation for the effective
behaviour on large spatial scales. However, we emphasize that the method
can also be applied with, and is in fact designed for, the effective behaviour of
truly microscopic models, such as kinetic Monte Carlo methods, or molecular
dynamics.

We note that many numerical schemes have been devised for the homog-
enization problem. The earliest work dates back to Babuska [3] for elliptic
problems and Engquist [8] for dynamic problems. Without the aim of being
complete, we mention some recent multi-scale approaches to the homogeniza-
tion problem. The multi-scale finite element method of Hou and Wu uses
special basis functions to capture the correct microscopic behaviour [16, 17].
Schwab, Matache and Babuska have devised a generalized FEM method based
on a two-scale finite element space [25, 33]. Other approaches include the use
of wavelet projections [6, 9] and multi-grid cycles [26]. Runborg et al. [29]
proposed a time-stepper based method that obtains the effective behaviour
through short bursts of detailed simulations appropriately averaged over many
shifted initial conditions. The simulations were performed over the whole do-
main, but the notion of effective behaviour is identical. In their recent work,
E and Engquist and collaborators address the same problem of simulating
only the macroscopic behaviour of a multiscale model, see e.g. [1, 7]. In their
method, which is very similar in spirit, an unavailable macroscopic flux is esti-
mated from appropriately initialized and constrained microscopic simulations,
and used inside a macroscopic finite volume scheme.

The paper is organized as follows. In section 2 we discuss some model
homogenization problems. Section 3 explains the patch dynamics scheme. We
briefly review some theoretical convergence results in section 4. In section 5, we
show that we can also approximate the macroscopic behaviour of hyperbolic
homogenization problems. This is possible because we can approximate any
desired finite difference scheme by an appropriate choice of the lifting step (the
initialization of the small boxes). We note that the theoretical convergence
analysis has not explicitly been done for this case. We conclude in section 6.
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2 Model Problems

2.1 Parabolic Homogenization Problem

As a microscopic problem, we consider a parabolic partial differential equation,

∂tuε(x, t) = ∂x (a (x/ε) ∂xuε(x, t)) ,

uε(x, 0) = u0(x) ∈ L2([0, 1]),
uε(0, t) = uε(1, t) = 0,

(8)

where a(y) = a (x/ε) is uniformly elliptic and periodic in y and ε is a small
parameter. We choose homogeneous Dirichlet boundary conditions for sim-
plicity.

On the macroscopic scale, we are interested in an effective, homogenized
partial differential equation, in which the small-scale parameter ε has been
eliminated. According to classical homogenization theory [4], the solution of
(8) can be written as an asymptotic expansion in ε,

uε(x, t) = U(x, t) +
∞∑
i=1

εi (ui(x, x/ε, t)) , (9)

where the functions ui(x, y, t) ≡ ui(x, x/ε, t), i = 1, 2, . . . are periodic in y.
Here, U(x, t) is the solution of the homogenized equation

∂tU(x, t) = ∂x (a∗∂xU(x, t))

U(x, 0) = u0(x) ∈ L2([0, 1]),
U(0, t) = U(1, t) = 0.

(10)

Here, a∗ is the constant effective coefficient, given by

a∗ =
∫ 1

0

a(y)
(

1− d
dy

χ(y)
)

dy, (11)

and χ(y) is the periodic solution of

d
dy

(
a(y)

d
dy

χ(y)
)

=
d
dy

a(y), (12)

the so-called cell problem. The solution of (12) is only defined up to an additive
constant, so we impose the extra condition∫ 1

0

χ(y) dy = 0.

We note that in one space dimension, an explicit formula is known for a∗ [4],
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a∗ =
[∫ 1

0

1
a(y)

dy
]−1

. (13)

These asymptotic expansions have been rigorously justified in the classical
book [4], see also [5]. Under the smoothness assumptions made on a(x/ε), one
obtains strong convergence of uε(x, t) to U(x, t) as ε → 0 in L2([0, 1]) ×
C([0, T )). Indeed, we can write

‖uε(x, t) − U(x, t)‖L2([0,1])
≤ C0ε, (14)

uniformly in t.

2.2 Hyperbolic Homogenization Problem

We consider the following hyperbolic partial differential equation in one space
dimension,

∂tuε(x, t) + ∂x [c (x/ε)uε(x, t)] = 0,

uε(x, 0) = u0(x) ∈ L2([0, 1]), ∂xuε(0, t) = 0,
(15)

where c(y) = c (x/ε) > 0 is periodic in y and ε is a small parameter. We
choose a homogeneous Neumann boundary condition for simplicity.

As in the previous section, we are interested in an effective, homogenized
partial differential equation on a macroscopic scale, where the dependence on
the small scale parameter has been eliminated. According to classical homog-
enization theory [4, 5], the solution of (15) converges weakly in the limit of
ε→ 0 to the solution of

∂tU(x, t) + ∂x [c∗U(x, t)] = 0,

U(x, 0) = u0(x) ∈ L2([0, 1]), ∂xU(0, t) = 0,
(16)

which describes the evolution of the averaged, effective behaviour. As in the
parabolic case, the effective coefficient c∗ is given by the harmonic average,

c∗ =
[∫ 1

0

1
c(y)

dy
]−1

. (17)

3 Patch Dynamics

We devise a scheme for the evolution of the effective behaviour U(x, t) of a
general homogenization problem,

∂tuε = f(uε, ∂xuε, . . . , ∂dxuε, t; ε), (18)

where ∂t denotes again the time derivative, and ∂kx denotes the k-th spatial
derivative (k = 1, . . . , d, where k = 1 is usually omitted). We assume that
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a time integration code for this equation has already been written and is
available with a number of standard boundary conditions, such as no-flux or
Dirichlet. Further, we assume that the macroscopic equation is of the form

∂tU = F (U, ∂xU, . . . , ∂dxU, t). (19)

Suppose we want to obtain the solution of (19) on the interval [0, 1], using
an equidistant, macroscopic mesh Π(Δx) := {0 = x0 < x1 = x0 + Δx <
. . . < xN = 1}. Given equation (19), we can define a method-of-lines space
discretization,

∂tUi(t) = F (Ui(t), D1(Ui(t)), . . . , Dd(Ui(t)), t), i = 0, . . . , N. (20)

where Ui(t) ≈ U(xi, t) and Dk(Ui(t)) denotes a suitable finite difference ap-
proximation for the k-th spatial derivative. We subsequently discretize equa-
tion (20) in time using a time integration method of choice, e.g. forward Euler.
We denote the resulting time-stepper as

Un+1 = S(Un, tn;Δt) = Un +Δt F (Un, tn), (21)

where Un = (U0(tn), . . . , UN(tn))T and Δt denotes the macroscopic time-step.
We have suppressed the dependence of F (Un, tn) on the spatial derivatives for
notational convenience. Note that, although we have used the forward Euler
scheme here for concreteness, in principle any time discretization method can
be used to solve equation (20).

Since equation (19) is assumed not to be known explicitly, we will use
(21) for analysis purposes only. We construct a (patch dynamics) scheme
to approximate (21). To this end, we consider a small interval (box, tooth)
of size h � Δx around each mesh point, and define the discrete solution
Ū(t) = (Ū0(t), . . . , ŪN(t))T ∈ RN+1 as being the average of the microscopic
solution in the small boxes,

Ūi(t) = Sh(uε)(xi, t) = (1/h)
∫ xi+h/2

xi−h/2
uε(ξ, t)dξ, i = 0, . . . , N. (22)

We denote an approximation of Ū(t) at t = tn as Ūn.
The patch dynamics scheme is now constructed as follows. We introduce a

larger buffer box of size H > h around each mesh point (see figure 1.) In each
box of size H , we perform a time integration over a time interval of size δt
using the microscopic model (18), and restrict to macroscopic variables. The
results are used to estimate the macroscopic time derivative. We provide each
microscopic simulation with the following initial and boundary conditions.

Initial condition. We define the initial condition by constructing a local
Taylor expansion, based on the (given) box averages Ūni , i = 0, . . . , N , at
mesh point xi and time tn,

ūiε(x, tn) =
d∑
k=0

Dk
i (Ū

n)
(x− xi)k

k!
, x ∈ [xi −

H

2
, xi +

H

2
], (23)
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Fig. 1: A schematic representation of the gap-tooth scheme with buffer boxes. We
choose a number of boxes of size h around each macroscopic mesh point xi and
define a local Taylor approximation as initial condition in each box. Simulation is
performed inside the larger (buffer) boxes of size H , where some boundary conditions
are imposed.

where d is the order of the macroscopic equation (19). The coefficientsDk
i (Ū

n),
k > 0 are the same finite difference approximations for the k-th spatial deriv-
ative that would be used in the comparison scheme (20), whereas D0

i (Ū
n) is

chosen such that
1
h

∫ xi+h/2

xi−h/2
ūiε(ξ, tn)dξ = Ūni . (24)

Boundary conditions. The time integration of the microscopic model in
each box should provide information on the evolution of the global problem at
that location in space. It is therefore crucial that the boundary conditions are
chosen such that the solution inside each box evolves as if it were embedded in
the larger domain. To this end, we introduce a larger box of size H > h around
each macroscopic mesh point. The simulation can subsequently be performed
using any of the built-in boundary conditions of the microscopic code. Lifting
and (short-term) evolution (using arbitrary available boundary conditions)
are performed in the larger box; yet the restriction is done by processing the
solution (here taking its average) over the inner, small box only. The goal of
the additional computational domains, the buffers, is to buffer the solution
inside the small box from the artificial disturbance caused by the (repeatedly
updated) boundary conditions. This can be accomplished over short enough
time intervals, provided the buffers are large enough; analyzing the method is
tantamount to making these statements quantitative.
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The algorithm. The complete algorithm to obtain an estimate of the
macroscopic time derivative at time tn is given below:

1. Lifting. At time tn, construct the initial condition ūiε(x, tn), i = 0, . . . , N
using the box averages Ūni , as defined in (23).

2. Simulation. Compute the box solution ūiε(x, t), t > tn, by solving equa-
tion (18) in the interval [xi −H/2, xi +H/2] with some boundary condi-
tions up to time tn+δ = tn+δt. The boundary conditions can be anything
that the microscopic code allows.

3. Restriction. Compute the average Ūn+δ
i = 1/h

∫ xi+h/2

xi−h/2 ūiε(ξ, tn+δ)dξ
over the inner, small box only.

4. Estimation. We estimate the time derivative at time tn as

F̄ d(Ūn, tn;h, δt,H) =
Ūn+δ − Ūn

δt
, (25)

where we have added a superscript d to denote the highest spatial deriv-
ative that has been initialized in the lifting step. We also made explicit
the dependence of the estimate on H and δt.

Since the first three steps constitute a gap-tooth time-step, we call the
estimator (25) a gap-tooth time derivative estimator. It can be used in any
ODE time integration code. For example, a forward Euler patch dynamics
scheme would be

Ūn+1 = Ūn +Δt F̄ d(Ūn, tn;h, δt,H). (26)

For more details, including a discussion of the additional issues that need
to be addressed for truly microscopic models, we refer to [31]. We emphasize
that an initialization according to equation (23) has the important advantage
that one can choose a suitable finite difference approximation for each deriv-
ative independently, as opposed to the method described in [21, 32], which
automatically leads to central finite differences. This property is crucial, and
will allow us to approximate advection-dominated equations more effectively.

4 Convergence Results

In this section, we briefly review some theoretical convergence results that
were obtained for the parabolic homogenization problem (8), see [31] for de-
tails. In this case, we know that the order of the macroscopic equation d = 2.

4.1 Consistency Analysis

For the effective equation (10), one can write a finite-difference/forward Euler
time-stepper as follows,
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Un+δ = S(Un, tn; δt)
= Un + δt F (Un, D1(Un), D2(Un), tn)
= Un + δt

[
a∗ D2(Un)

]
. (27)

.
We compare the gap-tooth time-derivative estimator with the effective

time derivative. For concreteness, we impose Dirichlet boundary conditions
at the boundaries of the boxes, which will clearly introduce artefacts on the
estimated time derivative. The subsequent theorem shows that these artefacts
can be made arbitrarily small by increasing the buffer size H [31].

Theorem 1 (Consistency) Let F̄ 2(Ūn, tn;h, δt, H) be a gap-tooth time-
stepper for the homogenization problem (8). Then, assuming Un = Ūn, we
have,∥∥F̄ 2(Ūn, tn; δt,H)− a∗D2(Un)

∥∥ ≤
C4

ε√
hδt︸ ︷︷ ︸

micro-scales

+ C5

(
1 +

h2

δt

)
︸ ︷︷ ︸
averaging

(
1− exp(−a∗π2 δt

H2
)
)

︸ ︷︷ ︸
boundary conditions

(28)

Formula (28) shows the main consistency properties of the gap-tooth estima-
tor. The error decays exponentially as a function of buffer size, but the optimal
accuracy of the estimator is limited by the presence of the microscopic scales.
Therefore, we need to make a trade-off to determine an optimal choice for H
and δt. The smaller δt, the smaller H can be used to reach optimal accuracy
(and thus the smaller the computational cost), but smaller δt implies a larger
optimal error.

It is shown numerically in [31] that the convergence result does not de-
pend crucially on the type of boundary conditions. E.g. for no-flux boundary
conditions, we obtain qualitatively the same result. However, if we know how
the macroscopic solution behaves at the boundaries of the boxes, we can use
this knowledge to eliminate the buffers. For the diffusion problem, we have
shown that we do not need buffer regions if we constrain the macroscopic
gradient at the boundaries [32]. However, in general it is very difficult to find
and implement such constraints for a given microscopic simulator.

4.2 Stability

Theorem 1 establishes the consistency of the gap-tooth scheme. To obtain
convergence, we also need stability. In [7], E and Engquist state that the
heterogeneous multiscale method is stable if the corresponding comparison
scheme is stable, see [7, Theorem 5.5]. This theorem would also apply to our
case. However, due to the a priori assumption that the numerical approxima-
tion remains bounded, it may be of little practical value. Here, we circumvent
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some of these difficulties by studying the stability properties of the scheme
numerically. This can be done by computing the eigenvalues of the time deriv-
ative estimator as a function of H .

Consider the homogenization diffusion equation (8) with the diffusion co-
efficient a(x/ε) = 1.1+sin(2πx/ε). The homogenized equation is given by (10)
with a∗ = 0.45825686.

We define the concrete patch dynamics scheme to be a forward Euler
scheme,

Ūn+1 = Un +Δt F̄ 2(Ūn, tn; δt,H), (29)

with the box initialization defined by (23) with second order central finite dif-
ferences. In this case, the comparison finite difference scheme for the macro-
scopic equation is given by

Un+1 = Un + Δt F (Un, tn) = Un + a∗Δt
Uni+1 − 2Uni + Uni−1

Δx2
(30)

The time derivative operator F (Un, tn) in the comparison scheme (30) has
eigenvalues

λk = − 4a∗

Δx2
sin2(πkΔx), (31)

which, using the forward Euler scheme as time-stepper, results in the stability
condition

max
k
|1 + λkΔt| ≤ 1 or

Δt

Δx2
≤ 1

2
a∗

It can easily be checked that the operator F̄ 2(Un, tn; δt,H) is linear, so we
can interpret the evaluation of F̄ 2(Un, tn; δt,H) as a matrix-vector product.
We can therefore use any matrix-free linear algebra technique to compute
the eigenvalues of F̄ 2(Un, tn; δt,H), e.g. Arnoldi [14]. We choose to compute
F̄ 2(Un, tn; δt,H) and F (Un, tn) on the domain [0, 1] with Dirichlet bound-
ary conditions, on a mesh of width Δx = 0.05 and with an inner box width
of h = 2 · 10−3. We choose δt = 5 · 10−6 and compute the eigenvalues of
F̄ 2(Un, tn; δt,H) as a function of H . The results are shown in figure 2. When
the buffer size is too small, the eigenvalues of the gap-tooth estimator are
closer to 0 than the corresponding eigenvalues of the finite difference scheme.
This is because the microscopic simulation approaches a steady state quickly
(due to the Dirichlet boundary conditions), instead of following the true sys-
tem evolution in a larger domain. With increasing buffer size H , the eigenval-
ues of F̄ 2(Un, tn; δt,H) approximate those of F (Un, tn), which is an indication
of consistency for larger H . Since all eigenvalues are negative and the most
negative eigenvalue for F̄ 2(Un, tn; δt,H) is always smaller in absolute value
than the corresponding eigenvalue of F (Un, tn), the patch dynamics scheme
is always stable if the comparison scheme is stable.
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Fig. 2: Spectrum of the estimator F̄ 2(Un, tn; δt, H) (dashed) for the model equation
(8) for H = 2 · 10−3, 4 · 10−3, . . . , 2 · 10−2 and δt = 5 · 10−6, and the eigenvalues (31)
of F (Un, tn) (solid).

4.3 Numerical Illustration

We illustrate the theory with a diffusion homogenization problem. Consider
the model problem (8) with

a(x/ε) = 1.1 + sin(2πx/ε), ε = 1 · 10−5 (32)

as a microscopic problem on the domain [0, 1] with homogeneous Dirichlet
boundary conditions and initial condition u(x, 0) = 1 − 4(x − 1/2)2. The
corresponding macroscopic equation is given by equation (10), with a∗ =
0.45825686. This problem has also been used as a model example in [1, 32].
To solve this microscopic problem, we use a second order finite difference
discretization with mesh width δx = 1 · 10−7 and lsode [15] as time-stepper.
The concrete gap-tooth scheme for this example is again defined by taking
second order central finite differences.

We first perform a numerical experiment to show the convergence behav-
iour in terms of buffer width. Once a suitable buffer width has been deter-
mined, we perform a long term simulation.

Buffer width. We first compare a gap-tooth step with h = 2 · 10−3 and
Δx = 1 · 10−1 with the reference estimator a∗D2(Ûn), in which the effective
diffusion coefficient is known to be a∗ = 0.45825686. Figure 3 shows the error
with respect to the finite difference time derivative as a function of H (left)
and δt (right). It is clear that the convergence is in agreement with Theorem
1. We see that smaller values of δt result in larger values for the optimal error,
but the convergence towards this optimal error is faster.
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Fig. 3: Error of the gap-tooth estimator F̄ 2(Un, tn; δt,H) with respect to the finite
difference time derivative a∗D2(Un) on the same mesh. Left: Error with respect to
H for fixed δt. Right: Error with respect to δt with fixed H .

Long term simulation. We now perform a long term simulation and
compare the results with a long term simulation using the comparison scheme.
The properties for the macroscopic scheme are chosen to be Δx = 1 ·10−1 and
Δt = 1 · 10−3. As gap-tooth parameters, we choose H = 8 · 10−3, δt = 1 · 10−6

and h = 1 · 10−4. Thus, simulations are performed in only 8 % of the spatial
domain, and 0.1% of the time domain. The results are shown in figure 4. We
also compare the results of the patch dynamics scheme to a reference solution
of the effective equation, which is obtained using the comparison scheme on
a much finer grid (Δx = 5 · 10−3 and Δt = 1 · 10−6). We see that the solution
is well approximated, and that the error of the patch dynamics scheme with
respect to the finite difference comparison scheme is an order of magnitude
smaller than the total error with respect to the reference solution.

5 Numerical Results for Advection Problems

Consider equation (15) with

c(x/ε) = 1/(3 + sin(2πx/ε)), ε = 1 · 10−5. (33)

The effective equation is then given by (16) with c∗ = 1/3. The available
microscopic simulation code is an upwind/forward Euler time-stepper on a
grid with size δx = 5 · 10−10 and a time-step dt = 5 · 10−11. We take the size
of the small boxes to be h = 5 · 10−4.

We first investigate how the accuracy of the scheme is influenced by the
buffer size H and the gap-tooth time-step δt. Once a good set of method
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Fig. 4: Left: Snapshots of the solution of the homogenization diffusion equation using
the patch dynamics scheme at certain moments in time. Right: error with respect to
the “exact” solution of the effective equation (top) and a finite difference comparison
scheme (bottom). The total error is dominated by the error of the finite difference
scheme.

parameters is found, we perform a long-term simulation. We construct patch
dynamics schemes to mimic the upwind, third-order upwind-biased and cen-
tral fourth-order spatial discretizations.

5.1 Consistency

To determine the buffer size H and the gap-tooth time-step δt, we perform
a numerical simulation for this model on the domain [−H/2,+H/2], with
H = h+5i ·10−9 for i = 1, . . . , 20 on the time interval [0, δt] with δt = j ·10−9,
j = 1, . . . , 100 and the linear initial condition

uε(x, 0) = D1x+D0 = 3.633x+ 0.9511.

The results are shown in figure 5(left). We notice two differences with respect
to the parabolic case. First, it is clear that we do not need very large buffer
regions. Indeed, the advective nature of equation (15) ensures that information
travels with finite speed. The consequence is that, as soon as the time-step is
too short for the boundary information to reach the interior of the domain,
the buffer size H will not have any influence on the accuracy of the result.

The second difference is that the error decreases monotonically with de-
creasing δt, whereas the theoretical result for diffusion indicates that we would
have an error term of the form O(ε/δt). This discrepancy is due to additional
numerical inaccuracies during the restriction step, which are caused by the
weak convergence towards the homogenized equation in the hyperbolic case.
Figure 5 shows how uε(x, t) varies as a function of time. We see that the mi-
croscopic solution develops oscillations which grow in amplitude with time.
Recall that the macroscopic quantity at time t = δt is computed as the spatial
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average of the solution uε(x, δt) over a box of size h. We need to approximate
this spatial average using a quadrature formula, in which we can only use
the solution on the numerical grid points as quadrature points. Thus, we
may expect a decrease of accuracy in the computation of the box average
for increasing values of δt. We numerically verified this intuitive reasoning by
increasing ε. The box solution then becomes less oscillatory, and we observed
that the accuracy of the restriction was increased.

Based on these results, we choose H = h + 1 · 10−7 and δt = 5 · 10−9.
Since our macroscopic schemes will use Δx = O(10−2) and Δt = O(10−2),
the method results in gains of the order of 100 in space and 106 in time.
However, we need to mention that, for realistic microscopic problems, part of
this spectacular gain will be lost because we need to initialize the microscopic
system consistently (the lifting step) using only a few low-order moments,
which may require additional microscopic simulations [11, 12, 23].

5.2 First Order Upwind Scheme

We perform a numerical simulation for this model on the domain [0, 1] with
periodic boundary conditions. As an initial condition, we choose

u0(x) = (sin(πx))100, (34)

which is a typical initial condition to study spatial discretizations for the
advection equation [18]. We use a macroscopic mesh of size Δx = 1 ·10−2 and
a time-step Δt = 1 · 10−2, and we define our macroscopic comparison scheme
as an upwind/forward Euler scheme

Un+1
i = Uni −Δt c∗

Uni − Uni−1

Δx
. (35)
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The corresponding patch dynamics scheme is defined by the algorithm in
section 3, where the initial condition (23) is defined by taking d = 1 and

D1
i (Ū

n) =
Ūni − Ūni−1

Δx
, D0

i (Ū
n) = Ūni . (36)

The resulting time derivative estimator is used with a forward Euler time-
stepper. The results are shown in figure 6. The patch dynamics scheme clearly
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Fig. 6: Left: Snapshots of the solution of the homogenization advection equation (15)
with coefficient (33) using the upwind patch dynamics scheme at certain moments
in time. Right: L2-error with respect to the “exact” solution of the effective equation
(16) (top) and the finite difference comparison scheme (35) (bottom). The total error
is dominated by the error of the finite difference scheme.

has the same properties as the comparison finite difference scheme. It is very
diffusive, but maintains positivity. The left figure shows the L2-error of patch
dynamics with respect to the finite difference scheme, and with respect to
an “exact” solution of the effective equation, which was obtained using the
upwind scheme on a very fine mesh with Δx = 1 · 10−4 and Δt = 1 · 10−4. We
see that the error of the patch dynamics scheme is completely dominated by
the finite difference error.

5.3 Third-Order Upwind-Biased Scheme

Next, we design a patch dynamics algorithm to mimic the third-order upwind-
biased scheme as a spatial discretization, which we combine with the classical
fourth-order Runge–Kutta time integration method. In this case, the macro-
scopic time derivative is given by

F (Uni , tn) =
c∗

Δx

(
−1

6
Uni−2 + Uni−1 −

1
2
Uni −

1
3
Uni+1

)
. (37)

The Runge–Kutta method requires some auxiliary evaluations of the time
derivative operator,
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k1 = F (Uni , tn)

k2 = F (Uni +
Δt

2
k1, tn +

Δt

2
)

k3 = F (Uni +
Δt

2
k2, tn +

Δt

2
)

k4 = F (Uni +Δt k3, tn +Δt)

(38)

and the time-stepper Un+1 = S(Un, tn;Δt) is then defined as

Un+1 = Un +Δt

(
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4

)
(39)

The corresponding patch dynamics scheme is defined by the algorithm in
section 3, where the initial condition (23) is defined by taking d = 1 and

D1
i (Ū

n) =
1
Δx

(
1
6
Ūni−2 − Ūni−1 +

1
2
Ūni +

1
3
Ūni+1

)
,

D0
i (Ū

n) = Ūni .

(40)

The resulting time derivative estimator is subsequently used inside the fourth-
order Runge–Kutta method.

We perform a numerical simulation on a macroscopic mesh with size
Δx = 2 · 10−2 and Δt = 2 · 10−2. The results are shown in figure 7. The patch
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Fig. 7: Left: Snapshots of the solution of the homogenization advection equation
(15) with coefficient (33) using the upwind-biased patch dynamics scheme at certain
moments in time. Right: L2-error with respect to the “exact” solution of the effective
equation (16) (top) and the finite difference comparison scheme (39)-(37) (bottom).
The total error is dominated by the error of the finite difference scheme.

dynamics scheme clearly has the same properties as the comparison finite
difference scheme. It is less diffusive than the upwind scheme, but some arti-
ficial oscillations are introduced. The left figure shows the L2-error of patch
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dynamics with respect to the finite difference scheme, and with respect to
an “exact” solution of the effective equation, which was obtained using the
upwind scheme on a very fine mesh with Δx = 1 · 10−4 and Δt = 1 · 10−4.
Again, we see that the error in approximating the exact solution is completely
dominated by the error of the macroscopic scheme, while the errors due to
estimation are negligible.

5.4 Fourth-Order Central Scheme

Finally, we design a patch dynamics algorithm to mimic a fourth-order central
scheme as a spatial discretization, which we combine again with the classical
fourth-order Runge–Kutta time integration method. In this case, the macro-
scopic time derivative is given by

F (Uni , tn) =
c∗

Δx

(
− 1

12
Uni−2 +

2
3
Uni−1 −

2
3
Uni+1 +

1
12
Uni+2

)
, (41)

and the time-integration method is again given by (38)-(39). The correspond-
ing patch dynamics scheme is defined by the algorithm in section 3, where the
initial condition (23) is defined by taking d = 1 and

D1
i (Ū

n) =
1
Δx

(
1
12
Ūni−2 −

2
3
Ūni−1 +

2
3
Ūni+1 −

1
12
Ūni+2

)
,

D0
i (Ū

n) = Ūni .

(42)

The resulting time derivative estimator is subsequently used inside the fourth-
order Runge–Kutta method.

We perform a numerical simulation on a macroscopic mesh with size Δx =
2 · 10−2 and Δt = 2 · 10−2. The results are shown in figure 8. The patch
dynamics scheme clearly has the same properties as the comparison finite
difference scheme. It is much less diffusive than the upwind scheme, but many
artificial oscillations are introduced, which is typical behaviour for central
schemes. The left figure shows the L2-error of patch dynamics with respect
to the finite difference scheme, and with respect to an “exact” solution of the
effective equation, which was obtained using the upwind scheme on a very fine
mesh with Δx = 1 · 10−4 and Δt = 1 · 10−4. Again, we see that the error in
approximating the exact solution is completely dominated by the error of the
macroscopic scheme, while the errors due to estimation are negligible.

5.5 Advection Coefficients with Macro-Scale Variations

As a second example, we consider equation (15) with

c(x/ε) = 1/(3 + sin(2πx/ε) + sin(2πx)), ε = 1 · 10−5. (43)
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Fig. 8: Left: Snapshots of the solution of the homogenization advection equation
(15) with coefficient (33) using the central fourth-order patch dynamics scheme at
certain moments in time. Right: L2-error with respect to the “exact” solution of the
effective equation (16) (top) and the finite difference comparison scheme (39)-(41)
(bottom). The total error is dominated by the error of the finite difference scheme.

The effective equation is then given by (16) with c∗ = 1/(3 + sin(2πx)).
The available microscopic simulation code is an upwind/forward Euler time-
stepper on a grid with size δx = 5 · 10−10 and a time-step dt = 5 · 10−11. We
take the size of the small boxes to be h = 5 · 10−4.

We choose H = h + 2 · 10−7 and δt = 5 · 10−9 as method parameters,
and we perform a patch dynamics simulation using a macroscopic mesh size
Δx = 2 ·10−2 and Δt = 5 ·10−3 using the upwind initialization (36), combined
with forward Euler in time.

The simulations show that the patch dynamics scheme is a good ap-
proximation to a finite difference approximation of equation (16) in non-
conservative form. In particular, the correct comparison scheme would be

Un+1
i = Uni −Δt

(
c∗(xi)

Uni − Uni−1

Δx
+ Uni ∂xc

∗(xi)
)
, (44)

which is not entirely the same as the classical finite volume upwind scheme

Un+1
i = Uni −

Δt

Δx

(
c∗(xi+1/2)Uni − c∗(xi−1/2)Uni−1

)
. (45)

In particular, the scheme (44) is not conservative.
The results are shown in figure 9. Again, we note that the first-order

upwind scheme is very diffusive, and that the error of the patch dynamics
scheme with respect to the finite difference approximation (44) is 3 orders of
magnitude smaller than the error with respect to the exact solution. Moreover,
the error with respect to the finite difference scheme is an order of magnitude
smaller than the error with respect to the finite volume scheme (45), which is
consistent with the statements made above.
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Fig. 9: Left: Snapshots of the solution of the homogenization advection equation
(15) with coefficient (43) using the first-order upwind patch dynamics scheme at
certain moments in time. Right: error with respect to the “exact” solution of the
effective equation (16) (top), the finite difference comparison scheme (44) (middle)
and the finite volume scheme (45) (bottom). The total error is dominated by the
error of the finite difference scheme, and the error with respect to the finite volume
scheme is significantly larger that the error with respect to (44).

6 Conclusions

In this paper, we reviewed the patch dynamics scheme and showed its ba-
sic convergence properties on model hyperbolic and parabolic homogeniza-
tion problems. We illustrated that the scheme is capable of reproducing the
correct macroscopic behaviour, even when the macroscopic equation is not
of diffusion-type, and demonstrated that the required buffer size depends
severely on the properties of the effective equation. Specifically, in the case of
a macroscopic transport equation, the buffers can be very small compared to
the diffusion case.

We wish to stress the fact that patch dynamics is an approximation to a
finite difference scheme of the macroscopic equation in non-conservative form,
which is most apparent in the case of coefficients that vary on a macroscopic
scale. However, we note that there is no guarantee that the patch dynamics
scheme will be conservative, even if the corresponding finite difference scheme
is, since the extra errors that are induced might (and will) destroy conservation
in the numerical solutions. When numerical conservation is important (e.g. if
the macroscopic solution would develop sharp fronts), we will therefore need
to resort to a finite volume formulation of the patch dynamics scheme. This
variant is currently under active investigation.
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Summary. When the output of an atomistic simulation (such as the Gillespie sto-
chastic simulation algorithm, SSA) can be approximated as a diffusion process, we
may be interested in the dynamic features of the deterministic (drift) component of
this diffusion. We perform traditional scientific computing tasks (integration, steady
state and closed orbit computation, and stability analysis) on such a drift compo-
nent using a SSA simulation of the Cyclic Lotka-Volterra system as our illustrative
example. The results of short bursts of appropriately initialized SSA simulations are
used to fit local diffusion models using Aı̈t-Sahalia’s transition density expansions
[1, 2, 3] in a maximum likelihood framework. These estimates are then coupled with
standard numerical algorithms (such as Newton-Raphson or numerical integration
routines) to help design subsequent SSA experiments. A brief discussion of the va-
lidity of the local diffusion approximation of the SSA simulation (a jump process)
is included.

1 Introduction

Reactive particle dynamic models arise in scientific fields ranging from phys-
ical and chemical processes to systems biology [33, 34, 37, 41, 38, 19, 17].
Incorporating successive levels of detail in the modeling quickly leads to mod-
els that are analytically intractable, necessitating computational exploration.
Gillespie’s Stochastic Simulation Algorithm (SSA) and its variants [41, 20, 19]
have gained popularity in recent years for modeling so-called mixed reacting
systems; the approach provides a middle ground between detailed molecular
dynamics and lumped, Ordinary Differential Equation (ODE) descriptions of
chemical kinetics, incorporating fluctuations. Knowing the kinetic scheme un-
derlying such a simulation allows one to write, at the infinite particle limit,



248 C. P. Calderon, G. A. Tsekouras, A. Provata, and I. G. Kevrekidis

the corresponding kinetic ODE. At intermediate particle numbers (Nmol), the
SSA has been approximated with the continuous “chemical Langevin equa-
tion” [19].

In what follows we will assume that the results of an SSA simulation can
be successfully approximated through a continuous diffusion process. Explicit
knowledge of the drift and noise components of such a process allows one to
easily analyze certain features of the overall behavior; one might, for example,
be interested in the bifurcation behavior of the “underlying” drift component
of the model, including the number and stability of its steady states and their
parametric dependence. In our work we assume that the only available simula-
tion tool is a “black box” SSA simulator, in which the mechanistic rules have
been correctly incorporated, but which we, as users, do not know: we can only
observe the SSA simulator output. We want to perform a quantitative com-
putational study of the underlying drift component. Since we cannot derive
it in closed form (not knowing the evolution rules), we want to perform this
study using the least possible simulation with the SSA code. The approach
we use follows the so-called “equation-free” framework [28, 27]: in this frame-
work traditional numerical algorithms become protocols for designing short
bursts of numerical experiments with the SSA code. The quantities necessary
for numerical computation with the unavailable model (time derivatives, the
action of Jacobians) are estimated locally by processing the “fine scale” SSA
simulations. In this work we extract such numerical information via paramet-
ric local diffusion models using the transition density expansions proposed by
Aı̈t-Sahalia [2, 3]. The numerical procedures we illustrate can also be used, in
principle, for different types of “fine scale” models if their output happens to
be well approximated by diffusion processes.

The article is organized as follows: In Section 2 we describe our illustrative
model system. We then quickly outline the basic ideas underlying equation-
free numerics (Section 3), and discuss our estimation procedure (Section 4).
Our computational results are presented in Section 5, and we conclude with
a discussion including goodness-of-fit issues.

2 The Lattice Lotka-Volterra Model

Our Cyclic Lotka-Volterra [36, 14] illustrative example consists of a three-
species (X , Y and S) nonlinear kinetic scheme of the following form [36]:

X + Y
k1→ 2Y

Y + S
k2→ 2S

S + X
k3→ 2X.

In the remainder of the paper we will refer to it simply as LV. In the
deterministic limit, this kinetic scheme gives rise to a set of three coupled
nonlinear ODEs for the evolution of the concentrations X,Y and S.
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dX

dt
= −k1XY + k3XS (1)

dY

dt
= −k2Y S + k1Y X

dS

dt
= −k3SX + k2SY

The total concentration (X+Y +S) is constant over time; setting (without
loss of generality) this constant to unity and eliminating S

X + Y + S = 1, 〉〉〉 =⇒〉〉〉S = 1−X − Y

reduces the system to

dX

dt
= X [k3 − k3X − (k1 + k3)Y ] (2)

dY

dt
= Y [−k2 + (k1 + k2)X + k2Y ] .

For every (positive) value of k1, k2 and k3 four fixed points exist: three
trivial and one non-trivial steady state:

Xs = 0, Ys = 0, S = 1 (system invaded by S)
Xs = 1, Ys = 0, S = 0 (system invaded by X)
Xs = 0, Ys = 1, S = 0 (system invaded by Y)

Xs =
k2

K
, Ys =

k3

K
,Ss =

k1

K
(nontrivial fixed point)

where

K = k1 + k2 + k3. (3)

An interesting feature of the phase space of the deterministic model is the
existence of a one-parameter family of closed orbits surrounding a “center”
(see Figure 3). The neutral stability of these orbits affects, as we will see
below, the fixed point algorithms used to converge on them. The system is
simulated through both the ODEs (2) and through an SSA implementation
of the kinetic scheme (1) using k1, k2 = 0.5 and k3 = 0.7 throughout.

3 Equation Free Computation

The basic premise underlying equation-free modeling and computation is that
we have available a “black box” fine-scale dynamic simulator, and we believe
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that an effective evolution equation exists (closes) for some set of (coarse-
grained) outputs or observables of the fine scale simulation. As discussed in
more detail in [27, 23], one can numerically solve this (unavailable explic-
itly) equation through linking traditional numerical methods with the fine
scale code; in particular, the classical continuum algorithms become proto-
cols for the design of short, appropriately initialized numerical experiments
with the fine scale code. The process starts by identifying the appropriate
coarse-grained observables (sometimes also called order parameters); typically
these variables are low-order moments of microscopically/stochastically evolv-
ing particle distributions (e.g. concentrations for chemically reacting systems,
like our example). In general, good coarse-grained observables are not known,
and data analysis techniques to identify them from computational or experi-
mental observations are the subject of intense current research [39, 8, 12]. If
the unavailable “effective” equations are deterministic and reasonably smooth,
short runs of the fine-scale simulator are used to estimate time derivatives of
the coarse-grained observables; initializing fine scale simulations consistent
with nearby values of the coarse-grained observables gives estimates of di-
rectional derivatives (again assuming appropriate smoothness), and can be
linked with matrix-free iterative linear algebra techniques (e.g. [26]). When
an explicit evolution equation is available, these quantities, necessary in nu-
merical computation, are obtained through function or Jacobian evaluations
of the model formulas; here, they are estimated on demand from short com-
putational experiments with the fine scale solver. If the underlying effective
equation is stochastic, e.g. a diffusion, then the results of the short simulation
bursts must be used to estimate both the drift and the noise components of
the effective model - this is the case we study here. We will illustrate, using
the SSA LV example, how certain types of computations can be accelerated
by appealing to classical numerical methods.

4 Estimation Procedure

In what follows, we will assume that species concentrations are good observ-
ables, and that the true process (the LV SSA simulation) can be adequately
approximated by a diffusion process, that is, a stochastic differential equation
(SDE) of the form:

dXt = μ(Xt;θ)dt + Σ(Xt;θ)dWt. (4)

Here Xt is a stochastic process which is meant to model the evolution of the
observable(s), Wt represents a vector of standard Brownian motions, and the
functions μ(Xt;θ) and Σ(Xt;θ) are the drift and diffusion coefficients of the
process. In the classical parametric setup, one assumes that the parameterized
function families to which the drift and diffusion coefficient functions belong
are known, and that the parameter vector θ is finite dimensional. In practice
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one rarely knows a class of functions which can be used to describe the global
dynamics of the observables; in the equation free computations below, how-
ever, we simulate the true process for only relatively short bursts of time. It
therefore makes sense to (locally) consider the following SDE:

dXt =
(
A + B(Xt −Xo)

)
dt +

(
C + D(Xt −Xo)

)
dWt. (5)

where Wt,Xt,Xo, A and C ∈ Rd and B and D ∈ Rd×d (the d Brownian mo-
tions are assumed independent; the vector multiplying them, by slight abuse of
notation, contains the nonzero elements of the diagonal matrix Σ; extending
to the correlated case is straightforward).

This simple model is based on the fact that we expect smooth evolution
of moments of the observables, while at the same time taking into account
the state dependence of the noise (neglecting this dependence can cause bias
in the estimation of the drift). The parameters of this local linear model are
estimated through techniques associated with maximum likelihood estimation
(MLE). The motivation for using MLE techniques stems from the fact that
under certain regularity conditions [42] such estimators are (asymptotically)
efficient as regards the variance of the estimated parameter distribution. In
addition, the asymptotic parameter distributions associated with MLE can
sometimes be worked out analytically, or approximated through Monte Carlo
simulations; this knowledge can guide the selection of the sample size necessary
for a given desired accuracy in coarse-grained computations [11].

4.1 Maximum Likelihood Estimation for Discretely Observed
Diffusions

We now recall a few basic facts about MLE estimation; standard references
include, e.g. [21, 24, 42]. It is assumed throughout that the exact distribu-
tion associated with the parametric model admits a continuous density whose
logarithm is well defined almost everywhere and is three times continuously
differentiable with respect to the parameters [30].

MLE is based on maximizing the log-likelihood (Lθ) with respect to the
parameter vector (for our model θ ≡ [A,B,C,D]):

Lθ ≡ log
(
f(x; θ)

)
. (6)

In the above equation, x corresponds to a matrix of observations ∈ Rd×M

where d is the dimension of the state and M is the length of the time series;
f(x; θ) corresponds to the probability of making observation x. For a single
sample path of a discretely observed diffusion known to be initialized at x0,
f(x; θ) can be evaluated as [21]:

f(x; θ) = δx0

M−1∏
m=1

f(xm|xm−1; θ). (7)
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In this equation f(xm|xm−1; θ) represents the conditional probability
(transition density) of observing xm given the observation xm−1 for a given
θ and δx0 is the Dirac distribution. In our applications, we search for the pa-
rameter vector that is best over all observations (we have an ensemble of N
paths of length M). In this case our expression for the log-likelihood (given
the data and transition density) takes the form:

Lθ :=
N∑
i=1

M∑
m=1

log
(
f(xim|xim−1; θ)

)
. (8)

Assume the existence of an invertible symmetric positive definite “scaling
matrix” matrix F(M, θ) [31] associated with the estimator; the subscripts are
used to make the dependence of the scaling matrix on M and θ explicit. For
the “standard” case N = 1 in time series analysis, under some additional
regularity assumptions [24, 42], one has the following limit for a correctly
specified parametric model:

F
1
2

(M, θ̂)
(θM − θ̂)

Pθ̂=⇒ N(0, I). (9)

Here θ̂ is the true parameter vector; θM represents the parameters es-

timated with a finite time series of length M ;
Pθ̂=⇒ denotes convergence in

distribution [42, 21] under Pθ̂ (the distribution associated with the density
f(x; θ̂)); N(0, I) denotes a normal distribution with mean zero and an iden-
tity matrix for the covariance. For a correctly specified model family, F(M, θ̂)

can be estimated in a variety of ways [44, 31]. The appeal of MLE lies in that,
asymptotically in M , the variance of the estimated parameters is the smallest
that can be achieved by an estimator that satisfies the assumed regularity
conditions [24, 42].

4.2 Transition Density Expansions

Here we briefly outline the key features of the recent work of Aı̈t-Sahalia [2, 3]
used in our coarse-grained computations below. The problem with using even
a simple model like that given in equation 5 is that the transition density as-
sociated with the process is not known in closed form. In recent years, many
attempts to approximate the transition density have appeared in the liter-
ature; some techniques depend on analytical approximations whereas others
are simulation based (see, e.g. [1, 2, 5, 9, 18, 35]). We have used, with some
success, the expansions found in [1, 3, 2]. High accuracy can be obtained us-
ing this method to approximate the transition density associated with a scalar
process; the multivariate case is discussed in [3]. The basic idea behind the
scalar case, presented in [1, 2], is as follows: One first transforms the process
given in equation 4 into a new process [2]:
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dYt = μY (Yt; θ)dt + dWt (10)

Y ≡ γ(X ; θ) =
∫ X du

σ(u, θ)
μY (y; θ) ≡ (11)
μ(γ−1(y; θ); θ)
σ(γ−1(y; θ); θ)

− 1
2
∂σ

∂x
(γ−1(y; θ); θ)

An additional change of variables brings the transition density of the
process closer to a standard normal density Z ≡ Δ−

1
2 (Y − yo) where Δ is

the time between observations. The transformations introduced allow the use
of a Hermite basis set in order to approximate the transition density of the
original process via the following series:

pZ(Δ, z|yo; θ) ≈ (12)

φ(z)
K∑
j=0

η
(j)
Z (Δ, yo; θ)Hj(z)

η
(j)
Z (Δ, yo; θ) ≡ (13)

1
j!

∞∫
−∞

Hj(z)pZ(Δ, z|yo; θ)dz :=

1
j!

E[Hj

(
Δ−

1
2 (Yt+Δ − yo)

)
|Yt = yo; θ]

In the above, Hj represents the jth Hermite polynomial and φ(·) is the
standard normal density. The coefficients needed for the approximation are
obtained through the conditional moments of the process Yt. Aı̈t-Sahalia out-
lines [2] a procedure which exploits the connection between the SDE and the
associated Kolmogorov equations in order to develop a closed form expres-
sion for the η

(j)
Z coefficients. The approximation is exact if K → ∞ and the

coefficient functions satisfy the assumptions laid out in [2]. In numerical ap-
plications one must always deal with a finite K. Problems may arise in the
truncated expansion: the approximation of the density may not normalize
to unity or, worse, it may become negative (see [3, 1, 5] for some possible
remedies).

In the multivariate case, it becomes more difficult to introduce an analog
of Yt [3]. Nonetheless, it is still possible to construct a series motivated by
the methodology used in the scalar case; however, one now needs to expand
in space and time, whereas the Hermite expansion yielded a series “in time
only” [3]). Aı̈t-Sahalia [3] outlines an approach which makes use of a recursion
for calculating the coefficients of the expansion in the multivariate case. We
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have had success in using these expansions, even in cases where convergence
of the infinite series is not guaranteed by the conditions given in [1, 2]. Notice,
for example, that our local models may allow a value of zero for the diffusion
coefficient; using a different function class (made computationally feasible by
the extension of Bakshi and Ju [5, 6]), such as sigmoidal functions for it,
may help circumvent such problems. Other pathologies are discussed in [11];
estimates of the range of the parameters of interest [31, 42, 11] can enhance
the algorithm performance. The comparison study [25] recommends the use of
the expansions by Aı̈t-Sahalia for a wide class of diffusion models. Beyond the
estimation itself, these expansions can also be helpful in obtaining diagnostics
that depend on knowledge of the transition density (such as goodness-of-fit
tests [22]) and asymptotic error analysis [31].

5 Illustrations of Equation-Free Computation

Having estimated the parameters of a local model at a given state point opens
the way to several computational possibilities. Such estimates, for example,
can be used in an iterative search for zeroes of the (global, nonlinear) drift.
A Newton-Raphson iteration for a (hopefully better) guess of this root in-
volves the solution of set of linear equations for which both the matrix and
the residual are available from the local linear drift. The resulting estimate of
the root is then used to launch a new set of computational experiments with
the “inner” SSA code, followed by a new estimation, linear equation solution,
and so on to convergence. This illustrates the fundamental underpinnings
of equation-free computation. Many numerical algorithms (here, root finding
through Newton iteration) do not really require good closed-form global mod-
els: each iteration only requires local information (the first very few terms of
a Taylor series) in order to “design” the next iteration. Traditional contin-
uum numerical methods can thus be thought of as protocols for the design of
a sequence of model evaluations (possibly model and Jacobian evaluations,
occasionally even Hessian evaluations). In the absence of an explicit formula
for the model, the same protocol can be used to design appropriately initial-
ized computational experiments with a model of the system at a different level
(here, the SSA simulator). Processing the results of these appropriately initial-
ized short bursts estimate the quantities required for scientific computation, as
opposed to evaluating them from a closed-form model. The so-called “coarse
projective integration” is another example of the same principle. Traditional
explicit integration routines require a call to a subroutine that evaluates the
time-derivative of a dynamic model at a particular state. In the absence of
an explicit model, short bursts of simulations of a model of the system at a
different level (again, here, SSA) can be used to estimate these time deriva-
tives, and, through local linear models, extrapolate the state at a later time.
The fundamental assumption underpinning this entire computational frame-
work, is that an explicit evolution equation exists, and closes, in terms of
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the (known) coarse-grained observables of the fine-scale simulation (here, the
concentrations of the SSA species). If this, unavailable in closed-form, equa-
tion is deterministic, then one only need to estimate a drift term from fine
scale simulations; if, on the other hand, the coarse-grained equation is sto-
chastic (fluctuations are important), then both the local drift and diffusion
terms must be estimated. Certain computational tasks for stochastic effective,
coarse-grained models require evaluations of both these terms (e.g. computa-
tions of stationary, equilibrium densities, or Kramers’ type computations of
escape times for bistable systems, see for example [29, 23]). In this paper, we
perform equation-free tasks for only the drift component of the model; some-
times it may be interesting to know whether the drift component dynamics
possess zeros or closed loops, as well as their parametric dependence. Also,
at infinite system size (practically, for sufficiently large particle numbers) the
SSA actually closes as a deterministic ODE.

Coarse Newton-Raphson for the fixed point of the drift

In what follows we work at system sizes large enough that a diffusion approxi-
mation of the SSA output is meaningful, and -even more- the dynamics of the
drift component of the diffusion are close to the kinetic ODE scheme dynam-
ics. The neutral stability of the fixed point and the closed loops of the kinetic
ODE suggest comparable features for the estimated drift, which we set out
to investigate. We find the nontrivial root of the estimated drift F(X;θ) = 0†

through a coarse Newton-Raphson procedure as follows: An ensemble of Npath

SSA simulations are initialized in a neighborhood of the current guess X0 of
the root. Each is evolved in time, and the simulations are sampled uniformly
M times during a time interval of length τ . A local SDE model of the type
(5) is estimated using the transition density expansions of Aı̈t-Sahalia in an
MLE-type scheme; the resulting model parameters are used to update the
root guess through

Xn = Xn−1 −
∂F(X; θ)

∂X

−1

|X=Xn−1F(Xn−1; θ) ≈ Xn−1 −B−1A. (14)

Figure 1 shows this procedure for two different values of Npath (other
parameters are noted in the caption). Newton-Raphson type procedures for
isolated roots are known to converge quickly given a good initial guess; fur-
thermore, upon convergence, the eigenvalues of the linearization of the drift
are contained in the matrix B. Estimates of these eigenvalues for different
Npath are listed, upon convergence of the root finding procedure, in Table 1.
The equation-free iterates approach the deterministic ODE root (see inset);
the latter is known to possess two pure imaginary eigenvalues. The estimated
(from local models) eigenvalues are also characterized by a relatively small
(O(10−2)) real part.
† We use F(·; θ) to denote the right hand side of a general deterministic ODE; here
F(·; θ) is the estimated μ(·; θ)
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Fig. 1: Coarse NR to find stationary points. Roots of F(X) ≡ dX
dt

using estimated
(local) linear SDEs. Parameters: Nmol = 1×104, τ = 5.032928126×10−1 , M = 300.
Npath values are shown in the legend and the l2 distance of the current guess from
the deterministic ODE root is shown in the inset. ΔX∗ (inset y-axis) represents the
difference between the current guess and the steady state of the ODE.

Table 1: Representative real and imaginary parts of the eigenvalues of the estimated
drift upon convergence to the nontrivial fixed point X ≈ (0.2941, 0.41176); the
deterministic ODE solution has a pair of pure imaginary eignenvalues.

Re Im

Npath = 100 −2.53× 10−2 3.01× 10−1

Npath = 600 −2.39× 10−2 2.63× 10−1

Coarse Projective Integration for the drift

A variety of numerical integration algorithms can be implemented in our
framework. Single step methods of the general form

Xn = Xn−1 + Φ(Xn−1,Xn;Δt). (15)

include the explicit and implicit Euler algorithms, (for which Φ is ΔtF(Xn−1)
and ΔtF(Xn) respectively). Estimates of the drift at X0 can be immediately
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used in a “coarse forward Euler”, while the estimated B can be used in a
root-finding procedure, along the lines illustrated above, in a “coarse back-
ward Euler” scheme. Other schemes can be simply implemented. Here we
only demonstrate (explicit) coarse forward Euler; predictor-corrector schemes
(more appropriate for stiff problems) are illustrated in [10]. Representative re-
sults for our LV problem are shown in Figure 2. The deterministic ODE trajec-
tory (dashed lines connecting points) is compared to the projective integration
of the drift component of an SDE estimated locally from SSA simulation en-
sembles. One clearly sees the evolution of the ensemble of SSA trajectories
initialized at every numerical integration point; Npath such trajectories were
evolved and observed uniformly M times over a time interval τ . The results
were processed through the estimation scheme and the value of the drift at
the original point X0 provided the forward Euler estimate of the “next” point
through X1 = X0 +ΔtF(X0). The procedure is then repeated.

Several algorithmic parameters must be carefully selected in such compu-
tations. In our case the “lifting” problem (the initialization of SSA simulations
at a given value of the coarse observables) is straightforward because of the
“mixed” nature of the SSA simulation; in general, the successful initialization
of a fine scale code consistent with a few coarse observables can be a com-
plicated and difficult issue, requiring, for example, preparatory constrained
dynamic runs [4, 40].

Another important parameter is the length of the integrator “projective”
step, Δt, which for deterministic problems is set by stability and accuracy
considerations. Stability discussions for projective integration can be found in
[28]; here the issue is complicated by the fact that the model is estimated rather
than evaluated. Multiscale methods for SDEs, including error estimates, can
be found in the work of [43, 16]. The total “microscopic integration time”
denoted by τ and the time between observations ≡ δt := τ

M also require
careful selection. If τ is too large, the simple linear model may break down as
nonlinearities in the real system manifest themselves. If the assumed diffusion
model is correct, there is no upper limit on M ; yet a diffusion approximation
of a different underlying process, such as the jump SSA here, will break down
if the data is sampled too frequently. Similar issues have been addressed in the
control literature [15]. Later on we will outline a goodness-of-fit test that can
be used to guide the selection of such algorithmic parameters. In this work,
short SSA trajectories in each ensemble are initialized at the same base point
X0, or uniformly in a small neighborhood around it; we have not yet explored
optimal initialization.

Equation-Free Coarse Variational Calculations

A slight extension of the above coarse integration procedure is the implemen-
tation of equation free integration of variational equations. The need for these
arises naturally in our example when we attempt to construct an algorithm
that searches for possible closed orbits in the dynamics of the estimated drift,
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Fig. 2: Illustration of Coarse Projective Integration. Npath = 600, Nmol = 1 × 104,

Δt = .50329, τ = Δt
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and attempts to converge on them. Closed orbits that are limit cycles can
be found as (isolated) fixed points of an appropriate Poincaré map. In the
deterministic LV problem, however, one has a one-parameter family of such
orbits, and the fixed points of the Poincaré map are not isolated. Anticipating
a family of such closed orbits for our estimated drift model, we isolate a sin-
gle orbit from this one-parameter family by selecting its period (the Poincaré
return time).

For a deterministic model, the initial value problem for the variational
equations is

dX
dt

= F(X;θ) (16)

X(t = 0) = XIC

dV
dt

=
∂F(X;θ)
∂X

·V

V(t = 0) = I.

If X ∈ Rd then V ∈ Rd×d. We use the results of integrating such variational
equations to locate closed orbits as zeroes of the equation G(X) ≡ X−Φτ (X)
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where Φτ (·) represents the result of integration from the (deterministic) initial
condition XIC for time τ . To isolate the zeroes we seek, we select a Poincaré
plane through the value XP = 0.3 of the first coordinate, and the return
time; we thus have one equation with one unknown, the Y coordinate of the
intersection of our particular closed orbit with the chosen Poincaré plane. For
our coarse integration, the return time τ is typically too large to permit a
single local diffusion model to accurately describe the dynamics; we therefore
use the following procedure:

• Specify τ and the number Ngrid of local models we will use along the orbit,
each valid for Tmacrof := τ

Ngrid
.

• Simulate Npath SSA trajectories starting at the current fixed point guess;
use the data as above to estimate the first local linear model. Use its drift
(and the matrix B) to obtain the next “base point” as well as to step the
variational equations for time Tmacrof .

• Repeat Ngrid times (see Figure 3).

The output of this procedure gives us the residual of the fixed point equa-
tion we wish to solve; the results of the variational integration at time τ
(which, upon convergence, will give us an estimate of the monodromy ma-
trix) are then used to compute the Jacobian of the fixed point scheme. One
Newton-Raphson step for the Y coordinate of the fixed point is taken, and
the procedure is then repeated. Representative numerical results are shown in
Figure 4. Because of the neutral dynamics, the eigenvalues of the monodromy
matrix upon convergence are both equal to 1 (in the deterministic ODE). Ta-
ble 2 shows representative eigenvalue upon convergence for different Npath

(sometimes the eigenvalues are numerically found as complex conjugates with
a small imaginary part). Clearly, in addition to the algorithmic parameters
involved in coarse projective integration, we should now also take into account
the desired accuracy of the variational integration (quantified in part by the
existence of an eigenvalue equal to unity upon convergence).

Table 2: Representative monodromy matrix eigenvalues upon convergence of the
fixed point iteration for two distinct Npath computations (see text).

Npath = 100 (0.9698, 0.1707) (0.9698,−.1707)

Npath = 400 (0.9159, 0.0252) (0.9159,−.0252)

6 Discussion

We have illustrated the implementation of certain coarse-grained computa-
tions with the LV model; one focus was the coarse-grained integration of
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Fig. 3: Coarse closed orbit computations for the Lotka Volterra model. The determin-
istic model phase portrait contains an infinite number of closed orbits. Three such
deterministic orbits (obtained by Runge-Kutta integration) are plotted here. To find
the closed orbit with a specified period τ , we use the Poincaré surface XP = 0.3,
shown as a solid line. The Jacobian of the coarse Newton-Raphson scheme is com-
puted through variational integrations based on the estimated drift from ensembles
of SSA simulations initialized at the Ngrid base points shown (see text).

the variational equations for the SSA-based drift estimation, as well as the
modifications of the coarse Newton-Raphson iteration dictated by the neutral
stability of the dynamics (the existence of infinitely many closed orbits in the
ODE limit, which appears to approximately persist in our computations). The
second focus was the use of Aı̈t-Sahalia’s expansions to estimate local linear
SDEs from short bursts of SSA data as an intermediate step. This naturally
leads to some crucial questions about the goodness-of-fit of the simple SDE
models: (a) is the diffusion approximation a “good” description of the dynam-
ics? (b) Is the linear approximation valid for the time series length chosen?
and (c) How reliable is the model for making predictions/forecasts ?

One should quantitatively know how large Nmol needs to be, for a given
sampling frequency, for a diffusion model to be a statistically meaningful ap-
proximation [7, 19]. Sampling too often may be detrimental in many diffusion
approximations (e.g. [15]). Local linear models (i.e. short truncations of Tay-
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Fig. 4: Coarse Newton-Raphson for finding closed orbits of a specified period. The
zeroes of G(Y ) ≡ Y −Φτ (Y ) were calculated using a Jacobian evaluated from coarse
variational integration based on SSA simulations. Parameters: Nmol = 1 × 104,
τ = 2.0131712504 × 101, M = 300, Ngrid = 40 (Npath given in the legend). The
initial guess was Y = 0.53. For the deterministic ODE model the fixed point is
Y ODE ≈ 0.518; the coarse fixed point for Npath = 400 was calculated to be Y SSA ≈
0.5075.

lor series) are used extensively in scientific computations, but only for short
time steps, whose length is determined by overall stability and accuracy con-
siderations. Similar considerations arise in choosing the τ used for SSA data
collection towards the estimation of the local linear SDE models used here;
clearly, when the underlying drift is nonlinear, τ cannot be too large. A useful
diagnostic tool for questions (a) and (b) applicable if one does have an ac-
curate transition density approximation, is the probability integral transform
[13, 22]. Using the data and the (assumed known) exact transition density,
one creates a new random variable which, for a correctly specified model,
has a known distribution. The method is applicable to both stationary and
non-stationary time series; furthermore it depends on integrations of the tran-
sition density approximation rather than differentiations. Given the data, one
(appropriately) estimates model parameters and then constructs the random
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of the SSA process, initialized as a Dirac distribution; the bottom plot shows an
ensemble of numerical simulations of the ideal diffusion model using the parameters
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parameters: Npath = 5× 103, M = 300, Nmol = 1× 104, τ = 0.50329.

variables Zn for each observation † (xn). The construction below follows that
in Section 3 of [13]:

Zn :=

xn∫
−∞

p(x′n|xn−1; θ)dx′n

Zn ∼ q(Zn) ≡
dQ(Zn)
dZn

xn ∼ f(xn|xn−1) ≡
dF(xn|xn−1)

dxn

† The method applies to both a vector and scalar process, however the construction
is easiest to demonstrate in the latter case. See [22] for the multivariate extension.
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Fig. 6: Towards hypothesis testing. The function plotted corresponds to an empirical
estimate of the two-dimensional density function described in [13, 22]. The data are
obtained from the same ensemble of SSA simulations as in Fig 5; the top figure is
for Nmol = 1× 104 and the bottom for Nmol = 4× 105. In the infinite sample limit
and for a correctly specified model the density would be unity in the entire support
([0, 1]× [0, 1]) of the function. The figure suggests that the observations of the larger
system are closer to a diffusion model.

The symbol ∼ denotes that the random variable on the left of the symbol is
distributed according to the density to the right. Under a correctly specified
model, the Zn’s are independent and uniformly distributed on [0, 1], indepen-
dent of the transition density [13]. In [22] a comprehensive suite of statistical
tests are reviewed which exploit knowledge of the transition density and the
transformation shown above. Figure 6 plots a kernel density estimate (see
equation 6 on page 44 in [22]) which is based on the estimated parameters
and the observed data. If the model is correctly specified, the infinite sample
size density should be the product of two uniform densities. Test statistics can
be created from this function (see [22] for details).

Inspection of the figures shows that, for a particular representative SSA
ensemble run for Nmol = 1 × 104, and a particular sampling frequency, the
diffusion approximation is not acceptable; the situation appears better for
Nmol > 4 × 105. It is interesting to notice that, while Nmol = 1 × 104 is not
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large enough for the conditions of Figure 5, visual inspection of the empirical
and the SDE-based density evolution might suggest otherwise. In traditional,
continuum numerical algorithms issues of on-line error estimation, time-step
and mesh adaptation are often built-in in modern, validated software. There
is a clear necessity for incorporating, in the same spirit, hypothesis testing
techniques in codes implementing the type of computations we described here;
yet automating such processes appears to be a major challenge.

In our next application, we evolved an ensemble of trajectories starting
from a Dirac initial distribution, and then recorded the Poincaré map for
each individual trajectory over a long simulation period. Figure 7 shows the
evolution of the Y coordinate of these trajectories as function of the map
iterate. For long times, different initial conditions in the ensemble approach
some of the “extinction” fixed points of the ODE vector field (see the vertical
lines in Fig. 7); once there, the system no longer changes over time. Visual
inspection of the evolution of the ensemble suggests that one might try to
coarse-grain the Poincaré map evolution as a model SDE; the insets in the
figure show the initial evolution of the mean and the variance of the Poincaré
map iterates. The smooth line in the insets, a simple least squares fit, seems
to suggest a systematic evolution towards “larger” oscillations, bringing the
system closer to extinction. If this evolution could be well approximated locally
by a diffusion processes, approximations similar in spirit to the ones shown in
this article might be used to explore features of the distribution of extinction
times for the problem.
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Summary. Robustness issues of stochastic uncertain controlled systems are inti-
mately related to concepts from information theory and statistical mechanics. These
relations are unveiled by using the theory of large deviations through the solution
of two fundamental optimization problems. In one of the optimization problems the
aim is to minimize the relative entropy between a nominal measure induced by a
reference stochastic system and the measures induced by the uncertain stochastic
systems subject to energy constraints. In the other the supremum of an energy
functional with respect to the measures induced by the nominal and uncertain sys-
tems, subjected to constraints on the relative entropy between the measures induced
by the nominal and uncertain stochastic systems is sought. The solutions of these
problems, by virtue of their formulation, satisfy the H∞ robustness criterion and
through statistical mechanics arguments the associated optimal sensitivity can be
characterized.

1 Introduction

This chapter analyses controlled stochastic uncertain systems in the frame-
work of large deviations. Since the theory of large deviations is closely related
to information theory and statistical mechanics a further analysis is carried
out to demonstrate these connections in the context of stochastic uncertain
systems. In the introduction, for completeness a brief overview of the impor-
tant concepts in statistical mechanics, H∞ theory of robustness, information
theory and large deviations is given. Section 2 is written in order to em-
phasize the close relationship between the 2nd law of Thermodynamics and
its pertaining Clausius inequality, and the Willems dissipation inequality [1],
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and then to demonstrate the link between statistical mechanics and classical
thermodynamics. These relations are established in Sections 4 and 5. In antic-
ipation of what follows, Section 2 casts statistical mechanics in a variational
formulation.

Section 3 gives the duality relationships on which Sections 4 and 5 promi-
nently rely on, in order to first analyse robustness of stochastic uncertain
control systems, and then characterise their optimal solutions. Finally in Sec-
tion 6, as an example, the large deviation principle is applied to diffusion
processes and the connection to the thermodynamic entropy is highlighted.

Statistical mechanics provides the mathematical framework, which deals
with uncertainty of systems composed of large population of particles (or mole-
cules). The uncertainty that statistical mechanics deals with emanates from
the variability of the microstates that correspond to a particular macroscopic
property. Specifically, for a system consisting of a population of N particles,
the microstate is represented by the vector of positions and momenta of the
particles and its thermodynamic variables the macroscopic properties. The
key ingredient of statistical mechanics, which also provides the link to classi-
cal thermodynamics is the partition function. Once the partition function, a
mathematical object that counts all the microstates compatible with a given
macrostate, is computed all the thermodynamic properties of a system can be
derived [2].

The basic mathematical notion associated with robust control is the H∞-
norm of the system, a measure of how much of the exogenous disturbance
signals are attenuated by the controller [3]. In order to elucidate this on phys-
ical grounds lets denote the disturbance signal that enters an uncertain plant
G, Figure 1, by w and let it be an element of an L2 space (the space of square
integrable Lebeasgue measurable functions). Then the controller’s K, Figure
1, action affects the operator TK that maps w ∈ L2 (W), the Hilbert space of
the disturbance signals, to the plant output z which belongs to L2 (Z), the
Hilbert space of the output signals. The norm of the system is the induced
norm between the Hilbert spaces of this operator given by,

‖TK‖∞ = ‖TK‖ = sup
‖w‖L2(W) �=0

‖z‖2L2(Z)

‖w‖2L2(W)

= sup
‖w‖L2(W)≤1

‖z‖2L2(Z) (1)

such that TK :W → Z.
Ensuring, for a given controller K that

‖TK‖∞ ≤ γ (2)

and interpreting the norm ‖w‖ as the energy of the signal generated by the
family of disturbances having finite energy, then the controller K attenuates
the family of disturbances by a level γ, known in H∞ parlance as the sensi-
tivity level. Combination of equations (1) and (2) yield,

‖z‖L2(Z) ≤ γ ‖w‖L2(W) , ∀w ∈ L2 (W) (3)
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which is equivalent to,

sup
w∈L2(W)

(
‖z‖L2(Z) − γ ‖w‖L2(W)

)
≤ 0 (4)

The controller should always seek to dissipate the transmission of energy from
w to z measured by the norm ‖z‖L2(Z), over the unit ball uncertainty by
an amount determined by γ. The controller should minimize the maximum
dissipation leading to the following game formulation,

inf
K

sup
w∈L2(W)

(
‖z‖L2(Z) − γ ‖w‖L2(W)

)
≤ 0 (5)

w z

yu
G

Fig. 1: Block Diagram Representation of Uncertain Systems

The link between robustness as discussed above and statistical mechanics is
established in Section 5.

Information theory is the mathematical framework in which problems
in science and engineering are formulated, and ultimately their solution are
sought, such as of data transmission over noisy(less) channels and data com-
pression [4]. However, its fundamental notions of entropy and relative entropy
have found applications in areas such as statistics [5], statistical mechanics
[6, 7], and computational complexity [8]. The entropy of the random experi-
ment of drawing letters from a finite alphabet A = {α1, α2, . . . , αn} of n letters
with probability mass function p = (p1, . . . pn), where pi is the probability of
drawing αi, is given by the functional,

H (p) = −
n∑
i=1

pi ln pi (6)

To define relative entropy or Kullback-Leibler distance, assume a second sim-
ilar random experiment, but with the drawing action governed by a different
probability mass function q. Then the relative entropy is defined between the
two probability mass functions p and q as the functional,
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H (p|q) =
n∑
i=1

pi ln
pi
qi

(7)

The entropy is interpreted as the amount of uncertainty of the single ran-
dom experiment whereas the relative entropy characterizes the discrepancy
between the two probability mass functions that govern the random action of
drawing in the two experiments. The link between relative entropy optimiza-
tion and robustness is established in Section 4.

An area of probability in which the concepts of entropy and relative en-
tropy stand prominently is that of the large deviations. This theory qualifies
probabilistic events as rare and, drawing from both the theories of Statistical
Probability and Mathematical Analysis [9], describes the notion of typical and
atypical events [10] mathematically. The whole mathematical edifice of large
deviations stems from a definition that, through an action functional puts lim-
iting bounds on the behavior of a family of probability measures indexed by
either a real valued parameter ε ∈ � or an integer valued parameter n as they
tend to their limit. The milestone theorem of Large Deviations theory is the
Cramer theorem. It characterizes the limiting behavior of the empirical mean
Sn ≡ 1

n

∑n
i=1 Xj of independent and identically distributed random variables

distributed according to the probability measure P and taking values in �d
as follows. The empirical mean Sn is a random variable of probability law Pn
and the cumulant generating function is defined as

Λ (λ) ≡ logE
(
e〈λ,Xi〉

)
(8)

where the expectation is taken with respect to the probability measure P
and 〈., .〉 denotes the inner product in �d. If the mean value x exists, then
Sn converges to x in probability as n goes to ∞. Otherwise stated, for any
closed set F of Rd that does not contain x then Pn (F ) → 0 as n → ∞. The
Legendre-Fenchel transform of Λ (λ) is defined as,

Λ∗ (x) ≡ sup
λ∈�d

(〈λ, x〉 − Λ (λ)) (9)

The Cramer’s theorem states that the logarithmic rate of this convergence is
bounded by an action functional given by Λ∗ (.), as follows:

• for any closed set F of Rd

lim sup
n→∞

1
n

logPn (F ) ≤ − inf
x∈F

Λ∗ (x) (10)

• for any open set G of Rd

lim inf
n→∞

1
n

logPn (G) ≥ − inf
x∈G

Λ∗ (x) (11)
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Sanov’s theorem extends Cramer’s theorem to empirical measures in-
duced by finite sequences y = (y1, . . . , yk) with each yi assuming values in
the alphabet A = {α1, α2, . . . , αn} with occurence probability of each let-
ter being pi. For each finite random sequence y, the empirical measure is
Ly
k = 1

k (#α1 ∈ y, . . . ,#αn ∈ y), where each #ai counts the occurences of ai
in a sequence y. In this case each empirical measure may be identified with
points of �n and satifies the large deviation bounds as k tends to ∞ with
bounds imposed by Λ∗ which for this case Λ∗ (x) = H (x|μ). Sanov’s theorem
then in an obvious way provides the link between large deviations, statisti-
cal mechanics and information theory [11, 12]. The link between Legendre-
Frenchel transform and robustness is established in Section 4.

2 Thermodynamics and Statistical Mechanics

2.1 Thermodynamics: an Overview and its Link to Statistical
Mechanics

Classical equilibrium thermodynamics are to a great extend founded on two
laws. The law of energy conservation, 1st law of thermodynamics, which for
general stationary systems is given by

Q−W = ΔU (12)

where Q is the net heat transfer to the system, W the net work done on or
by the system and ΔU the change of its internal energy U due to the net
energy transfer to or from the system as work and heat. The second law of
thermodynamics codifies the degradation of the energy quality, by irreversible
processes, of a thermodynamic system which is not in equilibrium with its
surrounding. It can be formulated as

dS ≤ dQ
T

(13)

with equality being valid for reversible processes. In equation (13), S is the
macroscopic thermodynamic property of entropy and dQ the heat transfer
from a system at temperature T. For a reversible process the first law may be
recast as

TΔS −W = ΔU (14)

and solving for Wrev, the reversible work is given by,

Wrev = TΔS −ΔU (15)

and it is the maximum work that can be extracted from the process, otherwise
known as Helmhotz free energy, F .

The Clausius inequality (13) can be viewed as a dissipation inequality for
an irreversible proces, say from state 1 to state 2 that produces the entropy,
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Sgen = S2 − S1 −
∫ 2

1

dQ
T

= ΔS − ΔQ

T
(16)

Solving for ΔQ and substituting in (12) the actual irreversible work is given
by

Wirr = −ΔU + TΔS − TSgen (17)

The difference between the reversible and irreversible work

A = Wrev −Wirr = TSgen (18)

is a measure of the irreversibility, A, or dissipation of the useful work and is
given by the product of entropy generated and the temperature T. In order to
make the connection of entropy and dissipation as described here put empha-
sis to the fact that the existence of the dissipation inequality implies entropy
production by an irreversible process. A further important fact is when a ther-
modynamic system is disturbed out of its equilibrium an irreversible process
comes into action to bring it back to the equilibrium maximum entropy state,
by generating entropy.

Boltzman linked the microscopic properties of the particles that composed
a thermodynamic system with their associate macroscopic properties by his
celebrated equation,

S = k ln (Ω) (19)

where S is the entropy, macroscopic property, and Ω the number of microstates
that are compatible with the state. Starting from this equation and using com-
binatorial arguments that are taking into consideration the various possible
states that the system can access, for brevity assume a finite number n of such
states, it can be shown that the entropy is given by

S = −k
n∑
i

p∗i ln p∗i (20)

where k = 1.3806503 × 10−23 J
K is the Boltzmann constant and p∗i is the

probability of finding the system in state i. For a thermodynamic system in
contact with a heat bath of temperature T, Gibbs computed p∗i to be,

p∗i =
e−Ei/kT

Q
; Q =

n∑
j=1

e−Ej/kT (21)

where Q is the partition function of the system. Substituting (21) in (20)
the Helmhotz free energy F , a macroscopic thermodynamic quantity can be
expressed in terms of the partition function Q as,

F = −kT lnQ = −kT log
N∑
j=1

e−Ej/kT (22)
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so this is F = U − TS, when p = p∗ and hence,

F =
n∑
i=1

Eip
∗
i + kT

n∑
i=1

p∗i ln p∗i = U(p∗)− kTS(p∗) (23)

The link between statistical mechanics and thermodynamics can be estab-
lished by substituting the differential form of the first law of thermodynamics,
(here we assume a mechanical work of the form W = PV , where P is the pres-
sure and V the volume),

dU = TdS − PdV (24)

in the differential form of the Helmhotz free energy

dF = dU − TdS − SdT (25)

to get
dF = −SdT − PdV (26)

Identifying the coefficients of (26) with the corresponding partial differentials,

S = −
(
∂F

∂T

)
V

= k lnQ+ kT

(
∂ lnQ
∂T

)
V

P = −
(
∂F

∂V

)
T

= kT

(
∂ lnQ
∂T

)
T

(27)

Therefore starting from the partition function, a mathematical structure that
counts the number of possible microstates of a system the various thermo-
dynamic quantities can be obtained [13]. The link between free energy and
storage function is obtained in Section 6 via Large Deviations.

2.2 Variational Interpretation of Statistical Mechanics

The following theorem gives a variational interpretation of the basic principle
of Statistical Mechanics which characterises the thermodynamical equilibrium
states as those of maximum entropy [14]. This principle will be used in the
subsequent sections to relate the statistical mechanics concepts to robustness
concepts.

Theorem 1. Let Σ a non-empty denumerable set endowed with the discrete
topology and M(Σ) =

{
π = (π1, . . . , πN ), πj ≥ 0,

∑N
j=1 πj = 1, 1 ≤ j ≤ N

}
.

1) For every measurable function Ej : Σ → �, 1 ≤ j ≤ N , and a fixed
probability vector μ ∈ M(Σ)

log
( N∑
j=1

e
−Ej(x)

kT μj(x)
)kT

=
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sup
ν∈M(Σ)

{
−

N∑
j=1

Ej(x)νj(x) − kT

N∑
j=1

νj(x)
μj(x)

log
νj(x)
μj(x)

}
(28)

Moreover, the supremum is attained at

ν∗n(x) =
e−En(x)/kTμn(x)∑N
j=1 e

−Ej(x)/kTμj(x)
, 1 ≤ n ≤ N (29)

2) For every measurable function Ej : Σ → �, 1 ≤ j ≤ N

log
( N∑
j=1

e
−Ej(x)

kT

)kT
=

sup
ν∈M(Σ)

{
−

N∑
j=1

Ej(x)νj(x) − kT

N∑
j=1

νj(x) log νj(x)
}

(30)

Moreover, the supremum is attained at

ν∗n(x) =
e−En(x)/kT∑N
j=1 e

−Ej(x)/kT
, 1 ≤ n ≤ N (31)

3) The basic principle of Statistical Mechanics, (30), (31) are the dual equa-
tions associated with the primal problem of maximizing the Entropy subject to
an average energy constraint, defined by

sup
ν∈M(Σ)

{
− k

N∑
j=1

νj(x) log νj(x)
}

; subject to
N∑
j=1

Ej(x)νj(x) ≤ γ, γ ∈ � (32)

Proof. 1) Follows from Theorem 2. The equivalence between 2) and 3) follows
from standard primal-dual arguments of convex optimization.

Therefore, the optimal measure ν∗ can be characterised as the measure
closest to the nominal measure (uniform measure in this case) which satisfies
the constraint on the expected values of the random variables Ej .

3 Robustness of Stochastic Uncertain Systems:
General Setting

In this section, an abstract formulation of robustness of uncertain stochastic
systems is introduced, which is related to the computation of induced norm.
Finally, it is shown that this type of robustness problems are equivalent to
the variational Theorem 1, thus establishing a connection between robustness
and statistical mechanics.
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3.1 Duality Relations

The quantities introduced in the next definition are employed extensively in
subsequent sections to characterize the optimal strategies and to establish
certain relations implied by the problem formulation. Applications to fully
and partially observed stochastic control systems are found in [15, 16].

Definition 1. Let ν, μ ∈M(Σ) and $ : Σ → � a measurable function.
1) The moment generating function of $ with respect to μ is defined by

Mμ(s) ≡ Eμ

(
es�
)

=
∫
Σ

es� dμ ∈ (0,∞], s ∈ � (33)

2) The cumulant generating function of $ with respect to μ is defined by

Ψμ(s) ≡ logMμ(s) = log
∫
Σ

es� dμ ∈ (−∞,∞], s ∈ � (34)

3) The Legendre-Fenchel Transform of Ψμ(s) is defined by

Ψ�μ(x) ≡ sup
s∈�

{
sx− Ψμ(s)

}
, x ∈ � (35)

Ψ�μ(x) is also called the Entropy Rate Functional of $.
4) The relative entropy of ν with respect to μ is defined by

H(ν|μ) ≡

⎧⎨⎩
∫
Σ log( dν

dμ) dν if ν << μ and log dν
dμ ∈ L1(ν)

+∞ otherwise
(36)

It can be shown that Ψμ(s) as a function of $ is convex, H(ν|μ) as a function
of μ, ν ∈ M(Σ) is convex in both arguments, H(ν|μ) ≥ 0, and H(ν|μ) = 0,
if and only if μ = ν. Thus, H(ν|μ) is a measure of discrepancy between the
two measures. Moreover, Mμ(s), Ψμ(s) are convex functions of s ∈ �. The mo-
ment generating function (33) and cumulant generating function (34), when
employed in the context of stochastic control and filtering, represent the so-
called risk-sensitive pay-off [17, 18, 19, 20]. For linear quadratic problems it
has been long observed [17, 20] that the solution of risk-sensitive problems
is equivalent to the solution of the minimax game formulation of the distur-
bance attenuation problem. Similarly, connections between risk-sensitive pay-
off functionals and deterministic and stochastic minimax games with square
integrable disturbances are also established in [21, 22, 23, 24]. As it has been
discussed in the introduction, the Legendre-Fenchel Transform (35) is em-
ployed in Large Deviations Theory to identify the entropy rate functional,
which describes the exponential rate of convergence to zero of rare events.
In addition, the cumulant generating function and the relative entropy are in
duality with respect to a Legendre-Fenchel transform, and the following result
is a variant of a theorem found in [24].
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Theorem 2. For a given s ∈ �, and $ : Σ → � a measurable function such
that s$ is bounded from below

−Ψμ(s) = − logEμ(es�) = inf
ν∈M(Σ)

{
H(ν|μ)−

∫
Σ

s$ dν
}

(37)

Moreover, if $es� ∈ L1(μ), then the infimum in (37) is attained by the tilted
probability measure ν∗ given by

dν∗ =
es�dμ∫
Σ es� dμ

(38)

Proof. The proof is given in [24].

3.2 Abstract Formulation

Let (Σ, d) denote a complete separable metric space, and (Σ,B(Σ)) the cor-
responding measurable space in which B(Σ) are identified as the Borel sets
generated by open sets in Σ. Let M(Σ) denote the set of probability mea-
sures on (Σ,B(Σ)), Uad the set of admissible controls, and BC(Σ) the set of
continuous bounded real-valued functions, $u : Σ → � for a given u ∈ Uad.
Here,M(Σ) denotes the set of all possible measures induced by the stochastic
systems, while $u ∈ BC(Σ) denotes the energy function or fidelity criterion
associated with a given choice of the control law u ∈ Uad.
It is clear that there is one to one relation between Theorem 1 and The-
orem 2. In fact, Theorem 1 is a special case of Theorem 2, simply let
s → kT, $u → −E, μu →

∑N
j=1 δ(x − j). Therefore, any problem which is

related to Theorem 2, it is also related to the Statistical Mechanics varia-
tional equations.

4 Robustness of Stochastic Uncertain Systems:
an Energy Constraint Formulation

In this section, the optimization problem described in the introduction in the
context of H∞ control is introduced.

4.1 Problem Statement

Definition 2. Let u ∈ Uad, let $u ∈ BC(Σ), and μu ∈M(Σ) which is a fixed
nominal measure, and m ≡ Eμu =

∫
Σ $u dμu, γ ∈ �.

1) Find νu,∗ ∈M(Σ) which solves

Jo(u, νu,∗) = inf
{νu∈M(Σ);

�
Σ
�u dνu≤γ }

H(νu|μu) (39)
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when
m ≡ Eμu($u) =

∫
Σ $u dμu > γ;

2) Find νu,∗ ∈M(Σ) which solves

Jp(u, νu,∗) = inf
{νu∈M(Σ);

�
Σ
�u dνu≥γ}

H(νu|μu) (40)

when
m ≡ Eμu($u) =

∫
Σ
$u dμu < γ;

Remark 1. The fidelity constraints Eνu($u) ≤ γ, Eνu($u) ≥ γ represent av-
erage energy constraints with respect to the unknown measure νu ∈ M(Σ),
such as integral quadratic constraints, tracking errors, etc., while γ is a pa-
rameter which is in some relation with m ≡ Eμu($u), that is, either m > γ
or m < γ. In particular, as shown in subsequent sections, the case (39), with
m > γ will correspond to the optimistic scenario (emphasizing the best cases)
in which the strategies are risk-seeking, while the case (40), with m < γ will
correspond to the pessimistic scenario (emphasizing the worst cases) in which
the strategies are risk-averse.

The constrained problems of Definition 2 can be converted into unconstrained
problems by introducing the Lagrangian and the dual functionals. To do so
for every s ∈ �, define the Lagrangian

Js,γ(u, νu) ≡ H(νu|μu)− s
(
Eνu($u)− γ

)
(41)

and its associated dual functional

Js,γ(u, νu,∗) = inf
νu∈M(Σ)

Js(u, νu) (42)

In addition, define the quantity

ϕs
∗
(u, γ) ≡ sup

s∈�
Js,γ(u, νu,∗) (43)

The above problems have various implications in minimax games, some of
which are described below.

4.2 Related Problems

Disturbance Attenuation in Robustness. For a given u ∈ Uad
let L2(νu;H) ≡

{
φu : Σ → H;φu is a random variable such that∫

Σ ‖φ‖2H dνu < ∞
}

denotes the Hilbert space of random variables. Let
L2(νu;Z) and L2(νu;D) denote the Hilbert spaces of tracking signals and
disturbance signals, respectively. For a given u ∈ Uad, let T u : D → Z be a
bounded linear operator with induced norm defined by
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J(u) ≡ ||T u|| = sup
||d||L2(νu;D) �=0

||z||2L2(νu;Z)

||d||2L2(νu;D)

, z = T ud (44)

The sub-optimal disturbance attenuation is to ensure that for all u ∈ Uad that
J(u) ≤ 1

s , s > 0, which is equivalent to

Js(u) = sup
d∈L2(νu;D)

{
s

∫
||z||2Z dνu − 1

2

∫
||d||2D dνu

}
= − inf

d∈L2(νu;D)

{∫
||d||2D dνu − s

∫
||z||2Z dνu

}
(45)

and ensuring that the pay-off is non-positive.
When νu is absolutely continuous with respect to μu, then it can be shown (see
[25]) that H(νu|μu) = 1

2

∫
||d||2Dd νu. Therefore, the dual functional associated

with converting the primal problem (40) into the equivalent unconstrained
optimization

Js,γ(u, νu,∗) = inf
νu∈M(Σ)

{
H(νu|μu)− s

(
Eνu

(
$u
)
− γ
)}

(46)

is equivalent to the sub-optimal disturbance attenuation problem (45) (let
$u = ||z||2Z). Moreover, larger values of s imply higher attenuation and hence
higher dissipation. An application of the above results to general nonlinear
partially observable systems is discussed in [25].
Legendre-Fenchel or Cramer Transform. In the context of large devi-
ations, the dual functionals associated with converting the primal problems
(39), (40) into equivalent unconstrained optimization problems are equal to
the Legendre-Fenchel or Cramer transforms of $u defined by

I(γ) ≡ sup
s∈�

{
sγ − logEμu

{
es�

u
}}

= sup
s∈�

inf
νu∈M(Σ)

{
H(νu|μu)− s

(
Eνu

(
$u
)
− γ
)}

(47)

The Legendre-Fenchel or Cramer transform of $u is employed in Large Devia-
tions Theory to identify the entropy rate functional I(γ) associated with rare
events.
Optimistic Versus Pessimistic Optimization. In the context of robust
disturbance attenuation of uncertain systems, the measure μu ∈ M(Σ) cor-
responds to the nominal measure, νu ∈ M(Σ) corresponds to the uncertain
measure, and the fidelity constraints Eνu

{
$u
}
≤ γ and Eνu

{
$u
}
≥ γ repre-

sent average energy constraints. It can be shown that [26]:

1. for (39) the average energy constraint with respect to all uncertain mea-
sures νu << μu, Eνu

{
$u
}
≤ γ, is below the average energy of the nominal

model, Eμu

{
$u
}
> γ; hence it represents an optimistic scenario.
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2. for (40) the average energy constraint with respect to all uncertain mea-
sures νu << μu, Eνu

{
$u
}
≥ γ is above the average energy of the nominal

model Eμu

{
$u
}
< γ; hence it represents a pessimistic scenario.

The parameter s ∈ � is the Lagrange multiplier associated with the dual
functional of the primal problems (39), (40). In particular, s ≤ 0 corresponds
to (39) while s ≥ 0 corresponds to (40).
Risk-Averse Versus Risk-Seeking Optimization. In the context of risk-
sensitive pay-offs, (39) corresponds to an optimistic pay-off functional (em-
phasizing the best cases) in which the strategies are risk-seeking, and (40)
corresponds to a pessimistic pay-off functional (emphasizing the worst cases)
in which the strategies are risk-averse. Moreover, in the context of uncertain
stochastic systems, risk-averse strategies always imply dissipation inequalities.

4.3 Properties of the Optimal Solution

The next Lemma presents several properties of the unconstrained problems,
including monotonicity properties of the dual functional with respect to γ and
conditions for finding the Lagrange multiplier.

Lemma 1. For a given u ∈ Uad, assume $u ∈ BC (Σ). Then the following
statements hold.
1) The dual functional Js,γ(u, νu) is related to the cumulant generating func-
tion of $u with respect to μu ∈ M(Σ) via

Js,γ(u, νu,∗) = sγ − Ψμu(s), γ ∈ �, s ∈ � (48)

2) The dual functional Js,γ(u, νu,∗) is concave in s ∈ �.
3) The supremum of the dual functional Js,γ(u, νu,∗) over s ∈ � is the
Legendre-Fenchel Transform of Ψμu(s) and

ϕs
∗
(u, γ) = Ψ�μu(γ) = sup

s∈�
{sγ − Ψμu(s)} (49)

4) ϕs
∗
(u, γ) is a convex function of γ ∈ �.

5) ϕs
∗
(u, γ) ≥ 0, ∀γ ∈ �.

6) If $u ∈ L1(μu) and Eμu($u) = m then
a) ϕs

∗
(u,m) = 0.

b) ϕs
∗
(u, γ) is non-decreasing for γ ∈ [m,∞), that is,

ϕs
∗
(u, γ1) ≤ ϕs

∗
(u, γ2), m ≤ γ1 ≤ γ2 <∞

c) ϕs
∗
(u, γ) is non-increasing for γ ∈ (−∞,m], that is,

ϕs
∗
(u, γ2) ≥ ϕs

∗
(u, γ1), −∞ < γ2 ≤ γ1 ≤ m

d) Js,γ(u, νu,∗) is differentiable with respect to s at point s = s0 and
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d

ds
Js,γ(u, νu,∗) |s=s0= γ −

Eμu

(
$ues0�

u
)

Eμu

(
es0�u

) = γ − Eνu,∗
(
$u
)

(50)

where

dνu,∗ =
es0�

u

dμu∫
Σ es0�u dμu

(51)

In addition, Js,γ(u, νu,∗) is twice continuously differentiable with respect to s
at point s = s0 and

d2

ds2
Js,γ(u, νu,∗) |s=s0= −

{
Eνu,∗

(
($u)2

)
−
(
Eνu,∗($u)

)2}
≤ 0 (52)

e) Let
s∗ = arg sup

s∈�

{
sγ − Ψ�μu(s)

}
(53)

Then

s∗ = arg sup
s∈�

Js,γ(u, νu,∗) = arg sup
s∈�

inf
νu∈M(Σ)

{H(νu|μu)− s
(
Eνu($u)− γ

)}
(54)

Moreover,

d
ds

{
sγ − Ψμu(s)

}
|s=s∗ = 0 implies Eνu,∗

(
$u
)
|s=s∗ = γ (55)

where νu,∗ is given by (51). Moreover, a necessary condition for the supremum
of the dual functional Js,γ(u, νu,∗) over s ∈ � is that s∗ occurs on the boundary
of the linear constraint.

Proof. The proof for statements 1) to 6).a-c) is standard [27].

Next, the regions over which Js,γ(u, μu,∗) is maximized, are identified, and
conditions for finding the Lagrange multipliers are derived, for both problems
of Definition 2.

Theorem 3. Recall the problem of Definition 2,
1) Risk-Seeking Scenario. Consider problem (39).
Suppose m ≡ Eμu

{
$u
}

=
∫
Σ $u dμu > γ.

Then there exists a minimizing measure νu,∗ ∈M(Σ) which satisfies

Js
∗,γ(u, νu,∗) = sup

s≤0

{
Js,γ(u, νu,∗)

}
= ϕs

∗
(u, γ) = sup

s≤0

{
sγ − Ψμu(γ)

}
≡ Ψ�μu(γ) = inf{

νu∈M(Σ);
�

Σ
�u dνu≤γ

}H(νu|μu) (56)
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and for some s ≤ 0, then νu,∗ ∈ M(Σ) is given by

dνu,∗ =
es�

u

dμu∫
Σ
es�u dμu

, s ≤ 0 (57)

Moreover,the supremum over s ≤ 0 in (56) is attained at s∗ < 0 given by

γ = Eνu,∗
{
$u
}
|s=s∗ ≤ Eνu,∗

{
$u
}
< Eμu

{
$u
}

= m, ∀s ∈ [s∗, 0] (58)

2) Risk-Averse Scenario. Consider problem (40).
Suppose m ≡ Eμu

{
$u
}

=
∫
Σ
$u dμu < γ.

Then there exists a minimizing measure νu,∗ ∈M(Σ) which satisfies

Js
∗,γ(u, νu,∗) = sup

s≥0

{
Js,γ(u, νu,∗)

}
= ϕs

∗
(u, γ) = sup

s≥0

{
sγ − Ψμu(γ)

}
(59)

≡ Ψ�μu(γ) = inf{
νu∈M(Σ);

�
Σ
�u dνu≥γ

}H(νu|μu) (60)

and for some s ≥ 0, then νu,∗ ∈M(Σ) is given by

dνu,∗ =
es�

u

dμu∫
Σ
es�u dμu

, s ≥ 0 (61)

Moreover, the supremum over s ≥ 0 in (59) is attained at s∗ > 0 given by

γ = Eνu,∗
{
$u
}
|s=s∗ ≥ Eνu,∗

{
$u
}
> Eμu

{
$u
}

= m, ∀s ∈ [0, s∗] (62)

Proof. Similar to derivations found in [13, 25].

5 Robustness of Stochastic Uncertain Systems:
a Relative Entropy Constraint Formulation

In this section the optimization for robustness is undertaken with respect to
an energy like objective functional under relative entropy constraints of the
uncertain measure νu taken with respect to a fixed nominal measure μu.

5.1 Problem Statement

Definition 3. Let u ∈ Uad, and $u ∈ BC(Σ) which is a fixed nominal mea-
sure, and R ∈ (0,∞).
Find νu,∗ ∈M(Σ) which achieves the supremum

J(u, νu,∗) = sup
{νu∈M(Σ);H(νu|μu)≤R}

∫
Σ

$ud νu (63)

where R ∈ (0,∞).
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Next, for every s ∈ �, define the Lagrangian associated with the problem of
Definition 3

Js,R(u, νu) ≡ Eνu($u)− s
(
H(νu|μu)−R

)
(64)

and its associated dual functional

Js,R(u, νu,∗) = sup
{νu∈M(Σ)}

Js(u, νu) (65)

In addition, define the quantity

ϕs
∗
(u,R) ≡ inf

s≥0
Js,R(u, νu,∗) (66)

5.2 Related Problems

Disturbance Attenuation in Robustness. For a given u ∈ Uad let
L2(νu;H) ≡

{
φu : Σ → H;φuis a random variable such that

∫
Σ
‖φ‖2H dνu <

∞
}

denote the Hilbert space of random variables. Let L2(νu;Z) and L2(νu;D)
denote the Hilbert Spaces of tracking signals and disturbance signals, respec-
tively. For a given u ∈ Uad, let T u : D → Z be a bounded linear operator with
induced norm defined by

J(u, d∗) ≡ ||T u|| = sup
||d||L2(νu;D) �=0

||z||2L2(νu;Z)

||d||2L2(νu;D)

= sup
1
2 ||d||L2(νu;D)≤R

||z||2L2(νu;Z)

(67)
Then the optimal control u∗ ∈ Uad is found by minimizing the induced

norm

J(u∗, d∗) ≡ inf
u∈Uad

||T u|| = inf
u∈Uad

sup
1
2 ||d||L2(νu;D)≤R

||z||2L2(νu;Z) (68)

The induced norm is equivalent to the optimal disturbance attenuation. For
a given u ∈ Uad, the induced norm is found by defining the dual functional

Js
∗
(u, d∗) = inf

s≥0
sup

d∈L2(νu;D)

{∫
||z||2Z dνu − s

(1
2

∫
||d||2D dνu −R

)}
(69)

Moreover, the optimal control u∗ ∈ Uad is found by minimizing the induced
norm, and it is given by

Js
∗
(u∗, d∗) = inf

u∈Uad

inf
s≥0

sup
d∈L2(νu;D)

{∫
||z||2Z dνu − s

(1
2

∫
||d||2D dνu −R

)}
(70)

in which infu∈Uad
infs≥0 is interchanged.

When νu is absolutely continuous with respect to μu, and the nominal model
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is described by stochastic differential equations which are driven by Brown-
ian motion or general Martingales, then it can be shown that H(νu|μu) =
1
2

∫
||d||2D dνu. In this case, the primal problem (68) and its dual problem (70)

are equivalent to the problem of Definition 3, that is,

J(u∗, νu,∗) = Js
∗,R(u∗, νu,∗) =

= inf
s≥0

inf
u∈Uad

inf
νu∈M(Σ)

{
Eνu

(
$u
)
−s
(
H(νu|μu)−R

)}
= J(u∗, d∗) = Js

∗
(u∗, d∗)

(71)
(let $u = ||z||2Z). Moreover, the smaller the values of s the higher the atten-
uation and hence the higher dissipation of output power with respect to the
input power.
Risk-Averse Versus Risk-Seeking Optimization. In the context of risk-
sensitive pay-offs, the problem of Definition 3 corresponds to an optimistic
pay-off functional (emphasizing the best cases), when the Lagrange multiplier
s ≤ 0, in which the strategies are risk-seeking, and to a pessimistic pay-
off functional (emphasizing the worst cases) in which the strategies are risk-
averse, when the Lagrange multiplier s ≥ 0.

5.3 Properties of the Optimal Solution

Corollary 1. For a given u ∈ Uad, and for some s ∈ � such that �u

s ∈
BC (Σ), the following statements hold.
1) The dual functional Js,R(u, νu,∗) is related to the cumulant generating func-
tion of $u with respect to μu ∈ M(Σ) via

Js,R(u, νu,∗) = s sup{
νu∈M(Σ);H(νu|μu)<∞

}{1
s

∫
Σ

$u dνu −H(νu|μu)
}

+ sR

(72)

= s log
∫
Σ

e
�u

s dμu + sR = sΨμu(
1
s
) + sR (73)

Moreover, if the supremum in (72) is attained at νu,∗ ∈M(Σ) and it is given
by

dνu,∗ =
e

�u

s dμu∫
Σ
e

�u

s dμu
(74)

In addition, “The average energy of the system” = “The Helmoltz Free En-
ergy” +s× “The Relative Entropy of the system”, that is,∫

Σ

$u dνu,∗ = s log
∫
Σ

e
�u

s dμu + sH(νu,∗|μ), s ∈ (0,∞) (75)

2) The dual functional Js,R(u, νu,∗) is convex in s > 0.
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3) The function Γμu(s) ≡ sΨμu(1
s ) is a non-increasing function of s ∈ (0,∞),

that is,

Γμu(s1) = s1 logEμu

{
e

�u

s1
}
≤ s2 logEμu

{
e

�u

s2
}

= Γμu(s2), 0 < s2 ≤ s1 (76)

4) The infimum of the dual functional Js,R(u, νu,∗) over s > 0 defined by

Φ∗μu(R) ≡ ϕs
∗
(u,R) = inf

s>0

{
sΨμu(

1
s
) + sR

}
(77)

is a concave functional of R ≥ 0.
5)

Eμu

{
$u
}
≤ Φ∗μu(R) = ϕs

∗
(u,R) ≤ R + logEμu

(
e�

u
)

(78)

Moreover if $u is νu-essentially bounded for all νu ∈ A, then the above bounds
become

Eμu

{
$u
}
≤ Φ∗μu(R) = ϕs

∗
(u,R) ≤ min

{
R + logEμu{$u}, ||$u||∞

}
6)The infimum of the functional Js,R(u, νu,∗) over s > 0 is uniquely attained
at

H(νu,∗|μu)|s=s∗ = R (79)

where νu,∗ is given by (74). That is, a necessary condition for the infimum of
the dual functional Js,R(u, νu,∗) over s > 0 is that s∗ occurs on the boundary
of the relative entropy constraint. Moreover,

d
ds
s log

∫
Σ

e
�u

s dμu = log
∫
Σ

e
�u

s dμu − 1
s
Eνu,∗{$u} = −H(νu,∗|μu) (80)

7) Under the assumptions of 6), the relative entropy H(νu,∗|μu) is a non-
increasing function of s > 0, that is,

0 ≤ H(νu,∗|μu)|s=s2 ≤ H(νu,∗|μu)|s=s1 ≤ H(νu,∗|μu)|s=s∗ = R, 0 < s∗ ≤ s1 ≤ s2
(81)

Proof. Similar to derivations found in [25].

Remark 2. The various statements of Corollary 1 establish the various paths
which connect information theory, robustness of stochastic uncertain systems,
statistical mechanics and thermodynamics. An example of such connection has
been discussed earlier in the context of the related Disturbance Attenuation
Problem, where it is shown that Lagrange multiplier s is the sensitivity re-
duction associated with problems in which the induced norm is less than or
equal to s, that is, ||T u|| ≤ s, and that s∗ is the optimal sensitivity reduction.
These connection are elucidated further in the forecoming discussion
Monotonicity Properties. The statement 1 of Corollary 1 states that the
dual functional is proportional to the Free Energy of �

u

s . Moreover, the worst
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case measure is the equilibrium measure of statistical mechanics, in which the
denomimator of (57) is the partition function. Furthermore, (80) is a funda-
mental identity in statistical mechanics. It furthermore states that the dual
functional is proportional to the Free Energy of the system Γμu(s) ≡ sΨμu(1

s ).
In the context of risk-sensitive pay-off’s, it states that the dual functional is
proportional to risk-averse optimization (pessimistic), in which s is the La-
grange multiplier of the unconstrained problem. Moreover, 3) states that the
risk-sensitive pay-off or Free Energy Γμu(s) is a non-increasing function of the
sensitivity parameter or Lagrange multiplier s ∈ (0,∞).
Characterization of Optimal Sensitivity Reduction and 2nd Law of
Thermodynamics. Corollary 1,7) states that the optimal sensitivity reduc-
tion s∗ corresponds to the case when the relative entropy of the worst case
measure with respect to the nominal measure is exactly at the boundary of the
constraint. In addition, 8) states that the relative entropy is non-increasing as
a function of the sensitivity parameter s ∈ [s∗,∞). This monotonicity prop-
erty can be used to devise a simple algorithm to compute s∗, by starting with
an arbitrary s ∈ [s∗,∞) and then performing a sequence of relative entropy
calculations till its value occurs at the boundary. Moreover, since the best
possible dissipation of the system corresponds to the optimal sensitivity re-
duction, or when the induced norm is equal to s∗, then the non-increasing
property of the Relative Entropy of the system (81) implies an increase in
the Power Dissipation of the system. Thus, (81) is a statement of the 2nd
Law of Thermodynamics, which states that higher dissipation (e.g., smaller
dissipation factor s) implies higher relative entropy of the system.
Upper and Lower Bounds of the Optimal Solution. Corrolary 1, 6),
gives lower and upper bounds for the optimal solution via the a priori informa-
tion of the original problem, specifically, the nominal measure and the energy
functional. The lower bound is trivial (follows from Jensen’s inequality) while
the upper bound is non-trivial. These bounds are important in judging the
performance of sub-optimal solutions to the optimal solution.
Convergence of Induced Norm to the L1 Norm. Corrolary 1, 4) states
that the optimal solution is a concave functional of R ≥ 0. Moreover, 5) states
that the case R = 0 corresponds to the risk-neutral pay-off. Also, using the
relations established in the context of the Related Disturbance Attenuation
Problem, Corrolary 1, 5) states that as R → 0, the induced norm converges
to an L1 norm, e.g., limR→0 ||T u|| = sup{

νu∈M(Σ);H(νu|μu)≤R
} ∫

Σ
$u dνu =∫

Σ
$u dμu.

In the next theorem, the Corrolary 1 is employed to show equivalence between
the unconstrained and constrained problems, which implies that all properties
implied in the Corrolary 1 hold for the problem of Definition 3.

Theorem 4. For a given u ∈ Uad, suppose $u ∈ BC (Σ) and there exists a
u ∈ Uad such that Js,R(u, νu,∗) <∞. Then the following statements hold.
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1) The primal constrained problem of Definition 3 and the unconstrained dual
problem are equivalent, that is,

Js
∗,R(u, νu,∗) = inf

s>0
Js,R(u, νu,∗) = ϕs

∗
(u,R) = inf

s>0

{
sR+sΨμu(

1
s
)
}
≡ Φ∗μu(R)

(82)

= sup{
νu∈M(Σ); H(νu|μu)≤R

}∫
Σ

$u dνu = J(u, νu,∗) (83)

and the results of Lemma 1 hold.
2)

d2

ds2
Js,R(u, νu,∗) =

1
s3

(
Eνu,∗($u)2 −

(
Eνu,∗($u)

)2)
≥ 0, ∀s ∈ [s∗,∞) (84)

3)Then optimal pay-off is equal to the average energy of the system with respect
to the worst case measure νu,∗ given by

Js
∗,R(u, νu,∗) = ϕs

∗
(u,R) = Eνu,∗

{
$u
}
|s=s∗ =

∫
Σ
$ue

1
s �

u

dμu∫
Σ e

1
s �

u dμu
|s=s∗ (85)

Proof. Statements 1), 2) follow from simple reformulation of the constrained
optimization problem of Definition 3 to an unconstrained optimization prob-
lem and Corrolary 1. Statement 3) follows from the equation of the dual
functional of the unconstrained optimization problem.

Remark 3. The third Statement of the Theorem 4, states that the optimal
performance is given by the average energy with respect to the worst case
measure. Moreover, 2) states that the second derivative of the optimal per-
formance is proportional to the variance of the energy function with respect
to the worst case measure.

6 The Large Deviations Principle
Applied to Diffusion Processes

In this section we construct the action functional and a deterministic mea-
sure on cylinder sets of a Hilbert space. This is a consequence of the Large
Deviation principle applied to Brownian motion found in [28, 27].

Assumption f : �n → �, σ : �n → �n ⊗ �n are uniformly Lipschitz
continuous, σ is bounded and a(x) ≡ σ(x)σ′(x) is positive definite, that is,
there exists an k ∈ [1,∞) such that

‖f(x)− f(y)‖+ ‖σ(x) − σ(y)‖ ≤ k‖x− y‖,
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‖σ(x)‖ ≤ k, ∃λ > 0 # σ(x)σ(x) ≥ λIn×n.

The LDP associated with diffusion processes is usually applied to the space(
X ,BX

)
=
(
C0,T ≡ C([0, T ];�n),B0,T ≡ B(C([0, T ];�n))

)
, which is a Ba-

nach space with the uniform norm || · ||C0,T . The diffusion process {Xε(t)} :
C0,T → C0,T is the unique solution of the stochastic Ito differential equation

dXε(t) = f(Xε(t))dt +
√
εσ(Xε(t))dw(t), Xε(0) = x, (86)

where the assumption is satisfied. For a given bounded function f let {P ε}ε>0

denote the probability measure induced by {Xε(t)} on
(
C0,T ,B0,T

)
. Then

P ε = Wε ◦ Xε,−1 where Wε is the measure induced by {
√
εw(t)} and Xε :

C0,T → C0,T is defined by Xε = F ε(g), where Xε is the unique continuous
solution of Xε(t) = x+

∫ t
0
f(Xε(s))ds + gε(t).

Introduce the Hilbert space

H1
0,T = H1

(
[0, T ];�n

)
≡
{
φ ∈ C([0, T ];�n);

φ(t) =
∫ t

0

φ̇(s) ds,
∫ T

0

||φ̇(s)||2�n ds <∞
}

which is the space of absolutely continuous functions with square-integrable
derivatives. Then

{(
C0,T ,B0,T , P

ε
)}

ε>0
satisfies the LDP, which is an appli-

cation of the contraction principle; the action functional is given by

Ix,f
H1

0,T
(X) =

{− 1
2

∫ T
0
||a− 1

2 (X(s))
(
Ẋ(s)− f(X(s))

)
||2�n ds,

−∞,

where −∞ corresponds to the case when X − x /∈ H1
0,T . Equivalently,

Ix,f
H1

0,T
(X) = Ix,0

H1
0,T

(w) =
{− 1

2

∫ T
0 ||a

− 1
2 (X(s))ẇ(s)||2�n ds
−∞

where H1,w
0,T ≡

{
w ∈ H1

0,T ;X(t) = x+
∫ t
0 f(X(s)) ds+

∫ t
0 σ(X(s))ẇ(s)

}
.

6.1 Connections to Thermodynamic Entropy

Large Deviations to relate the Free Energy log
∫
C0,T

e
�

T
0 �(X)dsdP ε(X) to the

Macroscopic Thermodynamic Entropy S of Section 2. Clearly, for any bounded
and continuous function $, by the Laplace-Varadhan Theorem of Large Devi-
ations [27] we have

S(x) ≡ lim
ε→0

ε log
∫
C0,T

e
1
ε

� T
0 �(X)ds dP εx(X)
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= sup
w∈H1,w

0,T

{∫ T

0

(
$(X(s))− 1

2
||a− 1

2 (X(s))ẇ(s)||2�n

)
ds; (87)

ẋ (s) = f (x (s)) + σ (x (s)) ẇ (s) , 0 ≤ s ≤ T
}

Here WR(x, ẇ) ≡ 1
2 ||a−

1
2 (x)ẇ||2�n − $(x) is the supply of energy into the sys-

tem, and S(x) is the available storage, maximum extractable energy of the
system, and hence a storage function [1]. It is important to notice that the
dissipation inequality in [1] is expressed in terms of free energy of thermody-
namics and not in terms of entropy as the Clausius inequality is expressed.
The functional S(x) is employed in robust control problems to establish a
dissipation inequality [1].

Referring to Figure 1, the dynamic equation in (87) is identified as the
plant G on which the uncertainty is imposed by the disturbance noise ẇ
identified with the input w of the Figure 1. In this context, under certain
conditions, equation (87) is related to equation (4).

7 Conclusion

This paper establishes various connections between Robustness, Information
Theory, Large Deviations and Statistical Mechanics for stochastic uncertain
systems. These connections are established by introducing two fundamental
optimization problems. The characteristics of the optimal solutions are pre-
sented with a discussion on how these properties are connected to the opti-
mal states of statistical mechanical systems. The monotonicity properties of
the sensitivity level s with respect to relative entropy are reminiscent of the
monotonicity properties of the temperature with respect to entropy that one
encounters in the fluctuation dissipation theory of statistical mechanics. This
connection has also implications in devising algorithms of computing the op-
timal sensitivity s∗ of complicated controlled systems. Detail derivations and
additional properties and connections among these fields are found in [15, 16].
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Summary. In the small-number limit, we must abandon the description of chemi-
cal systems in terms of continuous concentration variables which evolve according to
deterministic rate equations in favor of a discrete stochastic formulation. The prob-
ability distribution for the molecular populations however does obey a determinis-
tic equation called the chemical master equation. Any desired population statistic
(mean, standard deviation, etc.) can be obtained from the probability distribution.
Unfortunately, the master equation consists of a huge set of differential equations,
and it is thus in general impractical to use it directly. In this paper, we review the
ideas underlying discrete population modeling and the chemical master equation. We
then develop methods for reducing the chemical master equation to a much smaller
set of differential equations by exploiting the same time-scale separation which leads
to the emergence of a hierarchy of attracting manifolds in the mass-action case. Fi-
nally, we develop a method for generating an initial condition for the reduced model
based on a generalization of the stationary reactant approximation.

1 Introduction

The dynamics of chemical systems span a huge range of time scales, from the
femtosecond range of internal motions and intramolecular energy transfers,
through the microsecond range which characterizes the time between molecu-
lar encounters, and finally to the much longer time scales which may in general
govern reactive events [1]. Correspondingly, chemical systems can be described
at a number of different levels which may or may not include processes in a
given range of time scales. Figure 1 shows some of the methods which can be
used to describe the kinetics of a chemical system, and their interrelationships.
Note that the figure only shows methods which are essentially descriptive in
nature. Methods which properly belong to the discipline of chemical dynam-
ics (ab initio molecular dynamics, transition state theory, etc.) which aim to
predict rates of chemical reactions from first principles [1] are not included.
Molecular dynamics straddles these two worlds since it includes both fully
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Fig. 1: Levels of description in chemical kinetics.

ab initio quantum-mechanical techniques and empirical simulation methods
calibrated from experimental data, along with every conceivable variation in
between [2, 3]. At the other end of the hierarchy of methods, we have macro-
scopic treatments which take no account of the discrete nature of molecules,
let alone of their internal degrees of freedom. This paper will discuss a prob-
lem which arises in the middle ground of population modeling. In population
models, we attempt to describe the evolution in time of the number of mole-
cules (the population) of a particular type. By “type”, we might just mean
an identifiable chemical species, although in more detailed models the type
might also include the quantum state of a molecule. Either way, having given
up the mechanical level of description, reactions become random events to be
described by a statistical theory.

We focus particularly on the case of well-mixed chemical systems. There
are two major approaches to studying the evolution of molecular populations
for well-mixed system. The first consists in writing down an evolution equa-
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tion for the probability distribution of the populations. This evolution equa-
tion is known in the literature as the chemical master equation (CME) [4, 5].
The CME’s major drawback is that it consists of a huge number of ordinary
differential equations (ODEs) for which analytic solutions are not typically
available and which are troublesome to solve numerically. The alternative is
to use a simulation method to obtain sample trajectories of the underlying
stochastic process [6, 7]. While stochastic simulations are a practical alterna-
tive to the solution of the master equation, the necessity to compute a large
number of stochastic trajectories in order to obtain estimates of the moments
of the distribution (e.g. the average and standard deviation of the number of
molecules) makes this task computationally demanding as well. Accordingly, a
great deal of effort has gone into methods to accelerate stochastic simulations
[8, 9, 10, 11, 12, 13, 14].

Our approach is a bit different [15], though not without antecedent
[16, 10, 11, 17, 12, 13, 14]. Conceptually, our work is closest to that of Janssen
who developed a projection operator formalism to obtain a reduced master
equation in which degrees of freedom corresponding to rapidly responding in-
termediates have been eliminated [16]. Shibata, following a similar approach,
obtained a reduced master equation with added diffusive terms [17]. Because
a typical chemical system evolves on many different time scales, even after we
have eliminated the very rapid internal motions of the molecules, the master
equation itself displays relaxation over a range of time scales. Accordingly,
the CME is stiff, a numerical property of systems with multiple, widely sepa-
rated time scales which makes their numerical integration difficult [18, 19, 20].
Relaxation on different time scales however opens up interesting possibilities
for model reduction. Indeed, if we aren’t interested in the relaxation on the
fastest time scales of a system, elimination of the fast modes leads very di-
rectly to a reduced model. Since the fast modes in a chemical system can
be very fast indeed, these modes are often not easily accessible experimen-
tally and are thus of less interest than the observable slow evolution toward
the final probability distribution. Unlike other methods based on analysis of
the master equation, our methods are essentially exact : The reduced model
we obtain simply confines the solutions to the slow manifold [21, 22, 23, 24],
the hypersurface which contains the purely slow parts of the evolution to the
final distribution. The accurate computation of this manifold for the CME
is tricky, but not impossible. We obtain a reduced master equation which is
of a similar form to the original CME, but which is both much smaller and
non-stiff. The main difficulty lies in projecting the initial condition in the full
probability space onto the manifold in such a way that the evolution of the
reduced system tracks that of the full system after decay of transients.

In the next section, we introduce the ideas underlying stochastic popula-
tion modeling and offer a simple derivation of the CME. Because it is easier
to see ideas in action than to discuss them abstractly, throughout this paper
we consider the competitive inhibition (CI) mechanism of enzyme kinetics as
an example:
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E + S
k1

�
k−1

C
k−2

�
k2

E + Q (1a)

E + X
k3

�
k−3

H (1b)

In this mechanism, E is an enzyme which catalyzes the conversion of the sub-
strate (reactant) S to the product Q via the intermediate C. X is an inhibitor
which forms a nonproductive complex with the enzyme. The inhibition here is
competitive since the inhibitor and substrate cannot both bind the enzyme at
the same time. The rate constants shown here are conventional macroscopic
mass-action rate constants. The rate constants in step (1a) have been num-
bered in such a way as to highlight the symmetry of this reaction with respect
to S and Q. Note that this numbering also has the advantage that all of the
ki’s are second-order rate constants, while the k−i’s are first-order constants.

2 Stochastic Population Modeling and the Chemical
Master Equation

In stochastic population modeling, the state of the system is described by
a vector of populations, N(t) = [N1(t), N2(t), . . . , Nn(t)]

T, where Ni is the
number of molecules of type i at time t, n is the number of different types
of molecules considered in the model, and the superscripted T indicates the
matrix transpose. In our example, the state could be described by the vector

N(t) = [NC(t), NE(t), NH(t), NQ(t), NS(t), NX(t)]T , (2)

where NC is the number of C molecules, NE is the number of E molecules,
and so on. However, because the mechanism (1) represents a closed chemi-
cal system, the following mass conservation relations [25, 26, 27] reduce the
number of independent variables to three:

NS +NC +NQ = NS0, (3a)
NE + NC +NH = NE0, (3b)

NX +NH = NX0, (3c)

where NS0, NE0 and NX0 are, respectively, the initial numbers of molecules
of S, E and X in an experiment in which separate solutions of these three sub-
stances are mixed at t = 0. Accordingly, if we think of these three quantities
as parameters, the state of the system can be completely described by the
vector

N(t) = [NC(t), NS(t), NX(t)]T , (4)

among other possible triplets.
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A first-order reaction is a random event which might involve, for instance,
intramolecular energy transfers [1]. If we only keep track of particle numbers,
the collisions which are necessary for the occurrence of second-order reactions
are also random events [5]. Ternary collisions are exceedingly rare in the gas
phase, and can generally be treated as a sequence of two molecular encoun-
ters in solution, but these also would be random events in a homogeneous
population model. Accordingly, a statistical theory is most appropriate to the
description of chemical kinetics on this level. Let N be the space of all possi-
ble vectors N satisfying the mass conservation and non-negativity constraints.
Then P (N , t) is the probability distribution over the space N at time t and
P (N, t) is the probability that the system is in a particular state N at time t.

We offer here a simple derivation of the evolution equation for P (N , t),
the chemical master equation, which brings out the essential elements of the
theory but which is admittedly not very rigorous. More elaborate treatments
are available elsewhere [4, 5]. The essence of Boltzmann’s assumption of mole-
cular chaos [28] is that collisions rapidly erase any dynamical memory of the
initial condition in the gas phase, i.e. that the autocorrelation times of particle
trajectories are short. Provided we are satisfied with a model which won’t de-
scribe events which occur on shorter time scales than the mean collision time,
the evolution of the probability density can then be treated as a Markov
process [29]. In solution, because of solvent caging effects [1], vigorous mixing
is required to maintain homogeneity and to fulfill the conditions leading to
a Markov process. In the text that follows, we will use the relatively simpler
language appropriate to gas-phase kinetics. However, reactions in solution
are included in this formalism if we think of diffusion through the solvent as
playing the memory-erasing role of collisions: A Markov process will result
when we consider times which are long compared to the time scale over which
diffusion and/or mixing homogenizes mesoscopic volumes.

We focus on the probability of one particular state, P (N, t). If the evolution
can be described as a Markov process, then we should be able to write

P (N, t+ Δt) = F (N (t),Δt),

where F is a functional of the distribution at time t and of Δt, provided Δt
is significantly larger than the characteristic autocorrelation time of particle
trajectories. If Δt is sufficiently small, but not so small as to violate the above
constraint, and assuming that F is a continuous functional of Δt, then we
should be able to write

P (N, t+ Δt) = P (N, t) +WN(N (t))Δt,

where WN is the instantaneous rate of change of P (N, t). Probability must
be conserved, so states gain or lose probability by transfer from other states.
In our case, these transfers are caused by chemical reactions. Let R be the
set of chemical reactions, and νr be the stoichiometry vector for reaction r,
i.e. after a reaction of type r starting from state N, the new state is N + νr.
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For sufficiently small Δt, only one reaction of any given type is likely to have
occurred, so we can write

P (N, t+ Δt) = P (N, t) + Δt
∑
r∈R

[ar(N− νr)P (N− νr, t)− ar(N)P (N, t)] .

(5)
In this equation ar(N) is the (conditional) probability per unit time that a
reaction of type r occurs given that the system is in state N. These quantities
are known in the literature as reaction propensities [6, 7]. They are assumed to
be independent of time, an assumption which may break down if either very
small spatial scales or times much shorter than the mean collision time are
considered [30]. The former is not an issue for us since we are assuming a well-
mixed system, but would be an issue in a spatio-temporal master equation
[29]. The first term in the sum represents transitions to state N while the
second term represents transitions from this state into other states. These
terms can be written as products involving the instantaneous probabilities on
the assumption that these probabilities do not change appreciably in a time
Δt.

If we rearrange equation (5) in the obvious way and take the limit as
Δt→ 0, we get

dP (N, t)
dt

= lim
Δt→0+

P (N, t+ Δt)− P (N, t)
Δt

=
∑
r∈R

[ar(N− νr)P (N− νr, t)− ar(N)P (N, t)] . (6)

The limit taken to obtain equation (6) is one of those peculiar physicist’s
limits in which time intervals which are too short (shorter than the mean
time between collisions) are excluded. Nevertheless, the master equation (6)
gives a satisfactory account of the evolution of the probability distribution
P (N , t) for a chemically reacting system on appropriate time scales.

The reaction propensities ar can be derived from collision theory [5]. The
classical theory of reactions in solution gives similar expressions for the reac-
tion probabilities [1, 31] from which the propensities are derived. The reaction
propensity can be written in the form [6, 7]

ar(N) = κrhr(N),

where hr(N) is the number of different combinations of reactant molecules
participating in reaction r which can be formed from the set implied by the
value of the state vector N. In reactions with simple dynamics, in the limit
of a large system and with suitable initial conditions, the mean value of N
obtained by solving the master equation should agree with the solution of
the corresponding mass-action rate equations. In order for this to be so, the
stochastic rate constants must be related to the mass-action constants as
follows:
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κr = kr/(NAV )φr−1
∏
νri<0

(−νri)!, (7)

where NA is Avogadro’s constant, V is the system volume, νri is the ith
component of the stoichiometric vector of reaction r, and φr is the order of
the reaction, i.e. the sum of the stoichiometric coefficients of the reactants:

φr = −
∑
νri<0

νri.

The product which appears at the end of equation (7) has to do with a differ-
ence in definition between mass-action rate constants and stochastic rate con-
stants. In the former, the statistical factor which arises in reactions in which
two or more molecules of the same species appear as reactants is absorbed
into the rate constant, while in stochastic kinetics, this factor appears in the
combinatorial term hr. Note that this product is equal to unity if νri = −1
for all reactants. Equation (7) assumes that kr is given in molar units, which
is almost always the case in solution, but not in the gas phase. In the latter
case where rate constants are often given on a per molecule basis, the factor
of NA is omitted.

According to equation (7), first-order stochastic and mass-action rate con-
stants have the same value. Thus, for mechanism (1), κ−1 = k−1, κ−2 = k−2

and κ−3 = k−3. Applying equation (7) to the second-order rate constants on
the other hand, we get κ1 = k1/V , κ2 = k2/V and κ3 = k3/V . The factors hr
for our reactions are as follows: h1 = NENS , h−1 = h−2 = NC , h2 = NENQ,
h3 = NENX , and h−3 = NH . If our state vector is given by equation (4),
then NE, NQ and NH are calculated using equations (3). Furthermore, the
stoichiometric vectors corresponding to the full state vector (2) are given by

[
ν1 ν2 ν3

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0
−1 −1 −1

0 0 1
0 −1 0
−1 0 0

0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ .

The stoichiometric vectors for the reverse reactions are just ν−i = −νi.
Putting it all together, we get the following chemical master equation for

the CI mechanism, first studied by Jachimowski and coworkers [32]:
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dP (NS , NC , NX)
dt

= κ1(NE + 1)(NS + 1)P (NC − 1, NS + 1, NX)

+ κ−1(NC + 1)P (NC + 1, NS − 1, NX)
+ κ2(NE + 1)(NQ + 1)P (NC − 1, NS, NX)
+ κ−2(NC + 1)P (NC + 1, NS, NX)
+ κ3(NE + 1)(NX + 1)P (NC , NS , NX + 1)
+ κ−3(NH + 1)P (NC , NS, NX − 1)
− P (NC , NS , NX) [κ1NENS + κ−1NC + κ2NENQ

+ κ−2NC + κ3NENX + κ−3NH ] .

In this equation, as noted above, NE , NQ and NH are calculated using the
conservation relations (3).

Several observations can be made about the chemical master equation:

1. The master equation is linear and can be written in the form

Ṗ = RP, (8)

where P is the vector of probabilities of the states defined by (4), and R
is a constant coefficient matrix. In principle, solving the CME is therefore
trivial since its solutions can be written as a superposition of exponential
decay modes along the eigenvectors of R, with amplitudes determined by
the initial conditions.

2. The master equation will typically be a huge set of differential equations.
The number of independent molecular populations in a chemical mecha-
nism is equal to the number of chemical reactions (counting the forward
and reverse reactions as one reaction). The number of states is the num-
ber of different sets of populations which satisfy the conservation and
non-negativity constraints. This number is clearly of order ξρ, where ξ
is an extensivity parameter (e.g. the volume) and ρ is the number of re-
actions. Even for small ρ, this number grows very quickly, and of course
we may be interested in reaction networks, such as those in living cells,
where the populations may be relatively small but where the number of
reactions is very large. To illustrate this point, figure 2 shows how the
number of states of the CI mechanism grows as we increase the volume
at fixed concentrations. Note the very small volumes considered in this
figure. To put these numbers in perspective, consider that the volume of
a mitochondrion or of a small bacterium is about 10−15 L [33, 34]. As a
result of the very large size of the CME, only a few special cases which
can be solved analytically have been studied in detail. Numerical solu-
tions of the CME are rarely seen, simulations of the Markov process being
preferred.

3. The master equation is sparse. While the size of the matrix R clearly
grows as the square of the number of states, and thus as ξ2ρ, the number
of nonzero terms in this matrix is only 2ρ+ 1 times the number of states,
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i.e. the number of nonzero terms also grows as ξρ. This pattern of growth
is also illustrated for the CI mechanism in figure 2. We can exploit the
fact that matrix R is sparse by using techniques specially designed for
such matrices.

101

102

103

104

105

106

107

10-18 10-17

V/L

States
Master equation terms

Fig. 2: Number of states and of nonzero terms in the matrix R as a function of
volume for the CI mechanism at the following total concentrations of substrate,
enzyme and inhibitor: [S]0 = 10 μmol/L, [E]0 = 2 μmol/L and [X]0 = 3 μmol/L.

2.1 Solution Structure and Model Reduction Strategy

As mentioned above, the solutions of the linear system (8) can be written in
the form

P =
σ∑
i=1

aie
λitei,

where σ is the number of states, λi is an eigenvalue of R, and ei is the
corresponding eigenvector. In a closed chemical system, the eigenvalues of
R all have negative real parts, except for a zero eigenvalue associated with
probability conservation. The eigenvector associated with the zero eigenvalue
is the equilibrium probability distribution of the system. Modes with larger
(more negative) eigenvalues are exhausted sooner than those with smaller
eigenvalues (borrowing language from the literature on the computational
singular perturbation method [35]). Accordingly, after some time, the solutions
tend to

P ≈
d∑
i=1

aie
λitei, (9)
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assuming that we have ordered the eigenvalues from smallest to largest and
that only d modes remain active. Another way of understanding this equa-
tion is that the solutions are eventually confined to the d-dimensional hy-
perplane defined by the d leading eigenvectors of R. This hyperplane is the
d-dimensional slow eigenspace of R. Provided there is a reasonable separation
between the time scales 1/�(λd) and 1/�(λd+1), where �() represents the
real part, and assuming that we are only interested in motion on the time
scale 1/�(λd) or slower, then a satisfactory description of the dynamics can
be obtained by confining the model to this eigenspace, which we denote S.
As emphasized in our earlier work, the slow eigenspace is a slow invariant
manifold of the CME [15]. Note that equation (9) cannot be used directly to
obtain a reduced model because of numerical instabilities which arise in very
large problems.

On the d-dimensional slow eigenspace, we can choose d independent vari-
ables such that the remaining σ − d variables can be written as functions of
the former set. Specifically, we let

P =
[

u
m

]
, (10)

where u are the independent and m the dependent variables. Note that this
may require a reordering of the original variables. Because the master equation
is linear, we can in principle compute a matrix M such that

m = Mu (11)

on S. Using this relationship, we can replace the variables in the vector m
wherever they appear in the rate equations for u by expressions involving
only variables in u. Thus, the original model has been reduced from one in σ
variables to one in d variables.

There are several technical issues to be resolved in order to bring this
program to fruition:

1. We have to choose d. In principle, we could choose any d < σ we like, pro-
vided we do not split a complex-conjugate or degenerate pair of eigenvalues
in so doing. It is best however if we exploit a large gap in the eigenvalue
spectrum where there is a clear separation of time scales. Moreover, there
is very little point in constructing a reduced model unless d� σ.

2. We need to choose the independent variables u.
3. Having chosen d and u, we must compute a basis for the slow eigenspace
S, then obtain the reduced rate equations for u.

4. Finally, we need to generate initial conditions for the reduced model such
that the trajectory computed for this model shadows that of the full model
after decay of transients.

At each step, we want to avoid dealing with the full model. We could for
instance generate the initial conditions of the reduced model by integrating
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the full model until the trajectory so generated approaches S. In our view,
the reduced model should, insofar as this is possible, be a complete model
which includes, among other things, a prescription for computing the initial
conditions in the context of that model alone. To do otherwise loses much of
the advantage of generating a reduced model, particularly for problems such
as this one where the full model is huge and awkward to handle.

In the following sections, we will demonstrate how each of these problems
can be addressed. In some cases, our solutions are fully developed. In oth-
ers, there is still considerable room for research. The general procedure was
first described in our earlier paper [15]. However, we have made a number of
improvements since this paper appeared which we describe for the first time
here.

3 Methods and Results

3.1 Choosing the Dimension of S and the Reduced Model
Variables

Ideally, we would choose d, the dimension of the slow eigenspace S, based on
a pair of criteria: First, we would like d to include all modes up to a gap in the
eigenvalue spectrum of R. Secondly, we would like to include all modes whose
time scales are observable in the context of a given experiment. The latter is
beyond the scope of this paper. We thus focus on the former problem.

The qualitative appearance of the spectrum of R depends greatly on the
structure of the reaction mechanism, less so on the values of the rate con-
stants, and very little on either the extensivity parameter or on the initial
concentrations of the various species appearing in the mechanism. This is an
empirical observation, but one which is extremely useful. Among other useful
consequences, this observation allows us to study how the spectrum behaves
for a few small examples, i.e. at smaller values of V , and then to apply this
knowledge directly for larger systems.

Figure 3 shows the eigenvalue spectrum of the matrix R for the CI mecha-
nism. For these values of the parameters, there are 1248 states, and thus 1248
eigenvalues of R. A first large gap occurs after the 37th eigenvalue (including
the leading zero eigenvalue not shown in the figure). For the parameters of
this figure, 37 = NS0 + 1. Smaller gaps recur every 37th eigenvalue at first,
then additional large gaps occur farther on in the spectrum. If we repeat this
calculation with different parameters, the sizes of the gaps vary, but we typ-
ically find the same qualitative picture. In particular, there is almost always
a prominent gap after the (NS0 + 1)st eigenvalue. We can guess why: Relax-
ation to the equilibrium point requires stepwise adjustments in the numbers
of substrate and product molecules. Including zero, there are NS0 +1 possible
values of NS or NQ. This behavior is a stochastic modeling counterpart of
the formation of a one-dimensional slow manifold in the mass-action ODEs
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for the CI mechanism [36]. Of course, it is possible to find parameter values
where the spectrum has quite a different appearance. Figure 4 shows an ex-
ample where the spectrum has no prominent gaps. The parameters used to
draw this figure correspond to slow [37, 38, 39] or sluggish inhibition [36],
which is closely related to the hysteretic enzyme concept [40, 41, 42]. In the
deterministic counterpart of this case, relaxation to equilibrium cannot be re-
duced globally to motion along a one-dimensional slow manifold [36]. There
is however a globally defined two-dimensional slow manifold which attracts
all trajectories. Interestingly, the separation of time scales which leads to the
appearance of a two-dimensional slow manifold in the deterministic system
is not apparent here. In such cases, one can arbitrarily decide to keep only
a certain number of modes, perhaps based on the observational time scale
of a proposed experiment. It is however not that easy to identify these cases
a priori, particularly since the computation of the full eigenvalue spectrum,
as we have done here for illustration, becomes very difficult as the size of the
matrix R grows. The best advice one can give at this time is to either choose d
based on heuristics developed from small, typical cases as we have done here,
or else to use sparse matrix techniques to find a suitable d which includes all
time scales of interest. We have not yet pursued the treatment of this case in
any detail.
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Fig. 3: Real parts of the eigenvalues of R plotted vs the eigenvalue number for the
CI mechanism with k1 = 107 M−1s−1, k−1 = 10 s−1, k2 = 106 M−1s−1, k−2 = 3 ×
104 s−1, k3 = 108 M−1s−1, k−3 = 700 s−1, [S]0 = 10 μM, [E]0 = 2 μM, [X]0 = 3 μM,
and V = 6 × 10−18 L. For these values of the parameters, NS0 = 36. The zero
eigenvalue is omitted from the plot. Dots represent real eigenvalues while open circles
are used for complex eigenvalues. The inset shows the first 40 non-zero eigenvalues
at greater magnification.
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Fig. 4: Real parts of the eigenvalues of R plotted vs the eigenvalue number for the CI
mechanism with k1 = 107 M−1s−1, k−1 = 7 s−1, k2 = 4×106 M−1s−1, k−2 = 26 s−1,
k3 = 5 × 105 M−1s−1, k−3 = 2 s−1, [S]0 = 30 μM, [E]0 = 2 μM, [X]0 = 1 μM, and
V = 5×10−18 L. For these values of the parameters, NS0 = 90. The zero eigenvalue is
omitted from the plot. Dots represent real eigenvalues while open circles are complex
eigenvalues. The inset provides a magnified view of the first 100 eigenvalues.

Given that, most of the time, the leading eigenvalues are associated with
the stepwise adjustment in the balance between substrate and product mole-
cules, a choice of independent variables for the reduced model suggests itself
immediately: We should include in u one probability variable for each value
of NS. We therefore define u as follows:

ui = P (0, i− 1, NX0), i = 1, 2, . . . , NS0 + 1. (12)

The choice of NC = 0 and NX = NX0 is arbitrary. No doubt a smarter choice
could be made, but we have so far not found an algorithm which does better
than this simple ad hoc selection.

3.2 Evolution Equation on the Slow Eigenspace

Having chosen d, we need to compute a basis for the slow eigenspace. The
leading eigenvectors are, of course, such a basis. The leading eigenvectors can,
moreover, be computed efficiently using sparse matrix techniques. There is
however a problem: Since we are dealing in very high-dimensional spaces, it
will usually be the case that some of these eigenvectors will be nearly degener-
ate. We therefore can’t use them directly as a basis for the slow eigenspace S
since we would then run into problems with ill-conditioned matrices in some
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steps of the calculation, nor can we easily orthonormalize them, for essentially
the same reason.

A similar problem arises in the ILDM method for finding approximate
slow manifolds of systems of nonlinear differential equations. The solution
there is to use a Schur decomposition of the Jacobian matrix [43]. The first
n vectors of a Schur basis of a matrix span the same subspace as the first n
eigenvectors, but are orthogonal to each other. Since we want to use sparse
matrix techniques which avoid a full Schur decomposition of R, we need to
compute a partial Schur basis. Moreover, since the solutions of equation (6) are
real-valued, we want to avoid unnecessary complex arithmetic. We therefore
prefer a real partial Schur basis. This basis can be computed using a variant
of the Jacobi-Davidson method developed by van Noorden [44].

We have experimented quite a bit with van Noorden’s Matlab code
(known as rjdqr) and, although we have not tried every conceivable com-
bination of parameters, we can recommend the following procedures, at least
as a starting point for further investigation: First, we have found that precon-
ditioning using an incomplete LU decomposition often makes the calculation
of the Schur basis unstable. We therefore do not precondition the matrix R.
Iterative algorithms like the Jacobi-Davidson method require an initial guess
for the eigenvectors. We have tried a variety of physically motivated trial vec-
tors, but finally found that what worked best was simply to start with a set of
random vectors, which are then orthonormalized. Satisfactory results are how-
ever not always obtained using a random orthonormal set, a point to which we
will return shortly. Internally, rjdqr uses a Krylov subspace iteration method
to solve a correction equation. The code is written to accommodate either
GMRES [45] or BiCGstab($) [46]. We have found the latter to be more
stable in this application.

Let the basis of S, computed as described above, be V. Once we have this
basis, it is a relatively straightforward exercise in linear algebra to compute
the reduced model. The matrix representation of V has dimensions σ×d. We
define the matrix Vu to be the d× d submatrix of V whose rows correspond
to the components of u. Similarly, Vm is the (σ − d) × d submatrix of V
whose rows correspond to the components of m. The matrix M, which gives
the value m on S given u (equation (11)), is then easily seen to be

M = VmV−1
u .

As is well known however, matrix inversion is an ill-behaved operation, par-
ticularly for large matrices. If we multiply both sides of the above equation
by Vu on the right, we obtain MVu = Vm. After taking a transpose, we get

VT
u MT = VT

m.

M is obtained by solving the above linear equation.
To derive the evolution equation, first define the submatrices Ru,u and

Ru,m of R such that
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u̇ = Ru,uu + Ru,mm.

Given the relationship (11), this becomes

u̇ = Ku,

with
K = Ru,u + Ru,mM. (13)

3.3 Initial Conditions for the Reduced Model

We can construct a sensible ansatz for the initial condition of the reduced
model based on a simple piece of physical reasoning. There are two common
ways to set up an enzyme kinetic experiment. We can start with three separate
solutions (one of enzyme, one of substrate and one of inhibitor) which are
mixed rapidly at t = 0. Alternatively, we can pre-incubate the enzyme with the
inhibitor and mix in a substrate solution at t = 0. In either case, the reaction
starts with an induction period during which the enzyme-substrate complex
accumulates. Since, in typical experiments, the rise time of the complex C is
short, not much product will be formed during this transient period. Thus,
we expect

F = 〈NS〉+ 〈NC〉 (14)

to still be relatively large after decay of transients. Our approach is simply
to maximize this quantity on S subject to the constraints P (NS , NC , NX) >
0 ∀ (NS , NC , NX) and

∑
P (NS , NC , NX) = 1. Note that this is a linear

programming problem since moments of the distribution can be computed by

〈Nk
i 〉 =

∑
N

Nk
i P (N).

Moreover, each of the P (N) can be expressed in terms of the reduced set u:
If we order the components of P as in equation (10), then

P = Πu,

where

Π =
[

Id
M

]
,

and Id is the d×d identity matrix. The initial condition can therefore be com-
puted using standard linear programming software. We used the GNU Linear
Programming Kit (GLPK) [47] accessed in Matlab through the GLPK-
MEX interface [48]. The time required to solve the linear program is too
small to be reliably measured, and is negligible in the context of the overall
computation.
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3.4 Obtaining an Accurate Reduction

If we carry out the procedure described above to obtain a reduced model
using just one set of randomly generated trial vectors, we get very inconsistent
results. Figure 5 shows the standard deviation of NS defined by

σ2
S =

∑
N

(NS − 〈NS〉)2 P (N)

for two different computations of the reduced model, along with the exact re-
sult obtained by integrating the full model. We show this particular statistic
because it seems particularly sensitive to errors in the computed Schur ba-
sis. Note that one of the two computations disagrees very badly with the full
model, particularly at small times. It is also relatively easy to find instances
where the linear program used to construct the initial condition gives the
nonsensical result u(0) = 0. The problem is the classical curse of dimension-
ality: In the very high-dimensional phase space of this problem, the subspace
spanned by a set of randomly chosen trial vectors may have only a very small
projection onto some of the Schur vectors defining S. Because of the iterative
method of solution, this tends to affect the accuracy of the last few vectors
computed, i.e. of those vectors corresponding to the faster of the d eigenmodes
retained.
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Fig. 5: Standard deviation of NS vs time for the full model (solid), and two different
computations of the reduced model (dashed and dotted curves). The parameters
were as in Fig. 3, except V = 5 × 10−18 L. The full model was integrated using
Matlab’s ode15s, a stiff integrator, with the initial conditions P (NS0, 0, NX0) = 1
and P (NS, NC , NX ) = 0 for all other N. The reduced model was integrated using
the non-stiff solver ode45.
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Fortunately, it is relatively easy to detect an inaccurate reduction: In the
bad cases, the maximum value of F found by our linear program is significantly
smaller than NS0. For instance, in figure 5 where NS0 = 30, the dotted curve
corresponds to an optimum value of F of 23.9, whereas the dashed curve
corresponds to F = 27.5. The amount by which F will be smaller than NS0

in an optimal reduction will vary with the parameters of the model since this
depends on the average rate of product formation during the transient phase.
Nevertheless, the general principle enunciated here should hold for a wide
variety of chemical systems in which reduction is feasible.

Since inaccurate reductions are not overwhelmingly common, we have
adopted a simple trial-and-error strategy in which we first compute the Schur
basis with a very loose tolerance, and then tighten the tolerance if the initial
computation produces a reasonable value of F . We check again if F is suffi-
ciently large. If not, we start over with a new set of random trial vectors. Fig-
ure 6 shows the evolution of the standard deviation for several reduced models
obtained by the rejection algorithm with different randomly generated trial
vectors. Note that the results are now much more consistent. Interestingly,
the reduced model slightly underestimates the maximum in the standard de-
viation. Unfortunately, this rejection algorithm involves significant overhead:
On a 2.8GHz Pentium 4 with 1Gb of physical memory running Linux, com-
puting the reduced model took between 83 and 1674 s, depending on how
many iterations it took to hit on a good set of trial vectors. The mean and
standard deviation of the computation time were 680 and 587 s, respectively,
corresponding to a mean iteration count of 15 with a standard deviation of 13.
Integrating the full model only took 8.7 s. There are several reasons why these
statistics should not discourage us from further investigation of this method:

1. We are using an interpreted version of rjdqr. A compiled version would
run much faster. We have also not exhausted the possibilities for optimiz-
ing the overall procedure.

2. Integration of the reduced model takes a negligible amount of time (too
small to obtain reliable statistics) both because of the size reduction of
the system and because of a reduction in stiffness. Among other benefits,
we can use a non-stiff integrator on the reduced system as noted in the
caption to figure 5. Accordingly, in studies where we want to integrate
the reduced model repeatedly, e.g. to study the evolution from different
initial distributions, using the reduced model might still be advantageous
since the reduction only has to be done once for a given set of parameters.
(In such a study, the method for generating a sensible initial distribution
described in section 3.3 might only be used to test the quality of the
reduction as described in section 3.4.)
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Fig. 6: Standard deviation of NS vs t for the full model (solid) and for several
computations of the reduced model using the rejection algorithm described in the
text. The parameters were as in figure 5. The initial computation was carried out
with a tolerance of 10−3 in rjdqr. The reduced model was rejected at this step if
F < 0.7NS0. The Schur vectors were refined to a tolerance of 10−8 with a rejection
threshold at this step of 0.95NS0.

4 Conclusions

We have presented a method for computing a reduced stochastic model and
found that in typical cases for the CI mechanism,NS0+1 states are sufficient to
faithfully reproduce the dynamics of the full model after decay of transients.
Since the number of molecules of any given type scales like the extensivity
parameter ξ, the number of variables in our reduced model also scales like ξ
instead of the ξρ scaling of the full probability space. The number of terms
in the master equation (non-zero entries of the matrix R) also scales as ξρ,
where ρ is the number of chemical reactions in the model. On the other hand,
the matrix K which governs the dynamics of the reduced model, defined by
equation (13), is not sparse. Thus it will typically have a number of non-zero
entries which scales as ξ2. We would therefore expect the methods developed
here to be particularly advantageous for models with ρ � 2. Already with
ρ = 3, we see that the reduced model is enormously more efficiently simulated
than the full master equation, again due in large part to the reduction in
stiffness. The initial generation of the reduced model is the only step whose
efficiency is of concern.

We have shown how a physically sensible initial condition for the reduced
master equation can be generated without integrating the full model. We be-
lieve that this method can be generalized to a wide variety of cases, including
ordinary mass-action chemical models. For instance, in the mass-action model
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corresponding to the mechanism (1), the one-dimensional slow manifold, when
it exists [36], can be parameterized by s, the concentration of substrate. Al-
though we have not tested this idea, it seems likely that the value of s which
satisfies s+cM(s) = s0, where cM(s) is the equation of the manifold, will pro-
vide a good initial condition for the reduced model. This construction shows
that the initial condition ansatz proposed here is in fact essentially a refined
version of the reactant stationary approximation [20] corrected to satisfy mass
conservation relationships.

There are still some significant technical challenges to address to make
this reduction method truly practical. Currently, we choose d and the set of
independent variables u heuristically (equation (12)). This is of course not very
satisfying. While it is fairly obvious how we could find d adaptively, simply
by computing the eigenvalues one at a time until we find a spectral gap, it is
much less obvious how to choose the independent variables automatically.

The other major challenge to be resolved involves the generation of the
basis for the slow eigenspace. We either need to find a clever way to generate
the trial vectors which is more likely to generate a good starting point for
iterative extraction of the Schur basis, or we need to use a different method
altogether to generate this basis. When we do have a good basis, we get
excellent results from the reduced model with our physically motivated initial
condition. We are therefore encouraged to pursue this line of investigation.
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Model Reduction in Kinetic Theory
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Summary. Methods to derive macroscopic transport equations for rarefied gases
from the Boltzmann equations are presented. Featured methods include the
Chapman-Enskog expansion, Grad’s moment method, and the author’s order of
magnitude method. The resulting macroscopic equations are compared and discussed
by means of simple problems, including linear stability, shock wave structures, and
Couette flow.

1 Introduction

The most important scaling parameter to characterize processes in rarefied
gases is the Knudsen number Kn, defined as the ratio between the mean free
path of a particle and a relevant reference length scale (e.g. channel width,
wavelength, etc.). For a complex flow the local Knudsen number might differ
by several orders of magnitude between locations. Thus, rarefied gas flows are
multiscale problems.

Processes in rarefied gases are well described by the Boltzmann equation
[1, 2, 3], a non-linear integro-differential equation that describes the evolution
of the particle distribution function f in phase space, i.e. on the microscopic
level. The numerical solution of the Boltzmann equation, either directly [4]
or via the Direct Simulation Monte Carlo (DSMC) method [5], is very time
expensive.

If the Knudsen number is small, the Boltzmann equation can be reduced
to simpler models, which allow faster solutions,

If Kn < 0.01 (say), the equations of ordinary hydrodynamics—the laws
of Navier-Stokes and Fourier (NSF)—can be derived from the Boltzmann
equation. The NSF equations are macroscopic equations for mass density ρ,
velocity vi and temperature T , and thus pose a mathematically less complex
problem than the Boltzmann equation.

Macroscopic equations for rarefied gas flows at Knudsen numbers above
0.01 are highly desirable, since they promise to replace the Boltzmann equa-
tion with simpler equations that still capture the relevant physics. Several
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methods are available to derive the desired higher order equations, and all of
these suggest different sets of equations.

Naturally, the complexity of the subject forbids a detailed discussion of
this rather complex topic on the space available. Thus, this contribution aims
mainly at presenting the main ideas of the most important methods, and to
point out the relations and differences between the various sets of equations.
The reader searching for greater detail is referred to the cited literature, in
particular to the author’s textbook [3].

2 Basic Kinetic Theory

We shall consider mon-atomic ideal gases exclusively. The basic quantity in
kinetic theory is the particle distribution function f (x, t, c); x and t are the
space and time variables, respectively, and c denotes the microscopic velocities
of particles. The distribution function is defined such that f (x, t, c) dcdx gives
the number of gas particles in the phase space cell dcdx at time t.

Macroscopic quantities are obtained by taking suitable averages (moments)
of the phase density. The basic hydrodynamic variables are obtained according
to

ρ = m

∫
fdc , ρvi = m

∫
cifdc , ρu =

3
2
ρθ =

m

2

∫
C2fdc . (1)

Here, θ = k
mT is the temperature in energy units (that will be used from now

on instead of T ), m is the mass of a particle, k denotes Boltzmann’s constant,
and Ci = ci−vi is the peculiar velocity. u denotes the specific internal energy,
and (1)3 must be considered as the definition of temperature.

The phase density is obtained as the solution of the Boltzmann equation,

∂f

∂t
+ ci

∂f

∂xi
= S (f, f) . (2)

Here, S is the collision term which describes the change of f due to collisions
among particles. The full expression for S can be found in the literature
[1, 2, 3], here we only list its most important properties:

1. Mass, momentum and energy are conserved in a collision,

m

∫
Sdc = 0 , m

∫
ciSdc = 0 ,

m

2

∫
C2Sdc = 0 . (3)

2. The production of entropy is always non-negative (H-theorem),

Σ = −k
∫

ln fSdc � 0 . (4)

3. In equilibrium the phase density is a Maxwellian distribution, i.e.

S = 0 =⇒ f = fM =
ρ

m

1
√

2πθ
3 exp

[
−C

2

2θ

]
. (5)
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The Boltzmann collision term S is a complex non-linear integral expression
in f that depends also on the interaction potential between the particles. Its
mathematical treatment becomes particularly simple for particles interacting
with a repulsive fifth-order power potential, the so-called Maxwell molecules.
More realistic potentials, e.g. general power laws, hard sphere molecules, or
Lennard-Jones potentials introduce higher complexity.

Simplified expressions for S that capture its basic properties are often
used, the most popular of these is the BGK model [6] where

SBGK = ν (fM − f) ; (6)

ν is the average collision frequency for a particle.
Multiplication of the Boltzmann equation (2) with

{
m,mci,

m
2 C

2
}

and
subsequent integration over the microscopic velocity yields the conservation
laws for mass, momentum and internal energy,

∂ρ

∂t
+
∂ρvk
∂xk

= 0 ,

ρ
∂vi
∂t

+ ρvk
∂vi
∂xk

+
∂p

∂xi
+
∂σik
∂xk

= 0 , (7)

3
2
ρ
∂θ

∂t
+

3
2
ρvk

∂θ

∂xk
+

∂qk
∂xk

= − (pδij + σij)
∂vi
∂xj

.

Here, the pressure p obeys the ideal gas law, p = ρθ, and

qi =
m

2

∫
C2Cifdc (8)

denotes the heat flux vector. The pressure tensor is defined as

pδij + σij = m

∫
CiCjfdc with σij = m

∫
C〈iCj〉fdc (9)

where σij denotes the stress, that is the symmetric and tracefree part of the
pressure tenor, with σii = 0, σij = σji. Indices in angular brackets denote
symmetric trace-free tensors (see [3], Appendix A.2).

The conservation laws (7) together with the definitions for stress and heat
flux (9, 8) are exact, that is they are valid for any solution f of the Boltzmann
equation. Mathematically, the five conservation laws do not form a closed set
of equations for the hydrodynamic variables {ρ, vi, θ}, since they contain stress
and heat flux as well.

The idea of macroscopic continuum approximations is to close the set of
equations by deriving additional macroscopic equations for σij and qi from the
Boltzmann equation by means of rational approximation procedures. Various
methods available to this end, and the corresponding additional equations for
σij and qi, will be discussed in the sequel.

For completeness we mention that multiplication of the Boltzmann equa-
tion with −k ln f

y (y is a constant) yields the balance of entropy, which has a
non-negative production (4) [1, 2, 3].
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3 Chapman-Enskog Method

The best known approach to derive macroscopic transport equations from the
Boltzmann equation is the Chapman-Enskog (CE) method [1, 2, 3, 7, 8]. The
CE method is based on the dimensionless form of the Boltzmann equation
which contains the Knudsen number as a scaling parameter for the collision
term,

∂f

∂t
+ ci

∂f

∂xi
=

1
Kn
S (f, f) . (10)

In the limit Kn → 0, the collision term must vanish, and it follows from the
properties of S that the corresponding phase density is the local Maxwellian
(5), f (0) = fM . Evaluation of σij and qi with the Maxwellian gives zero stress
and heat flux,

σ
(0)
ij = q

(0)
i = 0 . (11)

Insertion of this into the conservation laws (7) yields the well known Euler
equations.

The idea of the CE expansion method is to add corrections to the local
equilibrium distribution by adding terms of higher orders in the Knudsen
number,

f = f (0) + Knf (1) + Kn2f (2) + · · · . (12)

An important condition on the expansion (12) is that the hydrodynamic vari-
ables {ρ, vi, θ} are the same at any level of expansion, so that

ρ

{
1, vi,

3
2
θ

}
= m

∫ {
1, ci,

C2

2

}
f (0)dc , 0 =

∫ {
1, ci,

C2

2

}
f (α)dc (α ≥ 1) .

These compatibility conditions guarantee that only the equations for the non-
equilibrium variables σij and qi change with increasing degree of approxima-
tion,

σij = σ
(0)
ij +Knσ(1)

ij +Kn2σ
(2)
ij +· · · , qi = q

(0)
i +Knq(1)

i +Kn2q
(2)
i +· · · . (13)

The expansion parameters f (α) are determined successively by plugging
the series (12) into the Boltzmann equation, and equating terms with the
same factors in powers of the Knudsen number. This leads to an iterative
structure, where the correction at order α is a function of (derivatives of)
the lower order corrections, f (α) = F

(
f (β), 0 ≤ β < α

)
, see e.g. [7, 3]. All

correction terms depend only on the hydrodynamic variables and their gra-
dients,† since the zeroth order term—the Maxwellian—depends only on the
hydrodynamic variables {ρ, vi, θ}. Stress and heat flux are computed from the
approximation (12) by accounting for terms up to a certain order, and the
resulting expressions will relate σij and qi to the hydrodynamic variables and
their gradients.
† Time derivatives are replaced by means of the conservation laws [7, 3].
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Obviously, to zeroth order the expansion yields the Euler equations (11).
The first order correction gives the laws of Navier-Stokes and Fourier,

σ
(1)
ij = −2μ

∂v〈i
∂vj〉

, q
(1)
i = −κ ∂θ

∂xi
. (14)

The most important success of the CE method is that it gives accurate ex-
pressions for viscosity μ and heat conductivity κ, which relate these to the
microscopic interaction potential and the hydrodynamic variables. In particu-
lar one finds, in accordance with experiments, that the viscosity depends only
on temperature, and not on density. For power potentials the CE method
yields

μ = μ0

(
θ

θ0

)ω
(15)

with ω = 1/2 for hard spheres and ω = 1 for Maxwell molecules; experiments
indicate ω $ 0.8 for argon [5]. Heat conductivity and viscosity are related
through the Prandtl number,†

Pr =
5
2
μ

κ
$ 2

3
.

The value of Pr varies only slightly (less than 1%) with the molecule model,
and measured values are close to 0.66 [2, 3].

The second order contributions are the Burnett equations [9, 2, 7, 3],

σ
(2)
ij =

μ2

p

[
%1

∂vk
∂xk

Sij −%2

(
∂

∂x〈i

(
1
ρ

∂p

∂xj〉

)
+

∂vk
∂x〈i

∂vj〉
∂xk

+ 2
∂vk
∂x〈i

Sj〉k

)
+%3

∂2θ

∂x〈i∂xj〉
+%4

∂θ

∂x〈i

∂ ln p
∂xj〉

+%5
1
θ

∂θ

∂x〈i

∂θ

∂xj〉
+%6Sk〈iSj〉k

]
, (16)

q
(2)
i =

μ2

ρ

[
θ1
∂vk
∂xk

∂ ln θ
∂xi

− θ2

(
2
3

∂2vk
∂xk∂xi

+
2
3
∂vk
∂xk

∂ ln θ
∂xi

+ 2
∂vk
∂xi

∂ ln θ
∂xk

)
+θ3Sik

∂ ln p
∂xk

+ θ4
∂Sik
∂xk

+ 3θ5Sik
∂ ln θ
∂xk

]
. (17)

The Burnett coefficients %α, θα depend on the molecule type, and for power
potentials with exponent γ some values are given in Table 1 [10].

The third order expansion yields the super-Burnett equations. Their
computation is extremely cumbersome, and the full three-dimensional non-
linear super-Burnett equations were never derived. One only finds the lin-
earized equations in 3-D [11, 12, 13, 3], and the non-linear equations for one-
dimensional geometry [11, 14, 15, 3].

† Our defintion of the Prandtl number differs from the usual one by a factor k
m

due
to the use of θ instead of T .
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γ ω �1 �2 �3 �4 �5 �6 θ1 θ2 θ3 θ4 θ5

5 1 10/3 2 3 0 3 8 75/8 45/8 −3 3 39/4

7.66 0.8 3.600 2.004 2.761 0.254 1.784 7.748 10.160 5.656 −3.014 2.761 9.019

∞ 0.5 4.056 2.028 2.418 0.681 0.219 7.424 11.644 5.822 −3.09 2.418 8.286

Table 1: Burnett coefficients for power potentials (γ = 5 for Maxwell molecules,
γ = 7.66 for argon, γ =∞ for for hard sphere molecules) [10].

The equations of Navier-Stokes and Fourier cease to be accurate for Knud-
sen numbers above ∼ 0.01, and one would expect that Burnett and super-
Burnett equations are valid for larger Knudsen numbers. Unfortunately, how-
ever, the higher order equations become linearly unstable for processes involv-
ing small wavelengths, or high frequencies [12, 15], and they lead to unphysical
oscillations in steady state processes [16], and thus cannot be used in numer-
ical simulations .

There is no clear argument why the Chapman-Enskog expansion leads to
unstable equations. It seems that a first order Chapman-Enskog expansion
leads generally to stable equations, while higher order expansions generally
yield unstable equations, although exceptions apply, e.g. see [17, 18].

Zhong et al. suggested the “augmented Burnett equations” where some
terms of super-Burnett order (but not the actual super-Burnett terms) are
added to the Burnett equations to stabilize these [19, 20]. The augmented
Burnett equations still are unstable in space [15, 3], and they lack a rational
derivation from the Boltzmann equation [15].

For reference in subsequent sections we print the distribution function for
the NSF equations (with ξ = C/

√
θ)

f|CE = fM

[
1 +

σ
(1)
ik

2p
A
(
ξ2
) C〈iCk〉

θ
+

2
5
q
(1)
k

pθ
B
(
ξ2
)
Ck

(
C2

2θ
− 5

2

)]
. (18)

The dimensionless functions A and B result from the approximate inversion
of the Boltzmann collision term [2, 7, 3] and thus depend on the interaction
potential. For Maxwell molecules they are constants, A = B = 1, while for all
other interaction potentials they are polynomials; fourth order polynomials
give an excellent approximation [2, 10]. Setting A = B = 1 leads to small de-
viations between theory and measurement of viscosity and heat conductivity.

4 Grad Moment Method

The Chapman-Enskog method leads to expressions for stress and heat flux
that contain higher derivatives of the hydrodynamic variables. Grad suggested
a quite different approach, in which the number of variables is extended be-
yond the 5 hydrodynamic variables ρ, vi, θ, by adding stress σij , heat flux qi
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and other moments to the list of variables [21, 22]. The corresponding trans-
port equations for the additional variables are obtained as moments of the
Boltzmann equation and are first order partial differential equations for the
moments. They do not form a closed set for the variables and require a closure
argument. For this Grad suggests to approximate the phase density by an ex-
pansion in Hermite polynomials about the equilibrium distribution (the local
Maxwellian), where the expansion coefficients are related to the moments.

A crucial point in the method is the question which and how many mo-
ments are needed to describe a process. The answer depends on the particular
process, but experience shows that the number of moments must be increased
with increasing Knudsen number [23, 24, 25, 26, 27, 28]. Grad’s method does
not provide an argument that links the Knudsen number to the set of moments
to be considered as variables.

The best known set of Grad-type moment equations is the 13 moment
system, which has the variables {ρ, vi, θ, σij , qi}. The corresponding mo-
ment equations are obtained by multiplying the Boltzmann equation with{
m,mci,

m
2 C

2,mC〈iCj〉,
m
2 C

2Ci
}
. This gives the conservation laws (7) plus

additional moment equations for stress and heat flux,

∂σij
∂t

+vk
∂σij
∂xk

+σij
∂vk
∂xk

+
4
5
∂q〈i
∂xj〉

+2p
∂v〈i
∂xj〉

+2σk〈i
∂vj〉
∂xk

+
∂mijk

∂xk
= Pij , (19)

∂qi
∂t

+vk
∂qi
∂xk

+
5
2
p
∂θ

∂xi
+

5
2
σik

∂θ

∂xk
+θ

∂σik
∂xk

−θσik
∂ ln ρ
∂xk

+
7
5
qk

∂vi
∂xk

+
2
5
qk
∂vk
∂xi

+
7
5
qi
∂vk
∂xk

+
1
2
∂Rik
∂xk

+
1
6
∂Δ

∂xi
+mijk

∂vj
∂xk
− σij

ρ

∂σjk
∂xk

= Pi . (20)

Equations (19, 20) contain additional moments of the distribution function,
which are defined as

Δ = m

∫
C4 (f − fM ) dc , Rij = m

∫ (
C2 − 7θ

)
C〈iCj〉fdc ,

mijk = m

∫
C〈iCjCk〉fdc . (21)

The terms on the right hand sides are the moments of the Boltzmann collision
term,

Pij = m

∫
C〈iCj〉Sdc , Pi =

m

2

∫
C2CiSdc . (22)

Obviously, the set of equations can be closed by finding expressions for
Δ,Rij ,mijk,Pij ,Pi that relate these to the basic 13 variables {ρ, vi, θ, σij , qi}.
To this end, the Grad method provides the distribution [21, 22, 3]

f|13 = fM

[
1 +

σik
2p

C〈iCk〉
θ

+
2
5
qk
pθ
Ck

(
C2

2θ
− 5

2

)]
. (23)
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This function recovers the basic 13 variables, and allows to compute the un-
knowns (21, 22) as

Δ = Rij = mijk = 0 , Pij = − p
μ
σij , Pi = −2

3
p

μ
qi . (24)

Insertion of (23) into (19, 20) gives, together with (7), the closed set of equa-
tions for the 13 variables.

By comparing the distribution functions (18) and (23) it becomes evident
that they are quite similar. However, there are two differences: (a) the CE
phase density contains only the first approximations to stress and heat flux,
σ

(1)
ij and q

(1)
i , while the Grad distribution contains both as independent vari-

ables, σij and qi. (b) In the Grad function, the coefficients A and B assume
the values for Maxwell molecules, A = B = 1. From the last point one will
infer that the Grad 13 moment equations will be best suited for Maxwell
molecules, while for other molecule types they can only be an approximation.

The Grad 13 equations have two major drawbacks: (a) The equations
are symmetric hyperbolic for most values of the variables, and this leads to
shock structures with discontinuities (sub-shocks) for Mach numbers above
1.65 [23, 26]. (b) Since Grad’s method is not linked to the Knudsen number,
the range of applicability for the equations is unclear.

These problems remain for Grad-type equations with more variables, which
give smooth shocks up to higher but not too high Mach numbers [26, 27]. The
13 moment equations do not describe Knudsen boundary layers [29, 30, 24],
increasing the number of moments allows to compute these [31, 24, 32].

For some problems, in particular for large Mach or Knudsen numbers, one
has to face hundreds of moment equations, but the relation between moment
number and Knudsen or Mach number is not clear. Computations for hundreds
of moments are only manageable for simple geometries and problems [33, 23,
24], and were never performed in two or three dimensions. Indeed, the goal
of a macroscopic set of equations must be to have a simplification compared
to the Boltzmann equation, and using hundreds of moments does not achieve
this goal.

5 Combining the Chapman-Enskog and Grad Methods

In most of the available literature, the two classical methods—Grad moment
method and Chapman-Enskog expansion—are treated as being completely un-
related. However, using a method akin to the Maxwellian iteration of Truesdell
and Ikenberry [34, 35], Reinecke and Kremer extract the Burnett equations
from Grad-type moment systems [10, 36]. Which set of moments one has to use
for this purpose depends on the interaction potential. For Maxwell molecules
it is sufficient to consider Grad’s set of 13 moments.
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In [30] it was shown that this iteration method is equivalent to the CE
expansion of the moment equations. In the original CE method one first ex-
pands, and then integrates the resulting distribution function to compute its
moments. In the Reinecke-Kremer-Grad method, the order of integration and
expansion is exchanged.

For Maxwell molecules the Burnett equations result from the second or-
der CE expansion of the 13 moments set, while the super-Burnett equations
result from the 3rd order CE expansion of the 26 moment set (which adds
Δ,Rij ,mijk to the list of variables) [30, 13, 15, 3].

While the Reinecke-Kremer-Grad method does not give new results, it al-
lows an easier access to higher order CE expansions, in particular the Burnett
equations. The method does not solve the stability problems of the Burnett
equations

M. Torrilhon and the present author used a different way to combine the
two methods by assuming different time scales for the 13 basic variables of the
theory on one side, and all higher moments on the other [13, 15, 3]. This allows
to perform a CE expansion around a non-equilibrium state which is defined
through the 13 variables. This method, which appeared first as a side note in
Grad’s contribution to the Encyclopedia of Physics [22], gives a regularizing
correction to the Grad13 equations, the regularized 13 moment equations (R13
Eqs.).

The same idea was used by Karlin et al. [37] for the linearized Boltz-
mann equation. They compute an approximation to the distribution function,
which is used to derive a set of 13 linear equations for the 13 moments. Their
equations are the linearized form of the R13 equations.

The R13 equations are not hyperbolic, give smooth shock structures for
all Mach numbers, and they are stable. Therefore, this combination of the CE
and Grad methods yields a marked improvement over the original methods.
The R13 equations will be shown and discussed later, in Sec. 6, which presents
an alternative method of derivation.

The Grad distributions, e.g. the 13 moment phase density f|13 (23), de-
fine non-equilibrium manifolds in phase space [37, 38]. The Maxwellians form
a subset on these non-equilibrium manifolds (they are the appropriate Grad
distribution for the 5 moments case, i.e. the Euler equations). The Grad clo-
sure restricts the phase space so that the gas cannot access all states in phase
space, but only those on the Grad non-equilibrium manifold. This strong re-
striction is inherent to Grad’s closure, and has no physical foundation, since
Grad distributions cannot be extracted from the Boltzmann equation. This
is different, of course, for the Maxwellians, which are those phase densities
that give a zero collision term. With no argument from physics to support
the Grad distributions, it seems to be daring to restrict the gas on the Grad
non-equilibrium manifolds. One way to relax the Grad assumption—at least
somewhat—is to allow states in the vicinity of the Grad manifolds. This stands
in analogy to the relation between Euler and NSF equations, which describe
the equilibrium manifold, and its vicinity.
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It must be emphasized that there is no evidence in physics to support the
existence of pseudo-equilibrium manifolds for the gas. In particular there is no
guideline for choosing the relevant moments, or the pseudo-equilibrium distri-
bution, which could, e.g., be a Grad distribution with any number of moments.
A somewhat popular alternative are distribution functions that result from
maximizing entropy or extended thermodynamics, see [23, 39, 40, 41, 42, 43]
as well as [3] for details on, and problems associated with, this approach.

6 Order of Magnitude Method

The weak point in the Grad method is that no statement is made to connect
Knudsen numbers and relevant moments. As a result, the derivation of the
R13 equations as outlined above required the assumption of different time
scales for the basic 13 moments, and higher moments. While this assumption
leads to a set of equations with desired behavior, it is difficult to justify, since
the characteristic times of all moments are, in fact, of the same order.

An alternative approach to the problem was presented by Struchtrup in
[44, 45, 3], partly based on earlier work by Müller et al. [46].

The order of magnitude method considers not the Boltzmann equation
itself, but its infinite system of moment equations for symmetric and trace-
free moments

u
(a)
〈ii···in〉 = m

∫
C2aC〈i1 · · ·Cin〉fdc (a, n = 0, 1, 2, . . .) . (25)

Here, due to space restrictions, we cannot present the method in detail, but
only describe its main steps; in particular we shall not show the general mo-
ment equations for the moments (25).

The method of finding the proper equations with order of accuracy λ0 in
the Knudsen number consists of the following three steps:

1. Determination of the order of magnitude λ of the moments.
2. Construction of a moment set with minimum number of moments at any

order λ.
3. Deletion of all terms in all equations that would lead only to contributions

of orders λ > λ0 in the conservation laws for energy and momentum.

Step 1 is based on a Chapman-Enskog expansion where a moment φ is
expanded according to

φ = φ0 + Knφ1 + Kn2φ2 + Kn3φ3 + · · · ,

and the leading order of φ is determined by inserting this ansatz into the
complete set of moment equations. A moment is said to be of leading order
λ if φβ = 0 for all β < λ. This first step agrees with the ideas of [46], where,
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however, the authors do not perform a Chapman-Enskog expansion, but a
Maxwellian iteration [35].

In Step 2, new variables are introduced by linear combination of the mo-
ments originally chosen. The new variables are constructed such that the
number of moments at a given order λ is minimal. This step does not only
simplify the later discussion, but gives an unambiguous set of moments at
order λ. This ensures that the final result will be independent of the initial
choice of moments. Note that, while the basic set of moments (25) makes it
easy to identify the order of magnitude (in Step 1), any alternative complete
set of moments could have been chosen to arrive at the same new variables
after Step 2.

Step 3 follows from the definition of the order of accuracy λ0: A set of
equations is said to be accurate of order λ0, when stress σij and heat flux

qi are known within the order O
(
Knλ0

)
. The evaluation of this condition is

based on the fact that all moment equations are strongly coupled. This implies
that each term in any of the moment equations has some influence on all other
equations, in particular on the conservation laws. A theory of order λ0 will
consider only those terms in all equations whose leading order of influence in
the conservation laws is λ ≤ λ0. Luckily, in order to evaluate this condition, it
suffices to start with the conservation laws, and step by step, order by order,
add the relevant terms that are required

The accounting for the order of accuracy is the main difference between the
order of magnitude approach and Consistently Ordered Extended Thermody-
namics (COET) [46], which assumes that all terms in all moment equations
that are of leading order λ ≤ λ0 or smaller must be retained. The order of
magnitude approach leads to smaller systems of equations for a given order,
and can be performed for the full three dimensional and time dependent equa-
tions, while [46] presents the equations only for one-dimensional steady state
processes.

The order of magnitude method was applied to the special cases of Maxwell
molecules and the BGK model in [44, 3], and it was shown that it yields the
Euler equations at zeroth order, the Navier-Stokes-Fourier equations at first
order, and Grad’s 13 moment equations (with omission of the non-linear term
σij

ρ
∂σjk

∂xk
) at second order. The regularized 13 moment equations (R13) are

obtained as the third order approximation, they consists of the conservation
laws (7) and the balance laws for stress (19) and heat flux (20) which now are
closed by the expressions†

† There are some differences between the original R13 equations of [13] and the
equations presented here, which result from the order of magnitude method. The
original equations contain some higher (4th) order terms, and were derived for
the linearized collision operator, see [3] for details and discussion.
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Δ = −σijσij
ρ
− 12

μ

p

[
θ
∂qk
∂xk

+ θσkl
∂vk
∂xl

+
5
2
qk

∂θ

∂xk
− qkθ

∂ ln ρ
∂xk

]
,

Rij = −4
7

1
ρ
σk〈iσj〉k −

24
5
μ

p

[
θ
∂q〈i
∂xj〉

+ q〈i
∂θ

∂xj〉
− θq〈i

∂ ln ρ
∂xj〉

+
10
7
θσk〈i

∂v〈j〉
∂xk〉

]
mijk = −2

μ

p

[
θ
∂σ〈ij
∂xk〉

− σ〈ijθ
∂ ln ρ
∂xk〉

+
4
5
q〈i

∂vj
∂xk〉

]
. (26)

The moments of the collision operator (24)2,3 are exact for Maxwell molecules,
and remain unchanged, Pij=− p

μσij , Pi = − 2
3
p
μqi.

A closer inspection of the regularized equations (26) shows that the terms
added to the original Grad 13 moment equations are of super-Burnett order.

For general, i.e. non-Maxwellian, molecule types the order of magnitude
method was performed to second order in [45, 3]; the derivation of the third
order equations would be far more involved than for Maxwell molecules. Again
the equations at zeroth and first order are the Euler and NSF equations (with
exact viscosity, heat conductivity and Prandtl number). The second order
equations are a generalization of Grad’s 13 moment equations,†

Dσij
Dt

+ σij
∂vk
∂xk

+ 2σk〈i
∂vj〉
∂xk

+
4
5

Pr
%3

%2

(
∂q〈i
∂xj〉

− ωq〈i
∂ ln θ
∂xj〉

)
+

4
5

Pr
%4

%2
q〈i

∂ ln p
∂xj〉

+
4
5

Pr
%5

%2
q〈i

∂ ln θ
∂xj〉

+
(
%6

%2
− 4
)
σk〈iSj〉k

= − 2
%2

p

μ

[
σij + 2μ

∂v〈i
∂xj〉

]
, (27)

Dqi
Dt

+ qk
∂vi
∂xk

+
5
3
qi
∂vk
∂xk
− 5

2
1
Pr

σik
∂θ

∂xk
+

5
4

1
Pr

θ3

θ2
θσik

∂ ln p
∂xk

+
5
4

1
Pr

θ4

θ2
θ

(
∂σik
∂xk

− ωσik
∂ ln θ
∂xk

)
+

5
2

1
Pr

3
2
θ5

θ2
σik

∂θ

∂xk

= − 1
θ2

5
2

1
Pr

p

μ

[
qi +

5
2
μ

Pr
∂θ

∂xi

]
. (28)

Here, the coefficients %α, θα are the Burnett coefficients of Table 1 and ω is
the viscosity exponent of (15).

Jin and Slemrod [47, 48] proposed an alternative regularization by con-
structing a set of equations that (a) gives the Burnett equations in a second
order CE expansion, and (b) gives a positive entropy production for all values
of the variables. Up to second order their equations agree with the generalized
Grad 13 equations (27, 28) to which they add terms of super-Burnett order
that were designed to achieve their goal (b). These higher order terms cannot
be justified from the Boltzmann equation [3].

† Recall that Grad’s 13 moment equations are only suitable for Maxwell molecules.
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We summarize as follows: The order of magnitude method reproduces the
established results of the CE expansion at zeroth (Euler) and first (NSF) order.
Moreover it provides a new link between the Knudsen number and Grad’s
13 moment equations which turn out to be of second order in the Knudsen
number, together with a generalization of these for non-Maxwellian molecules.
Finally, the method provides a rational derivation of the R13 equations that
does not require artificial assumptions.

7 Relations Between the Various Sets of Equations

The derivation of macroscopic equations from the Boltzmann equation is sim-
plest for the special case of Maxwell molecules. Accordingly, theories of higher
orders in the Knudsen number, like the super-Burnett and the R13 equations,
are—at present—only available for Maxwell molecules.

The Chapman-Enskog expansion of increasing order gives the Euler,
Navier-Stokes-Fourier, Burnett, and super-Burnett equations.

The augmented Burnett equations contain terms of super-Burnett order,
which are added ad hoc, and cannot be derived from the Boltzmann equation.

Grad-type moment equations can be constructed for arbitrary moment
sets, but the 13 moment system and the 26 moment system are particularly
interesting, since they are equations of orders O

(
Kn2

)
and O

(
Kn4

)
, respec-

tively. They can be obtained also from the order of magnitude approach which
gives the R13 equations as the proper equations at order O

(
Kn3

)
, and the

NSF and Euler equations at orders O
(
Kn1

)
and O

(
Kn0

)
, respectively.

Jin and Slemrod’s equations are accurate to order O
(
Kn2

)
, but contain

terms of super-Burnett order, O
(
Kn3

)
, which cannot be derived from the

Boltzmann equation.
A Chapman-Enskog expansion of higher order moment equations can be

performed by means of CE expansions for stress and heat flux (see (13)); the
results agree with those of the CE expansion of the Boltzmann equation.

The relations between the various sets of equations are depicted in Table 2,
in which an arrow between two sets of equations indicates that one set can be
derived from the other (e.g. the Burnett eqs. from the Grad13 eqs. by means
of a CE expansion). Note that at a given order the equations derived from the
CE method and from the order of magnitude approach are quite different, due
to the marked differences in methodology. Indeed, the CE based equations
(e.g. the super-Burnett equations, at third order), contain less information
than their counterparts (e.g. the R13 equations, also at third order), since the
former can be derived from the latter, but not vice versa.

For other types of interaction potentials, accurate sets of equations are
only available to order O

(
ε2
)
, namely the generalized 13 moment equations

which were obtained from the order of magnitude method, and the Burnett
equations from the CE method. The Euler and NSF equations form the proper
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Boltzmann equation
↓ ↓

O (Kn∞) infinite moment system
↓ ↓

...
...

...
O �Kn4

�
Grad26
↓

O �Kn3
�

super-Burnett ←− R13
augmented B. ↓ ↓ Jin-Slemrod

O �Kn2
�

↪→ Burnett ←− Grad13 ←↩
↘ ↙

O �Kn1
�

NSF
↓

O �Kn0
�

Euler

Table 2: The hierarchy of macroscopic equations for Maxwell molecules [3].

Boltzmann equation
↓ ↓

O (Kn∞) infinite moment system
↓ ↓

...
...

...
O �Kn3

�

↓ ↓ Jin-Slemrod
O �Kn2

�
Burnett ←− generalized13 ←↩
↘ ↙

O �Kn1
�

NSF
↓

O �Kn0
�

Euler

Table 3: The hierarchy of macroscopic equations for molecules with arbitrary inter-
action potentials [3].

equations at zeroth and first order. The Jin-Slemrod equations are available
as well. Table 3 shows the known equations as well as their order of accuracy,
and their relations.

8 Applications

The previous sections gave an overview over several methods to derive macro-
scopic equations for rarefied gas flows; see Tables 2 and 3. We now turn the
attention to some applications in order to discuss the behavior and quality of
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the equations. As before, space restrictions forbid to go into detail, and the
interested reader is referred to the cited literature.

Linear stability: Bobylev [12] has shown that the Burnett and super-
Burnett equations are unstable in transient problems. This failure is the most
important reason to discard the Burnett and super-Burnett equations (and
thus the CE expansion), and to strive for alternative methods.

For one-dimensional processes the linearized transport equations of the
previous sections can be written as

∂uA
∂t

+AAB
∂uB
∂x

+ BAB
∂2uB
∂x2

+ · · · = CABuB , (29)

with constant matrices AAB, BAB, CAB, . . . For the solution, we assume plane
waves of the form

uA = ũA exp [i (Ωt− kx)]

where ũA is the complex amplitude of the wave, Ω is its frequency, and k is
its wave number. The equations (29) can then be written as

GAB (Ω, k) ũB = 0 where GAB (Ω, k) = iΩδAB − ikAAB − k2BAB + · · · − CAB
and nontrivial solutions require det [GAB (Ω, k)] = 0; the resulting relation
between Ω and k is the dispersion relation.

If a disturbance in space is considered, the wave number k is real, the
frequency is complex, Ω = Ωr (k) + iΩi (k), and stability requires Ωi (k) ≥ 0.

If a disturbance in time at a given location is considered, the frequency Ω
is real, while the wave number is complex, k = kr (Ω) + iki (Ω). Then, for a
wave traveling in positive x-direction (kr > 0), the damping must be negative
(ki < 0), while for a wave traveling in negative x-direction (kr < 0), the
damping must be positive (ki > 0). Thus, if k (Ω) is plotted in the complex
plane with Ω as parameter, the curves should not touch the upper right nor
the lower left quadrant.

Thus, in order to test the stability of a given set of equations, one has
to test for stability in time and space. However, for the Burnett and super-
Burnett equations, most authors only consider stability in time, and ignore
stability in space [12, 19].

Figure 1, taken from [13, 15], considers the stability against local dis-
turbances of frequency Ω. The figure shows the solutions of the dispersion
relation for the different sets of equations; the dots mark the points where
Ω = 0. Grad 13 equations, and NSF equations give two different modes each,
and none of the solutions violates the condition of stability. The R13 equa-
tions have 3 modes, all of them are stable. This is different for the Burnett (3
modes), super-Burnett (4 modes), and augmented Burnett (4 modes) equa-
tions: the Burnett equations have one unstable mode, and super-Burnett and
augmented Burnett have two unstable modes.

The test for stability in time [15] shows that NSF, augmented Burnett,
Grad 13, and R13 equations are stable for all wavelengths, while Burnett and
super-Burnett equations are unstable.
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Fig. 1: The solutions k (Ω) of the dispersion relation in the complex plane with Ω as
parameter for Navier-Stokes-Fourier, Burnett, Super-Burnett, augmented Burnett,
Grad 13, and R13 equations [13, 15]. The dots denote the points where Ω = 0.

All Burnett type equations, including the augmented Burnett equations,
fail the tests for stability. The NSF, Grad-type equations and the R13 equa-
tions are stable for all frequencies and for disturbances of any wavelength.

Shock structures: The computation of shock structures is a standard
test for macroscopic equations designed to describe rarefied gas flows, and we
present some of the results of [15].

A one-dimensional steady shock structure connects two equilibrium states,
where the values of density ρ0, ρ1, velocity v0, v1, and temperature θ0, θ1 in
the two equilibrium states are related through the Rankine-Hugoniot relations
[3]. The relevant parameter for the shock is the inflow Mach number M0 =

v0

/√
5
3θ0 .

We compare the shock structures obtained from macroscopic equations for
rarefied flows to DSMC results obtained with Bird’s code [5], and plot results
in dimensionless form [51, 15, 3]. Figure 2 shows the density and heat flux
profiles of a M0 = 2 shock calculated with the NSF and Grad13 equations as
well as with the Burnett and super-Burnett equations for Maxwell molecules.
The NSF result simply mismatches the profile, while the Grad13 solution
shows a strong subshock. The Burnett and super-Burnett solutions are spoiled
by oscillations in the downstream part of the shock, which arise due to the
spatial instabilities. Thus, for the computation of shock structures the Burnett
equations and super-Burnett-equations have to be rejected.
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Fig. 2: Shock structure solutions for the NSF equations, Grad 13 equations, and Bur-
nett and super-Burnett equations, for Maxwell molecules at Mach number M0 = 2
(solid lines). Both Burnett results exhibit non-physical oscillations in the down-
stream region. The squares represent the DSMC solution.

In [52] DSMC results for velocity and temperature are used to compute
stress σ and heat flux q from the Burnett equations. Comparison with the
actual DSMC results for σ and q shows considerable improvement over the
NSF equations. Thus, the Burnett equations contain the proper physics of the
shock, but are useless, since their mathematical structure does not allow to
compute a stable solution. Fiscko and Chapman [14] deleted one linear term
from the Burnett and super-Burnett equations to obtain stable shock solutions
in reasonable agreement to DSMC simulations. Obviously, the mathematical
properties of the equations are changed by deleting terms ad hoc, and thus it
is not surprising that they obtained stable behavior.

R13 equations and augmented Burnett equations give good results for a
wider range of Mach numbers. Figure 3 compares shock structures for Maxwell
molecules at M0 = 2 and M0 = 4 for R13 and augmented Burnett with
DSMC results. For M0 = 2 the density profiles exhibit no visible differences
and both models match the DSMC results very well. The shape of the heat
flux is captured very well by the R13 equations, while the augmented Burnett
equations do not reproduce the maximum value and the upstream relaxation.
The deviations from the DSMC solutions are more pronounced for M0 = 4,
where the R13 results begin to deviate in the upstream part. In the tail of the
augmented Burnett profiles small oscillations are present, due to instability in
space. This happens since the solution was obtained from a boundary value
problem; no stability problems arise when the augmented Burnett equations
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Fig. 3: Shock structures in a gas of Maxwell molecules with Mach numbers M0 = 2
and M0 = 4. The upper row shows the solution of the R13 equations, while the lower
row shows the results of the augmented Burnett equations. The squares correspond
to the DSMC solution.

are solved by by time stepping into steady state [19, 20]. Altogether, the results
of the R13 system for Maxwell molecules agree better with DSMC results than
the solutions of the augmented Burnett equations. For higher Mach numbers
both deviate somewhat from DSMC results.

A shock is often characterized by the shock thickness, defined as [49, 50]

δ =
ρ1 − ρ0

max
(
∂ρ
∂x

) . (30)

Figure 4 compares thickness results for the R13 system to measurements in
argon (ω = 0.8) [49, 50]. The computed shock thickness yields a striking
agreement with the experimental data. The results of the augmented Burnett
equations with ω = 0.8 lead to a similar agreement, while the NSF results lie
far off. The good agreement of the shock thickness for high Mach numbers
should not be overemphasized, since the single parameter δ cannot reflect the
complete profile, so that the agreement with shock thickness measurements
does not imply a reliable description of the complete profile. Nevertheless, the
information that δ does reflect—a mean thickness—is predicted by the R13
equations accurately even for high Mach numbers.

Couette flow: The biggest obstacle for any higher order model for rarefied
gas flows is to find proper boundary conditions. This is a difficult problem,
and no conclusive answers can be given at present. We shall not discuss the
problems, but only present some Couette flow calculations that were obtained
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Fig. 4: Comparison of the inverse shock thickness for the R13 equations with mea-
surements for Argon (squares, ω ≈ 0.8). The curve of the augmented Burnett equa-
tions with ω = 0.8 shows a similar agreement.

by partial fitting of boundary conditions. Couette flow describes the motion of
a gas between two infinite parallel plates at distance L, moving against each
other with the speed vLW , details can be found in [3].

For constructing the solution it is assumed that the non-equilibrium
quantities can be split into bulk (B) and Knudsen layer (L) contributions,
φ = φB + φL, where the Knudsen layer contributions vanish in some distance
from the wall.

The bulk equations follow from a Chapman-Enskog expansion of the steady
state equations in Couette geometry; only the second order equations are
considered, which read (y = x2/L is the dimensionless space variable)

σ12 = −μP0

ρθL

dv

dy
, q2 = −15

4
μP0

ρθL

dθ

dy
, σ22 = −6

5
σ12σ12

P0
, q1 =

7
2
σ12q2
P0

.

(31)
The first two equations, for σ12 and q2, are the laws of Navier-Stokes and
Fourier multiplied with the factor P0/ρθ = P0/p. When these are used with
the conservation laws (7), it suffices to prescribe the jump and slip boundary
conditions [3]

vα − vαW =
− 2−χ

χ α1

√
π
2

√
θσ12n

α − 1
5α2q1

ρθ + 1
2σ22

,

θα − θαW = −
2−χ
2χ β1

√
π
2

√
θq2n

α + 1
4θσ22

ρθ + 1
2σ22

+
V 2

4
, (32)

with correction factors α1, α2, β1 close to unity [1, 3]. The constant P0 follows
from the prescribed mass between the plates.
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More interesting are the equations for the normal stress, σ22, and the heat
flux parallel to the wall, q1. Both vanish in the NSF theory, and thus their non-
zero values describe pure rarefaction effects. In particular it must be noted
that there is no temperature gradient in the x-direction: q1 is a heat flux that
is not driven by a temperature gradient.

Depending on the set of equations used, σij and qi can have linear Knudsen
layer contributions as well. The CE expansion, that gave the bulk solution,
discards these linear parts [3], but they can be obtained from the linearized
equations [16].

The superposition of bulk solution and Knudsen layers for the R13 equa-
tions gives

v = v|B −
2
5
q1|L , θ = θ|B −

2
5
σ22|L , σ12 = σ12|B , σ22 = σ22|B + σ22|L ,

p = P0 − σ22|L , ρ =
p

θ
, q1 = q1|B + q1|L , q2 = q2|B . (33)

with the Knudsen layer terms

q1|L = A sinh
[√

5
9

y− 1
2

Kn

]
, σ22|L = D cosh

[√
5
6

y− 1
2

Kn

]
. (34)

The constants of integration A and D, which should be computed from bound-
ary conditions for stress and heat flux, were fitted to DSMC simulations. Fig-
ure 5 compares results of DSMC calculations, NSF equations with jump and
slip boundary conditions, and the R13 equations for Kn = 0.1. R13 matches
the DSMC simulations quite well; the most visible differences lie in the bulk
values for σ12 and σ22. The temperature maximum is reproduced very well,
while some differences can be observed at the boundaries. NSF, on the other
hand, cannot neither describe Knudsen boundary layers nor the rarefaction
effects described by σ22 and q1.

NSF and Grad 13 equations do not give linear Knudsen layers at all.
The Burnett and super-Burnett equations cannot describe Knudsen layers
of the type (34) but give periodic solutions of the form A sin

[
λx−1/2

Kn

]
,

B cos
[
λx−1/2

Kn

]
. The augmented Burnett equations give expressions of the

type (34), but the signs for the heat flux parallel to the flow does not match
the DSMC simulations [16].

9 Conclusions and Outlook

Several methods to derive macroscopic equations for rarefied gases, and the
resulting equations were presented, including the classical Chapman-Enskog
and Grad methods, and the new order of magnitude method. Our interest
was focussed on equations for Knudsen numbers above 0.01, i.e. beyond the
validity of the Navier-Stokes equations.



Model Reduction in Kinetic Theory 337

Fig. 5: Couette flow at Kn = 0.1,with vL
W = 200m

s . Continuous line: DSMC, finely
dashed line (- - - - ): NSF, dashed line (– – – – ): superposition of bulk solution and
linear Knudsen layer solution. Recall that NSF implies q1 = σ22 = 0 (curves not
shown).
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The CE method suggests the Burnett and super-Burnett equations which,
however, are unstable, lead to spurious oscillations in linear steady state
processes, and fail to accurately describe shock structures. Efforts to augment
the equations were only partially successful.

The Grad method leads to stable equations that can describe Knudsen
layers when more than 13 variables are considered. Due to the hyperbolicity of
the equations, they lead to unphysical subshocks in shock structure problems.

The order of magnitude method suggest the Grad 13 moment equations at
second order and the R13 equations at third order. The latter are superior to
the competing sets of equations for several reasons: (a) they contain the Bur-
nett and Super-Burnett equations as can be seen by means of a CE expansion
in the Knudsen number, (b) they are linearly stable for all wavelengths and
frequencies, (c) they show phase speeds and damping coefficients that match
experiments better than those for the NSF equations, or the Grad13 system,
(d) they exhibit Knudsen boundary layers, and (e) they lead to smooth shock
structures for all Mach numbers.

While the R13 equations have many desirable features, a number of diffi-
cult problems must be solved before the R13 equations (or any other model
above the NSF equations) can be used as a reliable tool. (a) Reliable bound-
ary conditions must be developed. (b) Industrially relevant gases are diatomic
(air!) or polyatomic, and higher order equations for these and for mixtures
must be derived. (c) The multiscale character of rarefied flows requires ad-
vanced numerical methods that, based on a well chosen local Knudsen number,
use the most efficient set of equations in a flow region; this requires the inter-
play of solvers for NSF, R13 and Boltzmann equations, and reliable switching
and transition conditions. (d) Currently, only the Jin-Slemrod equations are
accompanied by a proper entropy inequality, and it is desirable to find equiv-
alents for the other higher order models.

These problems are under investigation, and we hope to be able to present
solutions in the future.
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Summary. Based on increasing availability of high-accuracy data from high-

throughput experimental techniques, detailed kinetic models for complex reaction

mechanisms come more and more into applications. They are for instance used in

computer simulations aimed at optimization of technical process operation or for

virtual experiments in a systems biology approach to cellular biochemistry. Since

high-dimensional models from large-scale mechanisms are difficult to handle in both

computationally expensive spatiotemporal simulations and interpretation of system

functions, sound mathematical methods for model and complexity reduction are im-

portant. Here, model reduction aims at reducing the degrees of freedom necessary

for a sufficiently accurate description of the system dynamics whereas complexity

reduction is supposed to help in providing functional insight into the dynamic struc-

ture and functional properties of complex reaction networks which is particularly

important in biology. In this article we review recent developments from our group

in both areas which rely on trajectory based concepts. First, we review a concept

which is related to maximal relaxation of chemical forces under given constraints

in terms of least-square minimal entropy production of single reaction steps and

present applications for model reduction of chemical reaction mechanisms. Second,

we discuss a sensitivity approach to phase flow analysis which can be exploited for

complexity reduction in biochemical networks by identifying some aspects of the

dynamic coupling structure of system components.

1 Introduction

Kinetic modeling of complex (bio)chemical reaction systems can be described
as a systematic mapping of reality to mathematical equations describing the
dynamical behavior of the system under investigation. This process necessarily
fades out most microscopic details associated with the reaction process but
rather tries to capture the central features giving rise to the macroscopic
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behavior. Describing microscopically highly complicated systems with billions
of degrees of freedom by only a few characteristic macroscopic variables is at
the core of the connection between quantum physics and phenomenological
thermodynamics as a classical multi-scale problem. Statistical physics aims
at bridging the gap between atomic properties and thermodynamic variables
like temperature, pressure and energy.

In principle, each modeling attempt of natural phenomena is related to
such multi-scale problems and it is the art of modeling to find reasonable lev-
els of description for the aspects to be investigated. In the so called top-down
approach, one starts with an abstract system level description and refines the
corresponding model according to experimental observation. The bottom-up
approach starts with first-principle physical and chemical laws, often on a
very fine or intermediate scale and incorporates all detailed knowledge that
it available into the model. The latter approach is more rigorous and if suc-
cessful provides a much deeper insight into the system but generally leads
to large-scale models with a huge number of degrees of freedom. It is mostly
impossible to use such high-dimensional models in spatiotemporal simulations
of the system dynamics on larger scales or for gaining insight into dynamical
mechanisms without further analysis.

Here, model reduction techniques come into play, which aim at filtering out
the essential degrees of freedom from a bottom-up constructed first-principle
model with respect to the system properties of interest. In case of chemical ki-
netics this property of interest is often the transient reaction dynamics itself.
Many well known model reduction methods exploit intrinsic multiple time
scales to construct low dimensional approximations of full reaction mecha-
nisms that describe the “long-term” dynamics accurately. This means to re-
solve on a larger time scale and neglect fast scales in a reasonable sense by
introducing generalized approximations similar to quasi-steady-state or par-
tial equilibrium. Many realizations of this approach have been described, a
comprehensive overview can be found in [7, 17] and in [12] the most common
model reduction techniques and their underlying concepts are mentioned and
corresponding references are given.

Here, we present a novel approach that is, however, also related to mul-
tiple time scales. We do not consider the time scales themselves but rather
regard a dissipative chemical reaction system as a set of reaction steps that
gradually relax to partial equilibrium. In thermodynamic equilibrium finally
all reaction steps are fully relaxed (principle of detailed balance, see [11]), but
on the way to equilibrium, they relax with a tendency proportional to their
driving force, the chemical affinity. By artificially relaxing the reaction system
maximally under given constraints (the current system state characterized by
a few selected degrees of freedom), it is possible to compute a low-dimensional
approximation to the kinetic mechanism, a reduced model. We will point out
these ideas and present example applications in section 2.

Another problem with large-scale kinetic models derived from first-
principles is that numerical simulations in high-dimensional phase space yield
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only restricted insight into the dynamic mechanism, component coupling re-
lations and functional properties of the system itself. However, this insight is
highly important when studying biochemical signaling and metabolic networks
in cells [10]. Modern systems biology approaches use mathematical modeling
to understand such systems and their functions and methods for analyzing
large-scale models are helpful and necessary in that context [9, 22]. Here,
we present a numerical algorithm that reduces the complexity of biochemi-
cal networks by providing insight into some aspects of the dynamic coupling
structure of system components. The method analyzes the relative behavior
of trajectory bundles in phase space and is related to the problem of finding
locally reduced models that capture the essential system dynamics with some
desired accuracy while enslaving (relaxing) the remaining dynamical modes.
Details will be explained in section 3 and biochemical example applications
will be discussed.

2 Model Reduction: Constrained Relaxation of Chemical
Forces and Minimal Entropy Production Trajectories

While many common model reduction techniques in chemical kinetics make
explicit use of the time-scale separation concept, the approach presented here,
which was first introduced in [12], is based on finding a criterion for the max-
imal relaxation of chemical forces (reaction affinities) under given constraints
in terms of some fixed species concentrations. The latter have to be chosen a
priori as representatives (called progress variables) of a reduced model.

From a thermodynamic point of view this criterion is related to a gener-
alized concept for the distance of a chemical system from its attractor which
is given by the thermodynamic equilibrium under isolated conditions. This
fact can be used for a model reduction approach in the way that a given
number of initial values is specified and the remaining initial values and a
special trajectory (called minimal entropy production trajectory, MEPT, in
the following) which converges towards equilibrium are computed such that
the affinities of single reaction steps are minimized in a least squares weight-
ing along this trajectory. This can be formulated in the sense that the sum
of least square deviations from zero of the entropy production contribution of
each single reaction step along this particular trajectory is as small as pos-
sible under the initial value constraints while approaching equilibrium. The
latter assumption can also be interpreted as the demand that all thermody-
namic (chemical) forces and dynamic modes of the system are and remain
maximally relaxed under the given constraints. Hence the entropy production
plays formally the role of a kinetic potential in a dissipative system with its
gradient as the driving force towards equilibrium. In the following, we will ex-
plain the use of this criterion for model reduction and show results computed
for two example systems.
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2.1 Method and Numerical Realization

In non-equilibrium thermodynamics, it is common to express the entropy
change of a system by dS = dSi + dSe, where dSe describes the entropy
exchange between the system and its environment by flows of heat and mat-
ter, implying dSe = 0 for isolated systems. According to the second law of
thermodynamics, dSi ≥ 0 holds for any spontaneous process [6]. In the follow-
ing, we assume the chemical system under consideration to be isolated, hence
we have dS = dSi ≥ 0.

For an elementary reaction step with the reaction rates r→, r← for forward
and backward reactions respectively, entropy production dS

dt can be computed
by

dSi
dt

= R(r→ − r←) ln
(
r→
r←

)
, (1)

where R denotes the gas constant.
The additivity of entropy production for several elementary reaction steps

allows to compute the total entropy production from purely kinetic informa-
tion for arbitrary reaction systems as long as the detailed elementary step
mechanism is known and kinetic data are available. It follows again from the
second law of thermodynamics that the entropy production of an isolated sys-
tem is a Lyapunov function. i.e. it is positive definite, monotonic decreasing
and approaching zero at thermodynamic equilibrium. Exploiting these proper-
ties, the task of model reduction can be formulated using entropy production
as a measure for the relaxation of single reaction steps in the following sense:
Fix some initial concentrations chosen as representatives of a low-dimensional
approximation of the full kinetic model (called progress variables) and min-
imize with respect to the remaining variable initial concentration values the
square deviation of entropy production from zero in each single reaction step.
Mathematically this can be formulated as a variational boundary value prob-
lem:

min
ci,i∈Ifree

∫ T

0

nreac∑
j=1

(
dSj
dt

)2

dt (2)

subject to
dci

dt = fi(c) ∀i ∈ Ifixed ∪ Ifree
ci(0) = const, i ∈ Ifixed

|ci(T )− cieq | ≤ ε, i ∈ Ifixed, T free,
(3)

and subject to possible chemical conservation relations.
The index sets Ifree and Ifixed contain the indices of free initial variables

and fixed initial variables (progress variables) respectively and nref is the
number of reactions in the elementary step mechanism. The integration in
(2) comprises the sum of the square deviations of the entropy production
of each single reaction step from their minimal value zero. The goal is the
minimization of this integral with respect to the free initial concentrations.
As the system dynamics get infinitely slow when approaching equilibrium,
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the equilibrium point cieq , i ∈ Ifixed is approximated in the above formulation
within a surrounding of radius ε. The end time T is free in the problem
formulation as it is a priori unknown.

Elaborate mathematical optimization techniques exist for the numerical
solution of variational boundary problems as formulated in (2)-(3). The nu-
merical solutions for the examples in the next subsection have been computed
using MUSCOD-II [14] developed for optimal control of large scale dynamical
systems modeled by ordinary differential or differential algebraic equations.
MUSCOD-II is based on multiple shooting applied in the context of sequential
quadratic programming (SQP) methods as introduced by Bock [3] for numer-
ical optimization. The multiple shooting approach is robust and efficient and
has particular advantages for the problem of computing MEPTs that will be
discussed in section 2.3 in more detail.

2.2 Example Applications and Discussion

Three component model system

To illustrate the above MEPT method, it was tested with a simple kinetic
model system involving three chemical species:

A+A↔ B ↔ C (4)

The composition of the isolated reaction system can be completely described
in terms of concentration values Φi for each chemical species involved. Due
to mass conservation, ΦA + 2ΦB + 2ΦC holds for system (4). To keep the
notation as simple as possible, 2cA = ΦA, cB = ΦB and cC = ΦC are defined
and constant factors arising by the stoichiometry are included in the velocity
constants.

With these simplifications the kinetic equations in dimensionless variables
are

dcA(t)
dt = −k1c

2
A + k−1cB

dcB(t)
dt = k1c

2
A − k−1cB − k2cB + k−1c

dcC(t)
dt = k2cB − k−2cC

(5)

with the mass conservation relation

cA(t) + cB(t) + cC(t) ≡ 1.0. (6)

Fig. 1 shows the results obtained when computing a minimal entropy produc-
tion trajectory (MEPT) for this system using k1 = 1, k−1 = 10−5, k2 = 0.01,
and k−2 = 10−5 as rate constants. Here, cC has been chosen as the only
progress variable with fixed value cC(0) = c0 = 0.1.

For comparison with a widely applied model reduction technique, we com-
puted a reduced description of (5) using the ILDM method introduced by
Maas and Pope [15] which can be analytically treated in this simple test case:
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Fig. 1: Comparison of analytically computed ILDM with MEPT results for 3-
component system (5) according to (2)-(3) together with a selection of bundling
trajectories

cA = 0, cC = 1− cB (7)

This ILDM is included in the figures as a bold line.
The results demonstrate that the minimal entropy production trajectories

are not identical to the ILDMs especially farther away from equilibrium. This
is a consequence of the fact that the ILDM approach assumes fast time scales
to be fully relaxed. This assumption is only an approximation as long as the
system is not in equilibrium. Opposed to that, the minimal entropy produc-
tion method leads to maximally relaxed thermodynamic forces under given
constraints but does not enforce mode relaxation by a priori assumption. Es-
pecially far from equilibrium the latter approach obviously describes the real
situation much more accurately.

Simplified hydrogen combustion mechanism

We present further results for the following six component hydrogen com-
bustion mechanism which describes the kinetics of this system semi-
quantitatively.

H2
k1,k−1←→ 2H , k1 = 2.0, k−1 = 216.0

O2
k2,k−2←→ 2O , k2 = 1.0, k−2 = 337.5

H2O
k3,k−3←→ H + OH , k3 = 1.0, k−3 = 1400.0

H2 + O
k4,k−4←→ H + OH , k4 = 1000.0, k−4 = 10800.0

O2 + H
k5,k−5←→ O + OH , k5 = 1000.0, k−5 = 33750.0

H2 + O
k6,k−6←→ H2O , k6 = 100.0, k−6 = 0.7714

(8)

The kinetic model of this mechanism is given by
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Fig. 2: Illustration of the MEPT method for the H2 combustion mechanism (8).
The triangles depict the one-dimensional MEPT with H2O as progress variable, the
dotted lines represent two-dimensional MEPTs (H2O and H2 as progress variables).
The solid lines depict arbitrary trajectories.

dcH2
dt = −k1cH2 + k−1c

2
H − k4cH2cO + k−4cHcOH − k6cH2cO + k−6cH2O

dcH
dt = 2k1cH2 − 2k−1c

2
H + k3cH2O + k−3cHcOH + k4cH2cO − k−4cHcOH

−k5cO2cH + k−5cOcOH
dcO2
dt = −k2cO2 + k−2c

2
O − k5cHcO2 + k−5cOcOH

dcO
dt = 2k2cO2 − 2k−2c

2
O − k4cH2cO + k−4cHcOH + k5cHcO2 − k−5cOcOH

+k−4cHcOH − k4cH2cO − k6cH2cO + k−6cH2O
dcH2O

dt = −k3cH2O + k−3cHcOH + k6cH2cO − k−6cH2O
dcOH

dt = k3cH2O − k−3cHcOH + k4cH2cO − k−4cHcOH + k5cHcO2

−k−5cOcOH

(9)
Together with the two conservation equations

2cH2 + 2cH2O + cH + cOH = C1 (10)
2cO2 + cH2O + cO + cOH = C2 (11)

we have a system with four degrees of freedom.
By fixing one initial condition we can compute a single trajectory with

maximally relaxed chemical forces in the sense discussed above as we did
for the last 3-component example mechanism. The MEPT for a fixed initial
concentration of H2O (10−4)) and constants C1 = 2.0, C2 = 1.0 is depicted
with triangles in Fig. 2.

However, the formulation (2)-(3) leaves the freedom to choose an arbitrary
number of progress variables (variables with fixed initial conditions) as long
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as there are still degrees of freedom left in the system. Hence, to illustrate the
principal applicability of the MEPT method for model reduction to higher
dimensions than one, we computed families of MEPTs using both H2O and
H2 as progress variables. We first varied the initial concentration of H2 from 0.3
to 0.95 with the initial concentration of H2O set to 10−4. Then we varied the
initial concentration of H2O from 0.05 to 0.65 with the initial concentration
of H2 fixed to 0.3.

We call the so computed trajectories “two-dimensional” MEPTs because
two progress variables are used (dotted lines in Fig. 2). These MEPTs form a
smooth two-dimensional surface and all of them relax to the MEPT with one
progress variable (“one-dimensional” MEPT). Trajectories from arbitrary ini-
tial conditions (solid lines in Fig. 2) first relax to the two-dimensional surface,
then to the one-dimensional MEPT and finally to equilibrium.

2.3 Outlook

Entropy production dSi

dt remains well defined in open systems kept away from
equilibrium by boundary flows of energy and matter if at least the concept of
local equilibrium is valid [6]. This concept assumes that the non-equilibrium
system can be described using the macroscopic variables known from equilib-
rium thermodynamics as functions of time and/or space. Assuming stability
of this local equilibrium, in the so called linear regime (valid for systems not
to far from equilibrium) the second law of thermodynamics leads to the result
that the entropy production of a spontaneous process is still positive defi-
nite, monotonic decreasing and approaching a minimum at a non-equilibrium
steady states (Prigogine’s minimum entropy production principle [16]). Thus,
in this case the entropy production can still be used as a Lyapunov function
and the MEPT model reduction concept as described above can be applied.
However, also in many far from equilibrium situations, a quite general evolu-
tion criterion exists for dissipative systems [16, 11]. The latter describes the
monotonous evolution of a dynamical system towards its attractor and could
be exploited for a model reduction approach analogous to the MEPT. Thus,
the whole concept can in principle be extended towards application for chem-
ical systems that do not reach equilibrium or steady state but for example
limit cycle attractors.

In various applications the ultimate aim of model reduction is to incorpo-
rate the reduced model into extensive spatiotemporal simulations including
physical transport processes which would be prohibitively expensive numer-
ically if a detailed reaction mechanism containing multiple time scales was
used. There are two possibilities for realization of this aim via the MEPT
method. The first computes a low dimensional approximation in situ, mean-
ing online during numerical integration of the spatiotemporal system (mostly
partial differential equations, PDE). The second computes reduced models
a priori and offline and tabulates them appropriately as a function of some
chosen degrees of freedom for parameterization (progress variables) of the
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Fig. 3: Multiple shooting discretization and decoupled piecewise trajectory integra-
tion for given initial values at the multiple shooting nodes si and optionally some
input control functions qi.

low-dimensional approximation in the range of values required. In both cases
huge numbers of MEPT families have to be computed which are parame-
terized by different fixed initial values that vary continously. This demands
efficient numerical solution of the corresponding optimization problem and
multiple shooting (see Fig. 2.3) in combination with an initial value embed-
ding approach is a promising strategy here.

Direct numerical treatment of optimization for dynamical processes with
differential equations as constraints require a projection of the original op-
timization problem in function space to a finite dimensional approximation.
This can be achieved by numerically integrating the differential equations and
decoupling the optimization itself from the numerical integration in an outer
loop (sequential method). A different approach uses a full discretization of
the differential equations and treats the resulting algebraic equations as con-
straints in a nonlinear optimization problem (simultaneous method). While
the sequential method is easy to implement, the simultaneous approach is
generally more robust and efficient, however gives rise to a large number of
additional variables (at the discretization nodes). A powerful compromise be-
tween both concepts is the multiple shooting idea.

The multiple shooting method integrates the state trajectories only on
small initially decoupled time subintervals of the full time horizon (see Fig.
2.3). A BDF-type (backward differentiation formulae) stiff integrator [1] is
used for this in MUSCOD-II. As a consequence one has to solve n initial value
problems instead of one. In the case of dynamical instabilities like strongly
diverging state trajectories this makes the accurate numerical computation of
derivative information required for widely used sequential quadratic program-
ming (SQP) optimization much more stable or in some cases possible at all.
However, at first sight this improvement seems to be again at the expense of
additional unknown variables corresponding the state trajectory values at the
multiple shooting nodes as for the discretization nodes in the simultaneous ap-
proach. But the mathematical structure of the multiple shooting discretization
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can be successfully exploited numerically and the corresponding optimization
problem can be solved with roughly the same effort as in the single shooting
(sequential) approach [14]. Furthermore, continuity of the state trajectories
for the final optimal solution in the multiple shooting nodes has to be as-
sured which can be easily done be adding additional equality constraints to
the optimization problem. These require that the end point for the preceding
multiple shooting interval si matches with the initial value si+1 of the next
(see Fig. 2.3).

The multiple shooting approach allows in particular the incorporation of a
priori information about the optimal solution (trajectory) which can be used
to set initial conditions for the state variables at the multiple shooting nodes.
This freedom is on the one hand a often significant help on the way towards a
global optimum even though local optimization algorithms are used. On the
other hand, it can be used for embedding a solution already available into a
family of neighboring problems in the sense of parametric optimization where
parameters slightly change from one optimization problem to the next. This
has been demonstrated by Diehl et al. for nonlinear model predictive control
(NMPC) applications [4]. It can be transferred to the problem of comput-
ing families of MEPTs in applications both for the in situ approach and the
offline tabulation. Here, in particular, purely one initial value of neighbored
optimization problems is different which can be efficiently exploited through
initial value embedding. The embedding strategy computes a linear approx-
imation of the new solution with slightly shifted initial value and initializes
the whole optimization problem very efficiently with this linear extrapolation.
This generally assures fast convergence to the new solution. The application
of these ideas to the computation of MEPT families will be highly beneficial
for large-scale mechanisms and higher-dimensional MEPTs.

3 Complexity Reduction of Biochemical Reaction
Networks

We present an algorithm for complexity analysis of biochemical systems [13]
which identifies the degree to which chemical species decouple from the whole
network on phase space trajectory pieces in the sense that small perturba-
tions of these species locally do not affect the system dynamics essentially.
This method is based on the framework of sensitivity analysis along nominal
state trajectories. The singular value decomposition of the phase flow sen-
sitivity matrix allows identification of “enslaved” dynamical modes as those
with the smallest sensitivity coefficients and thus the piecewise reduction of
the complete model by forced relaxation of these modes. Additionally the
algorithm is able to determine local conservation relations corresponding to
unity singular values. A subsequent system decomposition into relaxed, non-
constant and constant subspaces provides insight into the system’s complexity
through the dynamic phase space structure. The coupling analysis is realized
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by computation of the contribution of each biochemical species to each of the
three subspaces.

3.1 Method and Algorithm

The general idea of the complexity analysis by piecewise model decomposition
is based on a discrete representation of a continuous time finite-dimensional
dynamical system. The whole simulation interval is partitioned into m time
windows [0, T ], [T, 2T ], ..., [(m− 1)T,mT ] with length T . The idea underlying
the complexity analysis is related to an approximation of the full ordinary
differential equation (ODE) model consisting of kinetic rate equations for
biochemical species by a differential algebraic equation (DAE) model with
algebraic (relaxed) and differential (active) variables (modes) z(t) and y(t) on
each of the m pieces of a nominal trajectory starting at given initial values.

ẋ(t) =
dx
dt

= F (x)(ODE) −→ ẏ(t) =
dy
dt

= f(y, z), 0 = g(y, z)(DAE) (12)

The algebraic part 0 = g(y, z) of the DAE system representing mode en-
slavement (relaxation) defines a manifold on which the remaining active
modes y(t) evolve. For its computation we transform on each time interval
[(k − 1)T, kT ], k = 1, ...,m the original ODE system by vectors u1, u2, ..., un
representing contracting and expanding directions between nominal and
slightly perturbed trajectories in phase space and relax the strongly contract-
ing modes to the manifold (enslavement). In order to find these directions
we use sensitivities (numerical derivatives) characterizing the response of the
species concentrations at the end-point of a small trajectory piece after per-
turbations of the initial values.

δx(kT ) = W (kT ) · δx((k − 1)T ),W (kT ) :=
∂x(kT )

∂x((k − 1)T )
, k = 1, ...,m (13)

δx((k−1)T ) and δx(kT ) denote initial and final perturbations of the nominal
values x((k − 1)T ), x(kT ) on the time horizon [(k − 1)T, kT ]. The sensitivity
matrix W (kT ) describes the propagation of the initial perturbations with the
phase flow.

The calculation of sensitivity matrices can be carried out via different ap-
proaches. The external numerical differentiation method uses the final values
of nominal and neighbored (starting from the slightly perturbed initial value)
trajectories for approximative evaluation of the sensitivity matrices by the
finite difference quotient. For the first time window (k = 1) the sensitivity
matrix W (T ) can be computed by

∂x(T )
∂x(0)

=
x(T, x(0) + δx(0)) − x(T, x(0))

δx(0)
(14)

In order to obtain high numerical accuracy for sensitivities one has to guar-
antee high accuracy for nominal and perturbed trajectories, which leads to an
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Fig. 4: Geometric interpretation of the singular value decomposition of a 2×2 matrix
W as defined in equation (13), mapping of a sphere to a hyperellipse.

enormous rise in computing time. Moreover, different step sizes of the numeri-
cal integrator (while computing nominal and perturbed trajectories) may lead
to severe numerical instabilities [5]. To avoid these difficulties we use in our
algorithm the internal numerical differentiation (IND) technique proposed by
Bock [2]. This technique freezes the adaptively generated time grid for numer-
ical integration of the nominal trajectory. This means that the nominal and
perturbed trajectories are computed with the same step size and order by the
numerical integrator. IND is implemented in the robust integrator DAESOL [1]
based on a BDF-method (backward differentiation formula). DAESOL is well
suited for the solution of initial value and boundary value problems of stiff
ordinary differential (ODE) and differential-algebraic equations (DAE) along
with sensitivity analysis in the form required here.

For identification of large and small sensitivity modes we use the well
known singular value theorem in linear algebra [21] assuring for every regular
matrix the existence of a singular value decomposition (SVD) with uniquely
determined singular values. SVD decomposes a given matrix W into a product
of three matrices

W = U ·Σ · V T , Σ = diag(σi), i = 1, ..., n (15)

where U is an orthonormal matrix containing the left singular vectors (as
columns), V is an analogous orthonormal matrix of the right singular vectors
and Σ is a diagonal matrix containing the singular values σi. The diagonal
elements of Σ can be arranged in descending order such that σ1 ≥ σ2 ≥ ... ≥
σn > 0. The geometrical interpretation of the SVD is illustrated in Fig. 4. The
column vectors uj of U correspond to the semi-axes of the final perturbation
hyperellipse with the lengths σi whereas the right singular vectors vj of V are
the pre-images of these principal semi-axes under the linear map W in the
sphere of equidistant initial perturbations [21] .

The geometrical visualization of the SVD applied to the sensitivity ma-
trix W (kT ) in (13) reveals that the unit space of the initial perturbations
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δx((k−1)T ) is mapped to a hyperellipse. The column vectors of the matrix U
represent directions in the phase space in which contractions and expansions
of the initial perturbations with the factor σi occur. Obviously the shortest
semi-axes (with the smallest singular values) belong to the strongly contract-
ing directions. In order to identify the corresponding dynamical modes auto-
matically based on the SVD we transform the original ODE system by the
matrix UT .

UT
dx
dt

= UTF (16)

This transformation rotates the original axes of the phase space representing
biochemical species into directions of the left singular vectors (uj).

In the second step we iteratively relax the strongly contracting dynamical
modes. This is equivalent to setting the projection of the ODE vector field onto
these directions to zero. In this way we obtain a DAE system in transformed
coordinates y(t), z(t)

(ẏ, ż) = UT
dx
dt

= UTF = (f, g) = (f, 0) (17)

In order to determine the differential dimension (number of differential vari-
ables) of an accurately approximating DAE system (17) correctly (i.e. error-
controlled maximal relaxation on each time interval [(k−1)T, kT ], k = 1, ...,m)
we introduce a straightforward relaxation criterion. In each iteration we check
the relative error in the remaining differential variables (active modes) at the
end point of the current trajectory piece caused by relaxation of the enslaved
modes.

|y�i (kT )− yi(kT )|
|yi(kT )| ≤ TOL, i = 1, ..., nred (18)

y�i (kT ) denotes the solution of the DAE approximation (17) with differential
dimension nred and yi(kT ) is the solution of the transformed full ODE system
(16). If this error-criterion is fulfilled with a user defined tolerance TOL the
reduction of the differential variables by one is accepted and we try to relax
the next strongest contracting mode. The iterative procedure stops when the
relative error criterion is violated. Consistent initial values for the DAE system
(17) are computed within DAESOL by a homotopy-like continuation method
[1] starting from the current point in phase space. This corresponds to an
instantaneous relaxation of the modes with small singular values.

In addition to the local relaxation of modes, the discrete dynamical sys-
tems approach based on singular value decomposition of piecewise phase flow
sensitivity matrices allows identification of constant dynamical modes (lo-
cal conservation relations). Modes corresponding to phase space directions in
which perturbations do not alter with the phase flow are characterized by
singular values equal to 1. After the identification of the maximal number
of relaxed modes (smallest possible number of differential equations on the
interval [(k − 1)T, kT ]) by the algorithm described above we try to fix the
transformed differential variable ym corresponding to the smallest difference
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|1 − σym |. For this purpose we evaluate the solution of the DAE approxima-
tion (12) on this interval while fixing ym to its value ym((k − 1)T ) and check
again the error criterion (18). If this criterion is fulfilled the variable ym is
eliminated from the DAE system by fixing it to its initial value on the current
trajectory piece. Then we repeat the described procedure with the dynamical
mode corresponding to the next smallest deviation |1−σ| of its singular value
from 1. Finally we continue the whole algorithmic procedure of relaxing and
fixing dynamical modes on the next time interval [kT, (k + 1)T ]).

The results of the algorithm described above can be exploited for a net-
work coupling analysis of biochemical species. For this purpose we compute
the projections of the original coordinate axes unit vectors (representing the
biochemical species) onto the constant, non-constant and relaxed subspaces
spanned by the corresponding orthogonal column vectors uj from the SVD.
These projections of the original species i are given by

pconsti :=
∑
j∈C

uji · uj , pnonconsti :=
∑
j∈A

uji · uj , preli :=
∑
j∈F

uji · uj , i = 1, ..., n

(19)
where C is a set of indices corresponding to the constant directions uj. A and
F are defined as A := {1, ...nred} \ C and F := {nred + 1, ..., n} respectively.
uji denote the i-th component of the left singular vector uj. Due to the orthog-
onality of the vectors uj the contributions of the species to these subspaces
can be determined as follows

rspacei :=
‖pspacei ‖

‖pconsti ‖+ ‖pnonconsti ‖+ ‖preli ‖
, i = 1, ..., n (20)

where space ∈ {const, nonconst, rel}. The contributions of the original species
to the whole non-relaxed (active) subspace including constant and non-
constant directions uj is given by

racti = rconsti + rnonconsti , i = 1, ..., n (21)

3.2 Application Results and Discussion

Single enzyme Michaelis-Menten system

In order to test the complexity reduction algorithm described in the previous
section, we analyze the coupling behavior of biochemical species from two re-
action systems displaying qualitatively different kinds of dynamical behavior.
The first one is the well known irreversible Michaelis-Menten kinetics for a
single enzyme system

E + S
k±1←→ ES

k2−→ E + P (22)

described by two ordinary differential equations
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dx1

dt
= −k1(ET − x2)x1 + k−1x2

dx2

dt
= k1(ET − x2)x1 − k2x2 − k−1x2 (23)

with x1 = [S], x2 = [ES] (substrate and enzyme-substrate-complex concen-
trations respectively),[ET ] = [E] + [ES] = 100.0 (total enzyme concentra-
tion), rate coefficients k1 = 1.0, k−1 = 1.0, k2 = 0.5 and initial conditions
x1(0) = 100.0, x2(0) = 0. According to Fig. 5 the dynamics of Michaelis-
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Fig. 5: Numerical simulation of the Michaelis-Menten model (23).

Menten system exhibit 3 phases. After a very short initiation phase with
formation of enzyme-substrate-complex the second phase (plateau between 0
and 20s) with nearly constant enzyme-substrate-complex and decreasing sub-
strate concentration can be distinguished. In the third phase (after 20s) a
decay of the enzyme-substrate-complex is observed whereas the concentration
of the substrate is nearly zero because it has been completely consumed. The
relative contributions of each species to the active subspace are depicted in
Figure 6 and reflect the stage dynamics described above. For instance in the
second phase, where the dynamics of the system is dominated by the substrate
decay, the contribution of x2 is 0% (fully relaxed) and the whole active dy-
namics is governed by of x1 (contribution of 100%). Thus, the computational
results of our algorithm (Fig. 6) confirm the validity range of the well-known
quasi-steady-state assumption commonly applied for the enzyme-substrate-
complex in Michaelis-Menten type kinetics to describe the whole system with
a single rate equation. The dimension of the constant subspace is in this case
always zero.

Peroxidase-oxidase (PO) oscillator

To demonstrate that our algorithm can provide valuable insight into more
complex biochemical reaction networks we analyze the peroxidase-oxidase
(PO) oscillator [18, 8], a kinetic model for the enzymatic reduction of oxygen
to water by NADH :
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Fig. 6: Michaelis-Menten model: Top: Relative contribution ract
i (t) of each chemical

species xi, i = 1, 2 in % to the subspace of active dynamical modes according to
equation (21). Bottom: Minimum dimension (dimension of active subspace) for the
model (23) as a function of time computed by the presented algorithm with an error
tolerance TOL = 10−2 in (18) and interval length T = 0.3 (see (13)).

NADH +
1
2
O2 +H+ −→ NAD+ +H2O (24)

To provide an internal standard for component decoupling, we extend the PO
model artificially by a loosely coupled hypothetic second enzyme Enzact/inact
which has an active and an inactive state, is activated by superoxide ions
and not involved in the oscillatory mechanism. Based on a detailed reaction
mechanism consisting of 10 differential equations, Figure 7 shows numerical
simulation results for four selected chemical species reflecting the rich dynam-
ical behavior of the PO system (relaxation oscillations followed by regular
oscillations and finally a steady state).

Figure 8 shows the dimension of the active subspace (number of differen-
tial variables) over time corresponding to the degrees of freedom necessary to
describe the complete dynamics of the full system accurately. Obviously, on
large parts of the simulation interval the phase space dynamics of the original
ODE system can be represented accurately by a reduced system with dimen-
sion ≤ 4. However, within a small region of each period in the relaxation
oscillation regime (0 ≤ t ≤ 2800), the full mechanism is required. Figure 9
shows the results of the dynamic coupling analysis for the biochemical species
NADH,NAD·, H2O2 and Enzact. The contribution of NADH to the active
subspace is relatively large. Thus this species couples to the essential dynam-
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reactiona rate expression constant

(1) NADH + O2 + H+ −→ NAD+ + H2O2 k1[NADH ][O2] 3.0 b

(2) H2O2 + Per3+ −→ coI k2[H2O2][Per3+] 1.8× 107 b

(3) coI + NADH −→ coII + NAD· k3[coI ][NADH ] 4.0× 105 b

(4) coII + NADH −→ Per3+ + NAD· k4[coII ][NADH ] 2.6× 105 b

(5) NAD· + O2 −→ NAD+ + O−
2 k5[NAD·][O2] 2.0× 107 b

(6) O−
2 + Per3+ −→ coIII k6[O

−
2 ][Per3+] 1.7× 106 b

(7) 2O−
2 + 2H+ −→ H2O2 + O2 k7[O

−
2 ]2 2.0× 107 b

(8) coIII + NAD· −→ coI + NAD+ k8[coIII ][NAD·] 11.0 × 107 b

(9) 2NAD· −→ NAD2 k9[NAD·]2 5.6× 107 b

(10) Per3+ + NAD· −→ Per2+ + NAD+ k10[Per3+][NAD·] 1.8× 106 b

(11) Per2+ + O2 −→ coIII k11[Per2+][O2] 1.0× 105 b

(12) −→ NADH k12 0.132

(13) O2(gas) −→ O2(liquid) k13[O2]eq 4.4× 10−3d,e

(−13) O2(liquid) −→ O2(gas) k−13[O2] 4.4× 10−3 d

(14) Enzinact + O−
2 −→ Enzact

k14[O−
2 ]5

(K5
f
+[O−

2 ]5)
0.005 b (k14)

0.4 cf (Kf )

(15) Enzact −→ Enzinact k15[Enzact] 1.6 d

Table 1: Detailed model of the peroxidase–oxidase reaction coupled to the activation
of an enzyme Enz (a Per3+ and Per2+ indicate iron(III) and iron(II) peroxidase
respectively. coI, coII and coIII indicate the enzyme intermediates compound I,
compound II and compound III. b In M−1 s−1. c In M . d In s−1. e The value
of [O2]eq is 12μM . f The amount of Enzinact is assumed to be large compared
to Enzact and therefore considered to be constant: total concentration included in
rate constant k14). The initial condition values are 12.0 μM for O2 and 1.5 μM for
Per3+, all other initial concentrations are zero.

ics of the full reaction network in a sense that small perturbations of NADH
cause a significant disturbance of the system dynamics. In contrast, the other
three species seem to decouple from the network due to mode relaxation. The
activated enzyme Enzact, our internal standard that has been added with a
kinetic law that assures decoupling, in fact decouples on the intervals where
it is not active (compare with Figure 7). The decoupling of the species H2O2

is in accordance with recent results obtained from a different approach which
is also related to model reduction and described in [20]. At first sight, the
decoupling of NAD· radicals seems to be in conflict with the fact that they
play a significant role in the autocatalysis cycle within the PO reaction [19].
But numerical simulations of the PO mechanism starting from a slightly per-
turbed initial value of NAD· variable show that perturbations of this species
indeed do not change the systems dynamics. The perturbed system levels off
very fast to the unperturbed dynamics.

Fig. 10 shows the dimension analysis of the constant subspace for the PO
reaction system. The maximal dimension of this subspace does not exceed 3.
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Fig. 7: PO model (see Table 1): Numerical simulation of the species xi, i = 1 :
NADH, i = 2 : O2, i = 5 : NAD·, i = 10 : Enzact using DAESOL [1].
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Fig. 8: Minimum dimension (dimension of active subspace) for the PO model as a
function of time for two different dynamical regimes (relaxation oscillations: 0 ≤ t ≤
2800s and harmonic oscillations: t ≥ 2800s, see also Fig. 7), TOL = 10−2 in (18)
and interval length T = 20.0 (see (13)).

It reflects the qualitative change in the system dynamics from transient re-
laxation oscillations to regular oscillations with small amplitude (at approxi-
mately t = 3000). In the latter regime at least one mode is constant during a
full oscillation period. The contributions of the species NADH,O2 and NAD·

to the constant subspace are depicted in Figure 11. The NAD· radical does
not contribute to the constant subspace due to its decoupling from the active
subspace (compare Fig. 9). High contribution (≈ 70%) of the species NADH
in each oscillation period is caused by its only slowly increasing concentration
(Fig. 7) during larger oscillatory changes in most other species. The same
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Fig. 9: PO model: Relative contribution ract
i (t) of the chemical species xi, i = 5 :

NAD·, i = 9 : H2O2, i = 10 : Enzact, i = 1 : NADH in % to the subspace of
active dynamical modes (including constant and non-constant directions) according
to equation (21).
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Fig. 10: PO model: Dimension of the constant subspace, TOL = 10−2 in (18) and
interval length T = 20.0 (see (13)).

argument holds partly also for the spieces O2. However, its contribution to
the constant subspace is smaller (≈ 30%). Conservation relations (constant
modes) that are valid over the full time horizon are not found because chemical
mass conservation laws have been already eliminated during kinetic modeling
of the reaction mechanism.
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Fig. 11: PO model: Relative contribution rconst
i (t) of the chemical species xi, i = 1 :

NADH, i = 2 : O2, i = 5 : NAD· in % to the subspace of constant dynamical modes
according to equation (20).

3.3 Outlook

Although the approach to complexity reduction presented here provides a
useful analysis tool for network coupling in biochemical kinetics, there is fur-
ther need to identify network modules in the sense of subnetworks that are
tightly coupled within themselves and loosely coupled to the rest of the net-
work. Modules and redundancy are central themes in biochemical networks
and closely connected to their physiological functions. A sensitivity related
analysis similar to the one discussed here may be promising but probably has
to take additionally into account sensitivities of sensitivities (second deriva-
tives) and the topology of the reaction network.
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Dynamics of the Plasma Sheath

M. Slemrod�

Department of Mathematics, University of Wisconsin–Madison, Madison,
Wisconsin 53706, USA, slemrod@math.wisc.edu

Summary. The motion of the interface separating the sheath boundary layer and
quasi-neutral plasma is formulated in the terms of level set motion. The equations
for the motion are derived and given as a system of partial differential equations.
When restricted to the case of planar, cylindrical, and spherical symmetries, these
equations become ordinary differential equations.

1 Introduction

In a recent sequence of papers with Ha [4] and Feldman & Ha [3]. I have
generalized an earlier paper of K.-U. Riemann and Th. Daube [8] for the
propagation of a sheath interface in a plasma of ions and electrons. The pur-
pose of this article is to present an elementary exposition of the underlying
issues, both physical and mathematical, that arise is this most natural of
multi-scale problems. However while the presentation is elementary, there is
an underlying theme to the work. Namely for multi-scale systems, one can
do worse than avoid transition layers completely and replace the transition
layers by propagating sharp interfaces described as level sets [6]. The reason
is simple: what one loses in accuracy of resolution of small scales one gains in
both the simplicity of the level set formalism and the underlying geometric
understanding.

This paper is divided into four sections after this Introduction. Section 2
describes the underlying physical problem within the context of a classical
gas dynamics. Section 3 reformulates the problem of sheath formation for
the plasma problem. Section 4 formulates an approach to the location of
the plasma sheath interface for planar, cylindrical, and spherical symmetries.
Finally Section 5 generalizes Section 4’s results to the general non-symmetric
case and then recovers the dynamics of the sheath interface in the symmetric
cases as an application of the general theory.
� This research was sponsored by the U.S. National Science Foundation under

grants DMS-0203858 and DMS-0243722.
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2 The Euler Equations with Planar, Radical, and
Spherical symmetry

Consider a gas with constant temperature satisfying the ideal gas law

p(ρ) = c2ρ (1)

where p is the pressure, ρ is the density, and c is the speed of sound (a
constant). The equations of motion are given by the balance of mass and
momentum:

ρt + (ρu)r = −α
r

(ρu), (2)

(ρu)t + (ρu2 + p)r = −α
r

(ρu2) + ρβ(u)u. (3)

where α = 0, 1, 2 depending on whether we have planar, cylindrical, or spher-
ical symmetry. Here u is the velocity of gas and β(u) ≥ 0 is the friction
coefficient.

To keep things simple for now lets consider only steady motion where
ρt = (ρu)t = 0. In this case (1), (2), (3) imply

ur =
αc2u

r(u2 − c2)
+

β(u)u2

u2 − c2
. (4)

The implication of (4) is obvious. In the cases α = 0: β(u) > 0 will imply
a singularity in the velocity as the gas attempts the transition from subsonic
flow u2 < c2 to supersonic flow u2 > c2; α = 1, 2: β(u) ≥ 0 will imply the
singularity.

3 Collisional and Collisionless Plasmas

Consider a plasma consisting of ions and electrons [5]. The density of the ions
is given by ni, the velocity of ions is u, the density of the electrons is given
by ue, the electric potential is −ϕ. Under suitable scaling of independent and
dependent variables the equations of motion for a plasma of cold ions (with
ion pressure identically zero) is given by conservation of mass, momentum,
and Poisson equations:

nit + (niu)r = −α
r
(ni − u), (5)

(niu)t + (niu2)r = niϕr + niβ(u)u, (6)

ε2
1
rα

∂

∂r

(
rα

∂φ

∂r

)
= ni − ne. (7)

Again α = 0, 1, 2 represents the cases of planar, cylindrical and spherical
symmetry.
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We assume the electron mass is much smaller than the ion mass. An as-
ymptotic analysis of the conservation of momentum for the electrons then
yields the classic formula for the electron density ne = e−ϕ (Boltzmann’s
relation). Hence (7) simplifies to

ε2
1
rα

∂

∂r

(
rα

∂ϕ

∂r

)
= ni − e−ϕ. (8)

Note we have not placed any additional source terms (ionization) in (5)
but continued to place the friction term in (6). The case with β(u) > 0 is
called a collisional plasma, if β(u) ≡ 0 it is a collisionless plasma.

The parameter ε > 0 is called the Debye length and captures any length
scale in our plasma. The formal limit ε → 0 is called the quasi-neutral limit
and provides a tempting simplification to our problem.

In the quasi-neutral limit (8) implies ni = e−ϕ and hence ϕ = − lnni.
Substitution of this choice of ϕ into (5), (6) yields the equations of motion for
our quasi-neutral plasma

nit + (niu)r = −α
r

(n, u), (9)

(niu)t + (niu2 + ni)r = −α
r

(uiu2) + niβ(u)u, (10)

which are just the isothermal Euler equations (2), (3) with sound speed c = 1.
Now we see the difficulty encountered in plasma physics: imposition of a

large potential difference across a plasma of ions and electrons will cause the
ions to attempt to pass from slow subsonic flow to fast supersonic flow. But
the analysis of Section 2 shows that for steady motion (9), (10) must cause
a singularity to form when u2 = c2 so that |ur| → ∞ (the Bohm criterion).
Hence we can only conclude that as we make the transition from subsonic
to supersonic flow, the quasi-neutral limit is no longer valid and smaller ε-
scale becomes relevant. In fact asymptotic analysis [1], [7] of steady motion
shows that in a bounded domain a boundary layer of order ε occurs which is
separated form the quass-neutral regime by a transition region of order ε4/5.
The boundary layer is called the plasma sheath.

4 Dynamics of the Plasma Sheath

One way to study dynamics of the plasma sheath is to rescale in space and
time. It we set t = t

ε , r = r
ε then in the overbar variables (5), (6), (8) become

nit + (niu)r = −α
r

(niu). (11)

(niu)t + (niu2)r = niϕr + εniβ(u)u, (12)
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1
rα

∂

∂r

(
rα

∂ϕ

∂r

)
= ni − e−ϕ. (13)

Thus we see that on the small ε-scale the friction term is negligible and may
be neglected. (Of course the same would be true for any ionization terms as
well.) So within the sheath boundary layer (11)–(13) pervade and the friction
term is negligible. In fact since ϕ is very large, we can neglect e−ϕ as well
which simplifies (11)–(13) even further.

On the other hand in the far field we expect the quasi-neutral system
(9)–(10) to be valid which is the r, t independent variables becomes

nit + (niu)r −
α

r
(niu), (14)

(niu)t + (niu2 + ni)r = −α
r

(niu2) + εniβ(u)u. (15)

Again ε multiplies the friction term. This reflects that friction has a small
effect on the small order ε time scale. Now we see that finally we have two
descriptions of the plasma. First in the boundary layer we have the boundary
layer dynamics from (11)–(13):

nit + (niu)r = −α
r

(niu), (16)

(niu)t + (niu2)r = niϕr, (17)

1
rα

∂

∂r

(
rα

∂ϕ

∂r

)
= ni (18)

On the other hand in the far field we have quasi-neutral dynamics

nit + (niu)r =
−α
r

(niu), (19)

(niu)t + (niu2 + ni)r = −α
r

(niu2). (20)

The issue now is where to switch our two descriptions: (16)–(18) (the boundary
layer dynamics) and (19)–(20) (the far field quasi-neutral dynamics).

One answer is just use the Bohm criterion and switch when u2 = c2. For
dynamic problems this is not enough and the Bohm criterion must be sup-
plemented by a second criterion. Following Riemann and Daube [8] Feldman,
Ha, and Slemrod [3], [4] have used a second criterion based on the electric
potential. Simply put matching asymptotic expansions in the transition layer
yields

ϕr ∼ ε−γ ,

where 0 < γ < 1. Hence since r = r
ε we see

ϕr ∼ ε1−γ

and ϕr is small is the transition region. We combine this observation with
Bohm criterion and define the plasma sheath interface as the curve rs(t) where
u2(rs(t), t) = c2 (Bohm) and ϕr(rs(t), t) = 0.
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5 Generalization to Non-Symmetric Case

In Section 1–4 I have given a short description how that plasma-sheath system
with a sharp interface is formulated in the canonical symmetries. But once the
ideas are in place the generalization to the general non-symmetric case follows
logically. This has been given in the paper of Feldman, Ha,. and Slemrod [3].

First we record the easy parts: The boundary layer sheath system and the
far field quasi-neutral equations. In the interior sheath region we have

nt +∇x · (nu) = 0, (21)

ut + (u,∇x)u = ∇xϕ, (22)

Δxφ = n, (23)

where Δx denotes the Laplacian with respect to x = x
ε .

On the other hand in the far field quasi-neutral region we have

nt +∇x · (nu) = 0 (24)

ut + (u · ∇x)u +∇x(lnn) = 0. (25)

The main issue is how to generalize the definition of the interface between
the two regions. The definition we have chosen is the obvious one.
Definition A plasma sheath interface S(t) separating a quasi-neutral region
and an interior sheath region is the level set of the normal component of the
ion velocity and electric fields, i.e.

S(t) = { x ∈ R3; u · ν(x, t) = −1 (or +1 depending on the
direction of flow of ions), ∇xϕ · ν(x, t) = 0 } , t > 0,

where ν is the exterior unit normal to the interface.
We note the ±1 just represents the fact that the sound speed in our for-

mulation has been rescaled to 1. In the presence of the canonical symmetries,
the definition of course reduces to the definition given in Section 4 for the
symmetric cases. More importantly the level set formation gives us an im-
mediate method of finding the dynamics of the interface. First to simplify
matters we will henceforth drop the overbars on t,x. Next we define normal
time derivative of a function f(x, t) by

δf

δt
= ∂tf + V ν · ∇xf (26)

where ν = V ν is the velocity of the normal component interface. Hence for
an interface described by a level set function ψ(x, t) = 0, ∇xψ is trivially in
the normal direction to the interface and

δψ

δt
= 0. (27)
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Furthermore elementary differential geometry tells us

δν

δt
= ∇sV (28)

when ∇s denotes the surface gradient on the interface. Finally we differentiate
the level set identities u ·ν(x, t) = −1, ∇xϕ ·ν(x, t) = 0 along the propagating
interface, i.e. take δ

δt of these equations. We then recover for “normal” flow,
i.e. flows for which uT = 0 (uT the tangential component of velocity), the
following system

δψ

δt
= 0, (29)

δn

δt
= n∇x · ν (30)

(V + 1) +
h · ν
n

= − 1
n
∇s(V∇s lnn). (31)

Hence h is an additional quantity, the ion current and (31) gives us a formula
for computing V . (The computations are given in [3]).

In itself (29)–(31) is of course very neat. Moreover we can make an im-
mediate observation. Since ∇x · ν is twice the mean curvature Km of the
interface (31) says normal velocity V is inversely proportional to ion density
n and taking δ

δt of both sides of (31) we see δV
δt measuring acceleration of

the interface is proportional to δn
δt . If we combine this observation with (30)

we see the acceleration of interface is proportional to the mean curvature of
the interface (plus other terms). Thus the theory shows we have a curvature
driven interface, but it is the acceleration that is driven by curvature.

Before ending this section, it is perhaps worthwhile to see what (29)–(31)
gives in the cases of planar, cylindrical, and spherical symmetry, i.e. α = 0, 1, 2.
First consider planar solutions with the following ansatz: ψ(x, t) = x1 − s(t),
n(x, t) = n(x1, t) and h = (h, 0, 0). In this case the surface gradients vanish
and ∇ · ν = 0 as well. Hence

δψ

δt
= 0,

δn

δt
= 0, V = −1− h

n0
. (32)

Since δ
δt = ∂t + V ∪∇x this implies

−ṡ+ V = 0, ∂tn + ṡ∂x1n = 0, V = −1− h

n
. (33)

It is then easy to see n(x, t) = n0 (a constant) and ṡ = −1 − h
n0

. Hence the
interface is given and x1 = s(t) where ṡ satisfies ṡ = −1− h

n0
.

Next we consider the spherically symmetric solutions with ψ(x, t) = r −
s(t). Then we see that (29)–(31) yield

V = ṡ(t), nt + V nr =
2n
r
,
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ṡ + 1 +
ĥ

n
= 0

where ĥ is now the radial component of ion current. We combine the first two
equations to get

nt + ṡ · nr =
2n
r
, ṡ+ 1 +

ĥ

n
= 0. (34)

Now define ŝ(α, t) by the characteristic curve (particle path) issued from α
corresponding to the first equation in (34). Then

dŝ
dt

(α, t) = ṡ(t), ŝ(α, 0) = α,

and
dn(ŝ(t), t)

dt
=

2n(ŝ(t), t)
ŝ(t)

, ŝ
.

(t) + 1 +
ĥ(ŝ(t), t)
n(ŝ(t), t)

= 0. (35)

Then the second equation in (35) when differentiated with respect to t yields

ŝ
..

(t) + 2
(ŝ

.

(t) + 1)
ŝ
.

(t)
− (ŝ

.

(t) + 1)(∂rĥ(ŝ(t), t) ŝ
.

(t) + ∂tĥ(ŝ(t), t))
n

= 0

which combined with the ansatz ĥ(t, r) = h(t)
r2 gives

ŝ
..

(t) +
2(ŝ

.

(t) + 1)2

ŝ(t)
− ḣ(t)(ŝ

.

(t) + 1)
h(t)

= 0 (36)

and this a second order ordinary differential equation for the interface r = ŝ(t).
The cylindrical (α = 1) case is an analogous computation.
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Construction of Stochastic PDEs
and Predictive Control of Surface Roughness

in Thin Film Deposition
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Department of Chemical and Biomolecular Engineering, University of California,
Los Angeles, CA 90095, USA, pdc@seas.ucla.edu

Summary. In this work, we develop a systematic method for the construction of
linear stochastic partial differential equation (PDE) models for feedback control of
surface roughness in thin film deposition using kinetic Monte-Carlo simulations. The
method is applied to a representative deposition process and is successfully validated
through simulations.

1 Introduction

With the advancement of thin film technology, thin films of advanced materi-
als are used in a very wide range of applications, e.g., microelectronic devices,
optics, micro-electro-mechanical systems (MEMS) and biomedical products.
Various deposition methods have been developed and widely used to prepare
thin films such as physical vapor deposition (PVD) and chemical vapor de-
position (CVD). However, the dependence of thin film properties, such as
uniformity, composition and microstructure, on the deposition conditions is
a severe constraint on reproducing thin film’s performance. Thus, real-time
feedback control of thin film deposition becomes increasingly important in or-
der to meet the stringent requirements on the quality of thin films and reduce
thin film variability.

Earlier research efforts on feedback control of thin film deposition processes
focused on deposition spatial uniformity control and thin film composition
control (the reader may refer to [17, 16, 42, 1, 5, 8, 32] for representative
results employing a variety of control approaches). More recently, motivated
by the growing industrial demands, there have been significant research efforts
focusing on modelling and control of thin film growth in order to obtain thin
films with well-defined microstructure. In a thin film growth process, the film is
directly formed from microscopic random processes (e.g., molecule adsorption,
desorption, migration and surface reaction). Precise control of film properties
requires models that describe these microscopic processes and directly account
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for their stochastic nature. Examples of such models include: 1) kinetic Monte-
Carlo (kMC) methods [15, 12, 18, 36], and 2) stochastic partial differential
equations (PDEs) [11, 45].

Kinetic Monte-Carlo methods can be readily developed and can describe
the microscopic growth processes to atomistic details with multiple species and
both short-range and long-range interactions. Methodologies for estimation-
based feedback control and model-predictive control using kinetic Monte-
Carlo models have recently been developed in [22, 23] and [30], respectively.
Furthermore, feedback control using kMC models has been successfully ap-
plied to control surface roughness in a GaAs deposition process using experi-
mentally determined model parameters [24]. Since kinetic Monte-Carlo simu-
lations provide realizations of a stochastic process which are consistent with
the master equation which describes the evolution of the microscopic prob-
ability distribution, a method to construct reduced-order approximations of
the master equation was also reported in [13].

However, the fact that kMC models are not available in closed-form makes
very difficult to use them for system-level analysis and the design and imple-
mentation of real-time model-based feedback control systems. Motivated by
this, an approach was reported in [40, 3] to identify linear deterministic mod-
els from outputs of kinetic Monte-Carlo simulators (the reader may also refer
to [38] for another approach to obtain input/output models from kMC simula-
tions) and design controllers using linear control theory to control macroscopic
variables which are low statistical moments of the microscopic distributions
(e.g., surface coverage, which is the zeroth moment of adspecies distribution
on a lattice). However, to control higher statistical moments of the micro-
scopic distributions, such as the surface roughness (the second moment of
height distribution on a lattice), or even the microscopic configuration (such
as the surface morphology), linear deterministic models may not be sufficient,
because the effect of the stochastic nature of the microscopic processes be-
comes very significant and must be addressed both in the model construction
and controller design.

Stochastic PDE models, on the other hand, which are available in closed-
form, have been developed to describe the evolution of the height profile for
surfaces in certain physical and chemical processes such as epitaxial growth
[45] and ion sputtering [21]; in these works, the stochastic PDE models have
been derived directly on the basis of the microscopic process rules through a
procedure that computes the limit of the surface height of the discrete depo-
sition process as the size of each lattice site goes to zero (see also [28, 35, 44]).
More recently, Lou and Christofides [26] presented a method for feedback
control of surface roughness in a thin film growth process whose surface
height fluctuation can be described by the Edwards-Wilkinson (EW) equa-
tion [11], a second-order stochastic parabolic PDE (see also [25] for results
on control of surface roughness in a sputtering process using the stochas-
tic Kuramote-Sivashinsky equation). In these works, the feedback controllers
were designed, using pole-placement techniques, based on the stochastic PDE



Construction of Stochastic PDEs for Surface Roughness Control 377

models (Edwards-Wilkinson (EW) equation [11] and stochastic Kuramote-
Sivashinsky equation [25] constructed directly from the microscopic process
rules) and successfully applied to the kMC model of the deposition process
regulating the surface roughness to desired values. However, the construction
of stochastic PDE models for thin film growth processes directly based on
microscopic process rules [28, 35, 44] is, in general, a very difficult task. This
bottleneck has prohibited the development of stochastic PDE models, and
subsequently the design of model-based feedback control systems, for realistic
deposition processes which are, in general, highly complex.

In this work, we develop a systematic method for the construction of lin-
ear stochastic PDE models for feedback control of surface roughness in thin
film deposition. A thin film deposition process including molecule adsorption
and surface migration is used to illustrate the application of the method. We
initially reformulate a general linear stochastic PDE into a system of infinite
stochastic ordinary differential equations (ODEs), and then we use a kMC sim-
ulation of the deposition process to generate surface snapshots to determine
the eigenspectrum and the covariance of the stochastic ODE system. Finally,
a linear stochastic PDE model is determined by least-square fitting the pre-
derivative coefficients to match the eigenspectrum of the stochastic PDE sys-
tem to the identified stochastic ODE system and the least-square-optimal form
of the stochastic PDE model with model parameters expressed as functions
of the process parameters is determined. Furthermore, an optimization-based
feedback controller is designed using the constructed model and applied to the
kMC simulation of the deposition process to control the surface roughness.

2 Preliminaries

2.1 Thin Film Growth Process

To illustrate the application of the proposed model construction methodology,
we consider throughout the manuscript a thin film growth process of deposi-
tion from vapor phase, in which, the formation of the thin film is governed by
two microscopic processes that occur on the surface as shown in Fig.1, i.e.,
the adsorption of vapor phase molecules on the surface and the migration of
surface molecules. The processes of molecules adsorption and migration are
very common in thin film growth processes.

More specifically, we consider a single species growth on a 1-dimensional
lattice. The adsorption rate which depends on the vapor phase concentration
is considered uniform over the spatial domain and constant (i.e., fixed growth
rate) during each deposition, however, it could vary for different deposition
runs. All surface sites are available for adsorption for all time and the adsorp-
tion rate for each surface site is given by:

wa = W (1)
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Fig. 1: The thin film growth process.

where W is the growth rate in ML/s (monolayers per second).
The migration rate of each surface molecule depends on its local environ-

ment. Under the consideration of only first nearest-neighbor interactions, the
migration rate of surface molecules from a surface site with n first nearest-
neighbors is given by:

wm(n) = km0e
−Es + nEn

kBT (2)

where Es is the energy barrier associated with migration due to surface effects,
En is the energy barrier associated with migration due to nearest neighbor
interactions, km0 is the frequency constant associated with migration, kB is
the Boltzmann’s constant and T is the substrate temperature. The values of
migration energy barriers and frequency constant used in this study are taken
from the literature [39] for a molecular beam epitaxy GaAs process and are
as follows: Es = 1.58 eV , En = 0.28 eV and km0 = 2kBT/h, where h is the
Planck’s constant.

A kinetic Monte-Carlo simulation code following the algorithm reported in
[43] is used to simulate the deposition process and obtain surface snapshots.
The simulation lattice size, i.e., the total number of surface sites is denoted
as kmax. Periodic boundary conditions are used in the kMC simulation to
satisfy the mass balance of the migration of the surface molecules. While we
focus here on a one-dimensional lattice, the model construction method can
be extended to two-dimensional lattices - see [31] for details.

2.2 Stochastic PDE Model

As we discussed in the introduction, although there exist many first principles-
based simulation codes for simulating microscopic processes, most of them are
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computationally very expensive. Therefore, closed-form stochastic PDE mod-
els are favored for applications in which computation efficiency is essential,
such as, for the purpose of model-based real-time feedback control.

Without any a priori knowledge of the deposition process, we assume that
there exists a one-dimensional linear stochastic PDE of the following general
form that can adequately describe the evolution of the surface of the thin film
during the deposition:

∂h

∂t
= c + c0h+ c1

∂h

∂x
+ c2

∂2h

∂x2
+ · · ·+ cw

∂wh

∂xw
+ ξ(x, t) (3)

where x ∈ [0, π] is the spatial coordinate, t is the time, h(x, t) is the height of
the surface at position x and time t, and ξ(x, t) is a Gaussian noise with zero
mean and covariance:

〈ξ(x, t)ξ(x′, t′)〉 = ς2δ(x− x′)δ(t− t′) (4)

where δ(·) is the Dirac function. Furthermore, the pre-derivative coefficients c
and cj in Eq.3 and the parameter ς2 in Eq.4 depend on the process parameters
(gas flow rates, substrate temperature, etc.) pi(t):

c = C[p1(t), p2(t), · · · , pd(t)]
cj = Cj [p1(t), p2(t), · · · , pd(t)] j = 0, · · · , w
ς2 = Cξ[p1(t), p2(t), · · · , pd(t)]

(5)

where C(·), Cj(·) and Cξ(·) are nonlinear functions to be determined.
The stochastic PDE of Eq.3 is subjected to the following periodic boundary

conditions:
∂jh

∂xj
(0, t) =

∂jh

∂xj
(π, t) j = 0, · · · , w − 1 (6)

and the initial condition:
h(x, 0) = h0(x) (7)

Remark 1. In this work, we assume that a linear stochastic PDE model ade-
quately describes the process dynamics, however, for the cases in which the
nonlinear dynamics are significant, nonlinear stochastic PDE models would
be needed. Also, we note that we use a scalar function, h(·), to represent the
height profile of the thin film surface in the model. In general, h(·) can be a
vector function and be used to represent any appropriate microscopic descrip-
tion of the thin film (such as the defect locations, grain boundaries, etc); in
such a case, several stochastic PDEs should be considered simultaneously.

To study the dynamics of Eq.3, we initially consider the eigenvalue problem
of the linear operator of Eq.3, which takes the form:
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Aφn(x) = c0φn(x) + c1
dφn(x)

dx
+ c2

d2φn(x)
dx2

+ · · ·+ cw
dwφn(x)

dxw
= λnφn(x)

djφn
dxj

(0) =
djφn
dxj

(π) j = 0, · · · , w − 1 n = 1, · · · ,∞
(8)

where λn denotes an eigenvalue and φn denotes an eigenfunction. A direct
computation of the solution of the above eigenvalue problem yields:

λn = c0 + I2nc1 + (I2n)2c2 + · · ·+ (I2n)wcw

φn(x) =

√
1
π
eI2nx n = 0,±1, · · · ,±∞

(9)

where λn denotes the nth eigenvalue, φn(x) denotes the nth eigenfunction and
I =
√
−1.

To present the method that we use for parameter identification of the sto-
chastic PDE of Eq.3, we first derive an infinite stochastic ODE representation
of Eq.3 using modal decomposition and parameterize the infinite stochastic
ODE system using kMC simulation. We first expand the solution of Eq.3 in an
infinite series in terms of the eigenfunctions of the operator of Eq.8 as follows
(i.e., the Fourier expansion in the complex form):

h(x, t) =
∞∑

n=−∞
zn(t)φn(x) (10)

where zn(t) are time-varying coefficients. Substituting the above expansion
for the solution, h(x, t), into Eq.3 and taking the inner product, the following
system of infinite stochastic ODEs is obtained:

dzn
dt

= λnzn + czn + ξn(t) n = 0,±1, · · · ,±∞ (11)

and the initial conditions:

zn(0) = zn0 n = 0,±1, . . . ,±∞ (12)

where czn = c

∫ π

0

φ∗n(x)dx (apparently cz0 = c
√
π and czn = 0 ∀ n �= 0),

ξn(t) =
∫ π

0

ξ(x, t)φ∗n(x)dx and zn0 =
∫ π

0

h0(x)φ∗n(x)dx. φ∗n(x) is the complex

conjugate of φn(x), the superscript star is used to denote complex conjugate
in the remainder of this manuscript.

The covariances of ξn(t) can be computed by using the following result [4].
Result 1: If (1) f(x) is a deterministic function, (2) η(x) is a random

variable with 〈η(x)〉 = 0 and covariance 〈η(x)η(x′)〉 = σ2δ(x − x′), and (3)

ε =
∫ b

a

f(x)η(x)dx, then ε is a random number with 〈ε〉 = 0 and covariance

〈ε2〉 = σ2

∫ b

a

f(x)f∗(x)dx.
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Using the above result, we obtain 〈ξn(t)〉 = 0 and 〈ξn(t)ξ∗n(t′)〉 =
ς2δ(t− t′). We note that ξn(t) is a complex Gaussian random variable and the
probability distribution function of the Gaussian distribution, P (ξn, t), on the
complex plane with zero mean and covariance ς2δ(t− t′) is defined as follows:

P (ξn, t) =
1√

2πςδ(t− t′)
e

ξnξ
∗
n

2ς2δ(t− t′) (13)

To parameterize this system of infinite stochastic ODEs, we first derive the
analytic expressions for the statistical moments of the stochastic ODE states,
including the expected value and covariance. By comparing the analytical ex-
pression to the statistical moments obtained by multiple kMC simulations, the
parameters of the stochastic ODE system (i.e., λn and ς) can be determined.

The analytic solution of Eq.11 is obtained as follows to derive the expres-
sions for the statistical moments of the stochastic ODE states:

zn(t) = eλntzn0 +
(eλnt − 1)czn

λn
+
∫ t

0

eλn(t− μ)ξn(μ)dμ (14)

Using Result 1, Eq.14 can be further simplified as follows:

zn(t) = eλntzn0 +
(eλnt − 1)czn

λn
+ θn(t) (15)

where θn(t) is a complex random variable of normal distribution with zero

mean and covariance 〈θn(t)θ∗n(t)〉 = ς2
e(λn + λ∗n)t − 1

λn + λ∗n
. Therefore, the ex-

pected value (the first stochastic moment) and the covariance (the second
stochastic moment) of state zn can be expressed as follows:

〈zn(t)〉 = eλntzn0 +
(eλnt − 1)czn

λn

〈zn(t)z∗n(t)〉 = ς2
e(λn + λ∗n)t − 1

λn + λ∗n
+ 〈zn(t)〉〈zn(t)〉∗

n = 0,±1, · · · ,±∞

(16)

Eq.16 holds for any initial condition zn0. Since we are able to choose any
initial thin film surface for simulation, we choose zn0 = 0 (i.e., the initial
surface is flat, h(x, 0) = 0) to simplify our calculations. In this case, Eq.16
can be further simplified as follows (note that czn = 0, ∀n �= 0):

〈zn(t)〉 = 0

〈zn(t)z∗n(t)〉 = ς2
e(λn + λ∗n)t − 1

λn + λ∗n
= ς2

e2Re(λn)t − 1
2Re(λn)

n = ±1, · · · ,±∞

(17)
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where Re(λn) denote the real part of λn, and for z0(t), it follows from Eq.16
with λ0 = 0 that,

〈z0(t)〉 = lim
λ0→0

(eλ0t − 1)cz0
λ0

= tcz0 = t
√
πc

〈z2
0(t)〉 = ς2t + t2πc2

(18)

It can be seen in Eq.17 that the statistical moments of each stochastic
ODE state depend only on the real part of the corresponding eigenvalue,
and therefore, to determine the imaginary part of the eigenvalue we need to
construct an extra equation. We note that λn would be a complex number if
the linear operator A is not self-adjoint, i.e., when odd-partial-derivatives are
present in the stochastic PDE (see Eq.9).

Therefore, we rewrite Eq.14 by separating the real part and the imaginary
part of zn(t) as follows with initial condition zn0 = 0:

zn(t) =
1
2

∫ t

0

[eλn(t− μ) + eλ
∗
n(t− μ)]ξn(μ)dμ

+
1
2

∫ t

0

[eλn(t− μ) − eλ
∗
n(t− μ)]ξn(μ)dμ

n = ±1, · · · ,±∞

(19)

Accordingly, the real part of zn(t) can be expressed as follows:

Re[zn(t)] =
1
2

∫ t

0

[eλn(t− μ) + eλ
∗
n(t− μ)]ξn(μ)dμ

n = ±1, · · · ,±∞
(20)

where Re[zn(t)] denotes the real part of zn(t). By using result 1, we have,

〈Re[zn(t)]〉 = 0

〈Re[zn(t)]2〉 = ς2[
λ∗ne

2λnt + λne
2λ∗nt − (λn + λ∗n)

8λnλ∗n
+
e(λn + λ∗n)t − 1

2(λn + λ∗n)
]

= ς2{Re(λn)e
2Re(λn)cos(2Im(λn)t)

4[Re(λn)2 + Im(λn)2]

+
Im(λn)e2Re(λn)sin(2Im(λn)t)

4[Re(λn)2 + Im(λn)2]

− Re(λn)
4[Re(λn)2 + Im(λn)2]

+
e2Re(λn)t − 1

4Re(λn)
}

n = ±1, · · · ,±∞

(21)
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where Im(λn) denotes the imaginary part of λn. Thus, we can use Eq.17 to
first determine the real part of the eigenvalue, and then use the Eq.21 to de-
termine its imaginary part. We note that it is not recommended to determine
both parts of the eigenvalue using only Eq.21, since in that case, the nonlinear
least-square problem involved in the eigenvalue determination would be much
more difficult to solve.

Remark 2. Eq.17, Eq.18 and Eq.21 show the analytical relation that relates
the linear operator and the Gaussian noise in Eq.3 to the statistical moments
of the states of Eq.11 which can be obtained through multiple experimental
measurements or first principle simulations, and therefore, reveal a viable path
to systematically construct a linear stochastic PDE of the form of Eq.3 that
describes the dynamics of the microscopic processes directly from experimen-
tal or simulation data.

3 Model Construction

Based on the results shown in the previous section, we propose a systematic
procedure to construct a linear stochastic PDE for the deposition process
described in Section 2.1. In this work, we use a kinetic Monte-Carlo code to
simulate the deposition process and generate surface snapshots. The proposed
procedure includes the following steps: First, we design a set of simulation ex-
periments that cover the complete range of process operation; second, we run
multiple simulations for each simulation experiment to obtain the trajectories
of the first and second statistical moments of the states (i.e., Fourier coeffi-
cients) computed from the surface snapshots; third, we compute the eigen-
values of the linear operator and covariance of the Gaussian noise based on
the trajectories of the statistical moments of the states for each simulation
experiment, and determine the model parameters of the stochastic PDE (i.e.,
the pre-derivative coefficients and the order of the stochastic PDE); finally,
we investigate the dependence of the model parameters of the stochastic PDE
on the process parameters and determine the least-square-optimal form of the
stochastic PDE model with model parameters expressed as functions of the
process parameters.

3.1 Eigenvalues and Covariance

Because there are only two process parameters considered in the deposition
process studied in this work, the growth rate W and the substrate temperature
T , the simulation experiment design is straightforward. Specifically, different
W values and T values are evenly selected from the range of process operation
of interest and simulation experiments are executed with every selected W
value for each selected T value. Therefore, we start our demonstration of the
model construction methodology with the identification of the eigenvalues and
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covariance. Also, we note that the trajectories of the statistical moments for
each simulation experiment are computed based on 100 simulation runs taking
place with the same process parameters.

In the previous section we have shown that for a deposition process with
a flat initial surface, the covariance of each state 〈zn(t)z∗n(t)〉 should be able
to be predicted by Eq.17, therefore, we can fit ς2 and Re(λn) in Eq.17 for the
profile of 〈zn(t)z∗n(t)〉. In order to obtain the profile of 〈zn(t)z∗n(t)〉, we need to
generate snapshots of the thin film surface during each deposition simulation
and compute the values of zn(t). Since the lattice consists of discrete sites, we
let h(kL, t) be the height profile of the surface at time t with lattice constant
L (k denotes the coordinate of a specific surface site), and compute zn(t) as
follows:

zn(t) =
∫ π

0

h(x, t)φ∗n(x)dx =
kmax∑
k=0

h(kL, t)
∫ (k+1)L

kL

φ∗n(x)dx (22)

where kmaxL = π (i.e., the lattice is mapped to the domain [0,π]). Substituting
Eq.9 into Eq.22, we can derive the following expression for zn(t):

zn(t) =
kmax∑
k=0

h(kL, t)e−I2kLn
I2
√
πn

(1 − e−I2Ln) n = ±1, · · · ,±∞ (23)

and for z0(t), we have,

z0(t) =
kmax∑
k=0

h(kL, t)
L√
π

=
√
πt

kmax∑
k=0

h(kL, t)

kmaxt
= t
√
πW (24)

To capture the dynamics of both the fast states and slow states simulta-
neously in the same simulation run with few surface snapshots, the snapshots
are generated in a variable-time-step fashion in which the intervals between
two snapshots are increased with time. This procedure is motivated by the
fact that the dynamics of the fast states can be detected only at the beginning
of each simulation run, and therefore, the evolving surface should be sampled
more frequently in the beginning than the remainder to cope with the small
time scale of these fast states. Fig.2(a) shows the typical covariance profiles
of different states in a growth process. It can be seen that despite the very
different time scales of the states, our method can still generate very smooth
profiles for both the fast states (such as z40, whose time scale is less than 50
s) and the slow states (such as z10, whose time scale is larger than 1000 s).

Fig.2(b) shows the eigenvalues identified from thin film depositions occur-
ring under the same operating conditions but simulated with different lattice
size (we note that the identified eigenvalues are considered real since the imag-
inary part of the eigenvalues identified turned out to be very small). It can be
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(a) Covariance profiles. (b) Eigenspectra.

Fig. 2: (a) Covariance profiles of z10, z20, z30 and z40; (b) Eigenvalue spectra of the
infinite stochastic ODE systems identified from the kMC simulation of the deposition
process with different lattice size: kmax = 100, kmax = 500, kmax = 1000 and
kmax = 2000.

seen that the identified spectra are very close to each other when n is rescaled
with the corresponding lattice size. This is expected, since, φn(x) is a basis
of the domain of operator A, and is a complex function of the frequency n,
accordingly, n/kmax is the length scale of the surface fluctuation described
by φn(x) when a lattice of size kmax is mapped to the domain of [0, π] (we
note that, for the same reason, the covariance values should be scaled with
the inverse of the lattice size, 1/kmax, in order to carry out a meaningful
comparison).

It can also be seen in Fig.2(b) that the eigenspectra are very close to the
parabolic reference curve, which implies that a second-order stochastic PDE
system of the following form would be able to describe the evolution of the
surface height of this deposition process:

∂h

∂t
= c+ c2

∂2h

∂x2
+ ξ(x, t) (25)

in which c, c2 and the covariance of the Gaussian noise ξ, ς, all depend on
the microscopic processes and operating conditions. At this point, it is im-
portant to point out that Eq.25 constructed following the proposed model
construction procedure from kMC data is a second-order stochastic PDE of
the Edwards-Wilkinson type [11]. This is expected because of the similarity
of the microscopic rules considered in the deposition process of our work and
in the work of Edwards and Wilkinson [11]. However, the path followed by
Edwards and Wilkinson for the construction of their stochastic PDE and the
path followed by the proposed model construction procedure for the construc-
tion of Eq.25 are completely different.
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For a deposition process that is similar to the one we considered here,
Edwards and Wilkinson derived the well-known EW equation from a limiting
procedure [11]. The EW equation is also a second-order linear stochastic PDE
like the one we obtained here. The fact that our model constructed via a very
different approach, coincides with the EW equation provides a good validation
of our methodology.

3.2 Dependence on the Process Parameters

We proceed now with the derivation of the parameters of the stochastic PDE
of Eq.25. From Eq.18 and Eq.24, we can see that c = W for all cases. How-
ever, c2 and ς2 identified for different deposition settings can be very different,
therefore, we need to investigate their dependence on the deposition parame-
ters to obtain their analytical expressions. c2 and ς2 are evaluated for assorted
deposition conditions and a lattice size of 1000 (i.e., kmax = 1000) is used for
all the simulation runs in our study.

(a) Eigenspectra identified with a
growth rate W = 0.5ML/s for dif-
ferent substrate temperatures: T =
600K, T = 650K and T = 680K.

(b) Eigenspectra identified with a
substrate temperature T = 650K
for different growth rates: W =
0.5ML/s, W = 1.0ML/s and W =
2.0ML/s.

Fig. 3: Eigenspectra identified from simulated deposition processes.

Fig.3(a) shows the eigenspectra identified from depositions with the same
growth rate (W = 0.5 ML/s) for different substrate temperatures. It can be
seen that the magnitude of the eigenvalues decreases faster with increasing
n at higher substrate temperature. This implies that a higher substrate tem-
perature corresponds to a larger c2 in the stochastic PDE model and vice
versa.

Fig.4(a) shows the covariance spectra identified from depositions with the
same growth rate (W = 0.5 ML/s) for different substrate temperature. Al-
though it follows from Eq.13 that the covariance of the stochastic noise should
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(a) Spectra identified with a growth
rate W = 0.5ML/s for different
substrate temperatures: T = 600K,
T = 650K and T = 680K.

(b) Spectra identified with a sub-
strate temperature T = 650K
for different growth rates: W =
0.5ML/s, W = 1.0ML/s and W =
2.0ML/s.

Fig. 4: Covariance spectra identified from simulated deposition processes.

be the same for all states, it is not so for high-order states in the high sub-
strate temperature regime (e.g., T = 680 K). However, because these high
order states correspond to the surface fluctuations of small length scales, and
at the same time, such small length scale surface fluctuations are almost neg-
ligible in the high substrate temperature regime due to the significant surface
diffusion, the contribution from these high-order states at high substrate tem-
perature becomes very small. Therefore, given that such discrepancy would
not significantly affect the accuracy of the model, we compute ς2 only based
on the low-order states. From the covariance of the low-order states shown in
Fig.4(a), we may also consider ς2 to be independent of substrate temperature.

Fig.3(b) shows the eigenspectra identified from depositions occurring un-
der the same substrate temperature (T = 650K) and different thin film growth
rates. It can be seen that, at this substrate temperature, the eigenvalues die
out a bit slower with increasing growth rate, which implies that a higher
growth rate corresponds to a smaller c2 in the stochastic PDE model and vice
versa.

Fig.4(b) shows the covariance spectra identified from depositions occurring
under the same substrate temperature (T = 650K) and different thin film
growth rates. It can be seen that a higher growth rate corresponds to a larger
covariance value.

To derive explicit expressions for c2 and ς2 as functions of T and W , we
evaluate these values for different T and W and the results are shown in
Fig.5(a) and Fig.5(b). From Fig.5(a), we can see that ln c2 has a quasi-linear
relationship with both T and W , and thus, the following expression can be
obtained for c2 as a function of T and W through least square fitting:
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(a) Profile of c2. (b) Profile of ς2.

Fig. 5: Profile of stochastic PDE parameters as functions of substrate temperature
T and thin film growth rate W .

c2(T,W ) = e−45.8176 + 0.0511T − 0.1620W

=
e−32.002 + 0.0511T − 0.1620W

k2
max

(26)

From Fig.5(b) we can see that ς2 depends almost linearly on both T and
W , and thus, the following expression can be obtained for ς2 as a function of
T and W through least square fitting as well:

ς2(T,W ) = 5.137× 10−8T + 3.2003× 10−3W ≈ πW

kmax
(27)

Therefore, the linear stochastic PDE model identified for the deposition
process is as follows:

∂h

∂t
= W + (

e−32.002 + 0.0511T − 0.1620W

k2
max

)
∂2h

∂x2
+ ξ(x, t)

∂h

∂x
(0, t) =

∂h

∂x
(π, t), h(0, t) = h(π, t), h(x, 0) = h0(x)

(28)

where 〈ξ(x, t)ξ(x′, t′)〉 = 5.137× 10−5T + 3.2003W
kmax

δ(x− x′)δ(t− t′).

3.3 Validation of Stochastic PDE Model

We now proceed with the validation of the stochastic PDE model of the thin
film deposition process (Eq.28). Validation experiments are conducted for a
number of deposition conditions which have not been used for the model con-
struction. We generate surface profiles using both the stochastic PDE model
and the kinetic Monte-Carlo code. Fig.6(a) shows the surface profile at the end
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(a) A 1000s deposition with sub-
strate temperature T = 550K and
thin film growth rate W = 0.1
ML/s.

(b) A 400s deposition with sub-
strate temperature T = 700K and
thin film growth rate W = 2.5
ML/s.

Fig. 6: Final thin film surface profiles generated by kMC simulation and stochastic
PDE model (kmax = 2000).

of a deposition with substrate temperature T = 550 K, thin film growth rate
W = 0.1 ML/s, deposition duration of 1000 s and lattice size kmax = 2000;
Fig.6(b) shows the surface profile at the end of a deposition with substrate
temperature T = 700 K, thin film growth rate W = 2.5 ML/s, deposition
duration of 400 s and lattice size kmax = 2000; we can see that both at low
and high substrate temperatures, and for different growth rates, the linear sto-
chastic PDE model constructed for the deposition process is very consistent
with the kinetic Monte-Carlo simulation.

We also generate expected surface roughness profiles using both the sto-
chastic PDE model and the kinetic Monte-Carlo simulation (average of 100
runs) for the deposition process. For simplicity, the surface roughness is eval-
uated in a root-mean-square fashion as follows:

r(t) =

√
1
π

∫ π

0

[h(x, t)− h̄(t)]2dx (29)

where h̄(t) =
1
π

∫ π

0

h(x, t)dx is the average surface height. We note that

for more detailed description of the surface morphology, the height-height
correlation function may be used to evaluate the surface roughness [41].

Fig.7(a) shows the expected roughness profile of a deposition with sub-
strate temperature T = 550 K and thin film growth rate W = 0.1 ML/s;
Fig.7(b) shows the roughness profile of a deposition with substrate tempera-
ture T = 700 K and thin film growth rate W = 2.5 ML/s; we can see that
the linear stochastic PDE model constructed for the deposition process is also
very consistent with the kinetic Monte-Carlo simulation in terms of surface
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(a) A 1000s deposition with sub-
strate temperature T = 550K and
thin film growth rate W = 0.1
ML/s.

(b) A 400s deposition with sub-
strate temperature T = 700K and
thin film growth rate W = 2.5
ML/s.

Fig. 7: Expected surface roughness profiles generated by kMC simulation and sto-
chastic PDE model (kmax = 2000).

roughness, at both low and high substrate temperatures, for different growth
rates.

4 Predictive Control

In this section, we design a model-based state feedback controller based on
the stochastic PDE model of Eq.28 to control the thin film surface roughness
of the deposition process. The difficulty of obtaining in-situ surface measure-
ments in real-time had been one of the obstacles for implementing feedback
control on thin film processes. Recently, researchers made possible to use
some of the intrusive scanning probe based techniques such as the scanning
tunneling microscopy (STM) [33] and atomic force microscopy (AFM) [27]
in-situ, to observe in real-time the growth of the thin film. More recently, it
was reported in [37] that a non-intrusive grazing incidence small angle x-ray
scattering (GISAXS) method was successfully used to monitor the thin film
growth in-situ in real-time; the method was capable of sampling large surface
areas with sampling frequency up to 10 Hz and a subnanometer resolution.
Such advancements in surface metrology indeed open up the possibility for
implementing feedback control systems which rely on real-time surface state
measurements and possibly on state estimation algorithms [19] . On the other
hand, for the cases in which state measurements are not available directly,
state estimators could be used to implement output feedback control based
on available measurements such as thickness and surface roughness.
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4.1 Surface Roughness

We first proceed with the analysis of the dynamics of the surface roughness
based on the stochastic PDE model constructed for the thin film deposition
process. The surface roughness, r(t), is defined by Eq.29. According to Eq.22,
we have h̄(t) = z0(t)φ0. Therefore, r(t) can be rewritten in terms of zn as
follows:

r(t) =

√
1
π

∫ π

0

(h(x, t) − h̄(t))2dx

=

√√√√ 1
π

∫ π

0

∞∑
n=−∞,n�=0

zn(t)φn(x)φ∗n(x)z∗n(t)dx

=

√√√√ 1
π

∞∑
n=−∞,n�=0

zn(t)z∗n(t)

(30)

and the expected roughness can be computed as follows:

〈r(t)〉 =

√√√√ 1
π

∞∑
n=−∞,n�=0

〈zn(t)z∗n(t)〉 (31)

In order to design a model-based feedback controller to control the surface
roughness, we first derive the analytical expression for the trajectory of 〈r(t)〉.
Substituting Eq.16 into Eq.31 we obtain the following expression for 〈r(t)〉 in
terms of the eigenvalues of the infinite stochastic ODE system:

〈r(t)〉 =

√√√√ 1
π

∞∑
n=−∞,n�=0

[ς2
e(λn + λ∗n)t − 1

λn + λ∗n
+ e(λn + λ∗n)tzn0z

∗
n0]

=

√√√√ 1
π

∞∑
n=−∞,n�=0

[ς2
e2Re(λn)t − 1

2Re(λn)
+ e2Re(λn)tzn0z

∗
n0]

(32)

Specifically, for the stochastic PDE model of Eq.25, λn = −4c2n2, thus,
Eq.32 can be rewritten as follows:

〈r(t)〉 =

√√√√ 1
π

∞∑
n=−∞,n�=0

(ς2
e−8c2n2t − 1
−8c2n2

+ e−8c2n2tzn0z
∗
n0)

=

√√√√ 2
π

∞∑
n=1

(ς2
e−8c2n2t − 1
−8c2n2

+ e−8c2n2tzn0z
∗
n0)

(33)

In order to compute an estimate of the excepted surface roughness at a
future time t, we need to compute the infinite sum in Eq.33. However, such an
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infinite summation cannot be computed directly, instead, a finite summation
needs to be used to approximately compute this infinite sum. It can shown
by using standard theory of infinite summation [20] that, if the following mth
order approximation (only the first mth states are included in the summation)
is used,

r̂(t)2 =
2
π

m∑
n=1

(ς2
e−8n2c2t − 1
−8n2c2

+ e−8n2c2tzn0z
∗
n0)

+
1
2π

[e−8c2(m + 1)2t(πr20 −
m∑
n=1

zn0z
∗
n0) +

ς2

2m+2c2
]

(34)

where r0 is the initial roughness value, the approximation error would be
subject to the following bound:

|〈r(t)〉 − r̂(t)| ≤

√√√√ 1
2π

[e−8c2(m+ 1)2t(πr20 −
m∑
n=1

zn0z
∗
n0) +

ς2

2m+2c2
] (35)

We note that the approximation error decreases with increasing m.

4.2 Predictive Control Design

We now proceed with the design of the feedback controller. Since the thin
film deposition is a batch process, the control objective is to control the fi-
nal surface roughness of the thin film to a desired level at the end of each
deposition run. Therefore, we use an optimization-based control problem for-
mulation (the reader may refer to [10, 7, 9, 34, 29, 6, 2] for more information on
optimization-based control formulations and control of PDEs). The substrate
temperature, T , is chosen to be the manipulated variable, while the thin film
growth rate W is kept constant during each deposition. Furthermore, since
the process is stochastic, the controlled variable is the expected value of the
final surface roughness, 〈r(tdep)〉, where tdep is the total deposition time.

Fig.8 shows the block diagram of the closed-loop system. When a real-time
surface profile measurement is obtained, the states of the infinite stochastic
ODE system, zn, are computed. Then, a substrate temperature T is computed
based on states zn and the stochastic PDE model and applied to the depo-
sition process. The substrate is held at this temperature for the rest of the
deposition until a different value is assigned by the controller. The value of T is
determined at each time t by solving, in real-time, the following optimization
problem:

min
T

J = (r2set − 〈rfinal〉2)2 (36)

subject to
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Fig. 8: Block diagram of the closed-loop system.

〈rfinal〉2 =
2
π

m∑
n=1

[ς2
e−8n2c2(tdep − t) − 1

−8n2c2
+ e−8n2c2(tdep − t)zn(t)z∗n(t)]

+
1
2π
{e−8c2(m+ 1)2(tdep − t)[πr2(t)−

m∑
n=1

zn(t)z∗n(t)] +
ς2

2m+2c2
}

(37)

c2 =
e−32.002 + 0.0511T − 0.1620W

k2
max

(38)

ς2 =
πW

kmax
(39)

Tmin ≤ T ≤ Tmax (40)

where Tmin and Tmax are the lowest and highest substrate temperature, re-
spectively. We note that J corresponds to the difference between the square
of the desired final surface roughness rset and the square of the estimated
final surface roughness 〈rfinal〉 computed based on the current states zn. We
choose to minimize the difference of the squares of the surface roughness, i.e.,
the mean square of the surface height, to simplify the calculation.

The first equality constraint Eq.37 (essentially the same as Eq.34) states
that the estimate of the final surface roughness, rfinal, is computed based
on current states zn(t) under the assumption that a substrate temperature
T will be used and kept constant in the rest of the deposition. The second
and third equality constraints are, in fact, Eqs.26 and 27 of the stochastic
PDE model of the deposition process, and since the growth rate W is fixed
during each deposition, the third constraint can be removed by substituting
the actual value of ς2 into Eq.37. The optimization problem can then be solved
analytically by quadratic programming using a linear approximation of Eq.37
(a standard sequential quadratic programming code can be used to solve the
original nonlinear optimization problem efficiently, however, it is not used here
for simplicity).
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To solve the above optimization problem, our initial step is to reduce it to
a quadratic programming problem with only linear constraints. To do this, we
remove the second and fourth constraints (Egs.38 and 40) by first finding the
optimal c2 that minimizes J and then computing the corresponding optimal
T using the equality constraint of Eq.38. In addition, we linearize the first
constraint Eq.37 with respect to c2 around an initial guess c̃2 (we note that
when c̃2 is chosen close enough to the optimal c2, the solution of the linearized
problem should be close the solution of the original problem). The value of c̃2
is computed based on the substrate temperature currently been used in Eq.38
(at t = 0, the c̃2 is computed based on the initial substrate temperature).
Therefore, the original optimization problem is reduced to:

min
c2

J = (r2set − 〈rfinal〉2)2 (41)

subject to

〈rfinal〉2 = 〈rfinal(c̃2)〉2 + (c2 − c̃2)
∂〈rfinal(c̃2)〉2

∂c̃2
(42)

c2,min ≤ c2 ≤ c2,max (43)

where c2,min and c2,max are the lower bound and upper bound of c2 respec-
tively. The second constraint is added due to the fact that c2 can only take
values within the corresponding range specified by Eqs.38 and 40, and c2,min
and c2,max are determined as follows:

c2,min =
e−32.002 + 0.0511Tmin − 0.1620W

k2
max

c2,max =
e−32.002 + 0.0511Tmax− 0.1620W

k2
max

(44)

A standard procedure based on the active set method [14] is used to solve
the optimization problem of Eq.41. First, we drop the inequality constraint
Eq.43, and a direct computation of the above problem by substituting the
equality constraint into the objective function yields:

c̄2 = c̃2 +
r2set − 〈rfinal(c̃2)〉2
∂〈rfinal(c̃2)〉2

∂c̃2

(45)

where c̄2 is the optimal value of c2 without the inequality constraint Eq.43.
Then, we check whether the inequality constraint is violated by c̄2, if the
inequality constraint is inactive (i.e., the constraint is not violated), c̄2 is
considered to be the optimal value for the linearized optimization problem.
On the other hand, if the inequality constraint is active (i.e., the constraint
is violated), the optimization problem is resolved accounting for the active
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constraint (which serves as another equality constraint). In such case, c2 can
only take the value of c2,min (when the lower bound is violated by c̄2) or
c2,max (when the upper bound is violated by c̄2), hence, the optimal value is
just the only feasible value c2,min or c2,max.

However, since Eq.42 is the linearization of Eq.37, c̄2 might only be a sub-
optimal value for the original problem. To this end, we can use this suboptimal
c̄2 as a new guess and repeat the linearzation procedure until c̄2 converges to
the optimal value (the convergence is guaranteed if the original problem is
convex), but for the sake of simplicity, such iterative procedure is not adopted
in this work. Once the optimal c2 is determined, by substituting c2 into Eq.38,
the optimal T can be obtained and used as the output of the controller.

Remark 3. Since Eq.37, is in fact, a finite approximation of the predicted final
surface roughness, to achieve a control precision ε, m should be chosen large
enough for each optimization computation so that the approximation error is
less than ε (see the Section 4.1 for detailed discussion). However, to achieve
the same control precision, the minimum m needed may vary depending on
the specific surface configuration (i.e., current states zn). On one hand, when
the length scale of the surface fluctuation is very small, the magnitude of the
high-order states becomes significant, hence, m need to be relatively large
so that these high-order states are included in the calculation. On the other
hand, when the length scale of the surface fluctuation is relatively large, the
contribution from the high-order states becomes negligible compared to the
low-order states, hence, a relatively small m should be good enough for precise
calculation. Therefore, in our implementation, the desired control precision is
achieved by adding more states to the finite-dimensional system until the
approximation error (computed based on Eq.35) is small enough (we note
that the approximation error depends on the actual values of the states as
shown in Eq.35), rather than by specifying the number of states that should
be evaluated from the surface snapshot before hand. However, a limit on
the maximum number of states to be used is imposed to guarantee that the
computation time of the controller does not prevent real-time implementation
(control precision may be reduced as a trade off against the computation
time).

Remark 4. Since the control action is computed using closed-form expressions,
the computation cost is proportional to the number of states used m but inde-
pendent of the optimization horizon tdep − t; however, to evaluate the values
of the m states, an additional computation time on the order of kmaxm is
needed for each surface measurement. Nevertheless, even for a lattice size
that corresponds to the largest physical dimension of the sampling area that
can be achieved by common surface measurement techniques (i.e., a few mi-
crons), such computation can still be completed with seconds using currently
available computing power. On the other hand, such task is almost impossi-
ble to achieve using a kMC code, whose computation cost is on the order of
k2
max(tdep−t) for merely a single run. Furthermore, we note that the evaluation
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of each state is independent of other states, and therefore, can be executed
in parallel, while the kMC code, being a serial calculation, is unsuitable for
parallel processing.

4.3 Closed-Loop Simulations

A kMC code with a lattice size kmax = 1000 is used to simulate the thin film
deposition process, and the substrate temperature is restricted within 300 K
to 900 K. The measurement interval, as well as the control interval, is set
to be 1 s. We limit the maximum number of states to be used (in our case,
to m = 500) to guarantee the maximum possible computation time for each
control action is within certain requirement, however, for most of the time the
number of states needed by the controller is much smaller.

(a) Surface roughness and sub-
strate temperature profiles.

(b) Final thin film surface profile.

Fig. 9: Simulation results of a 1000 s closed-loop deposition process with thin film
growth rate W = 0.5 ML/s and final roughness setpoint rset = 1.0 ML.

Fig.9(a) shows the surface roughness and substrate temperature profiles of
a closed-loop deposition process with thin film growth rateW = 0.5ML/s and
of an open-loop deposition with the same growth rate and a fixed substrate
temperature T = 650 K. The control objective is to drive the final surface
roughness of the thin film to 1.0 ML (monolayers) at the end of the 1000 s
deposition. It can be seen that the final surface roughness is controlled at the
desired level while an open-loop deposition with the same initial deposition
condition would lead to a 100% higher final surface roughness as shown in
Fig.9(a) (a comparison between the surfaces of the thin films deposited with
closed-loop and open-loop deposition is shown in Fig.9(b)).

Fig.10 shows the final surface roughness histogram of the thin films de-
posited using 100 different closed-loop depositions with final surface roughness
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Fig. 10: Histogram of final surface roughness of 100 closed-loop and 100 open-loop
thin film depositions targeted at the same surface roughness level.

setpoint of 2.25 ML and 100 different open-loop depositions. It can be seen
that the average surface roughness of the thin films deposited by the open-
loop depositions is very close to the average surface roughness of the thin
films deposited by the closed-loop deposition and the well-designed recipe-
based open-loop depositions, however, the variance among the thin films from
different open-loop deposition runs is over 400% higher than that of closed-
loop deposition runs even though no process disturbance is considered in the
simulations. This is due to the fact that the stochastic nature of the mi-
croscopic processes of the film growth cannot be handled effectively without
having a real-time feedback controller that can compensate for the stochas-
tic deviation from the expectation. As a result, if the tolerance on the thin
film surface roughness to fabricate a certain device is ±0.1 ML, over half of
the thin films prepared by the recipe-based deposition would be disqualified.
Therefore, introducing real-time feedback control system that directly aiming
at the material and electrical properties of the thin films is one of the most
effective, if not the only, solution to reduce cost and meet the ever increasing
film quality requirements demanded by the devices which are already down
to the nanometer regime.

To study the robustness of the closed-loop deposition with respect to
process disturbance, open-loop and closed-loop depositions are simulated in
which same process disturbance are introduced during all depositions. Par-
ticularly, for the 200 s deposition, a step change in the adsorption rate is
introduced at t = 80 s, and W is change from 0.5 ML to 1.5 ML; the ad-
sorption rate W remains at 1.5 ML for 20 s and then drop back to 0.5 ML
immediately (such square-wave changes in the adsorption rate may be caused
by the spikes in the gas delivery system of the CVD reactor). The roughness
set-point of the roughness controller is 1.3 ML, and the substrate temperature
of all the open-loop depositions is kept constant at 700 K so that the expected
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final roughness of the deposited films would be 1.3 ML if no disturbance is
present.

(a) Profiles of surface roughness:
undisturbed open-loop deposition
(dotted green line), disturbed open-
loop deposition (dashed red line)
and disturbed closed-loop deposi-
tion (solid black line).

(b) Profiles of the process distur-
bance W , and the manipulated sub-
strate temperature T (in disturbed
closed-loop deposition).

Fig. 11: Simulation results of a disturbed deposition process with nominal thin film
growth rate W = 0.5 ML/s and final roughness setpoint rset = 1.3 ML.

Fig. 11(a) shows the typical surface roughness profile of the undisturbed
open-loop deposition (dotted green line), and the surface roughness profile of
the process under disturbance, of the open-loop deposition (dashed red line)
and closed-loop deposition (solid black line). Fig. 11(b) shows the profiles of
the disturbance variable W (it is not used to compute the control action, i.e.,
the roughness controller is unaware of the abnormal adsorption rate) and the
manipulated substrate temperature T (in closed-loop deposition). It can be
seen that when disturbance is introduced, the final surface roughness of the
film deposited with open-loop operation is much higher than the desired level
(in this case more than 20 %), while the final surface roughness of the film
deposited under feedback control is still kept at the desired level (i.e., the
controller is able to bring the final surface roughness down to the desired level
after the disturbance when the thin film surface is unexpectedly roughened).

Fig.10 shows the histograms of the final surface roughness of thin films
deposited with open-loop (with and without process disturbance) and closed-
loop (with process disturbance) operations, and each histogram include 100
different simulation runs. It can be seen that the average surface roughness of
the thin films deposited by the open-loop depositions is shifted up for more
than 5% with the presence of process disturbance. Despite of that, the average
surface roughness of the thin films deposited under feedback control is very
close to the desired level even with the presence of process disturbance, and
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Fig. 12: Histograms of final surface roughness of thin films deposited with open-loop
(with and without process disturbance) and closed-loop (with process disturbance)
operations.

the variance is reduced as it is the case in the previous simulation where no
disturbance was introduced.

5 Conclusions

In this work, we presented a systematic method for the construction of linear
stochastic PDE models using data obtained from kMC simulations. A thin film
deposition process including molecule adsorption and surface migration was
used to illustrate the application of the method. Open-loop simulation results
demonstrated the accuracy of the constructed linear stochastic PDE model
for the thin film deposition process. Furthermore, an optimization-based feed-
back controller was designed using the constructed stochastic PDE model and
closed-loop system simulation results demonstrated that the controller is ca-
pable of controlling the surface roughness of the thin film to the desired level,
reduce film roughness variability and reject the effect of disturbances.

Acknowledgement. Financial support for this work from the NSF (ITR), CTS-

0325246, is gratefully acknowledged.
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Summary. One of the classical questions of non-equilibrium thermodynamics is the
validity of various closure approximations in nontrivial flows. We study this ques-
tion for a lid-driven cavity flow using a minimal molecular model derived from the
Boltzmann equation. In this nontrivial flow, we quantify the model as a superset of
the Grad moment approximation and visualize the quality of the Chapman-Enskog
and Grad closure approximations. It is found that the Grad closure approximation
is strikingly more robust than the Chapman-Enskog approximation at all Knud-
sen numbers studied. Grad’s approximation is used to formulate a novel outflow
boundary condition for lattice Boltzmann simulations.

1 Introduction

The overwhelming majority of fluid flows of physical and engineering interest
are slow, i. e., characteristic flow speed u is small compared to the speed of
sound cs. This is quantified by the Mach number, Ma ∼ u/cs, which typically
varies from 10−3 − 10−2 in hydrodynamic flows (turbines, reactors etc) to
10−4 in flows at a micrometer scale. The simplest characterization of the de-
gree of molecularity is then the Knudsen number Kn ∼ λ/H , the ratio of the
mean free path λ and the characteristic scale H of variation of hydrodynamic
fields (density, momentum, and energy). When Kn < 10−3, one considers the
hydrodynamic limit where molecularity reduces to a set of transport coeffi-
cients (viscosity, thermal conductivity etc). If, in addition, the Mach number
is also small, one obtains the incompressible hydrodynamics with the order-
ing Kn � Ma � 1, and the flow can be characterized solely by the ratio
Re ∼ Ma/Kn (one of the definitions of the Reynolds number).

In recent years, the lattice Boltzmann method (LBM) has drawn consid-
erable attention as a simulation method for flows at low Mach numbers. LBM
was originally introduced as a derivative of lattice-gas models [22, 13, 32, 7]
to simulate incompressible Navier-Stokes equations. LBM offers fully discrete
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(in space-time-velocity) kinetic models for populations of fictitious particles
with the velocities represented by links of a regular Bravais lattice (with pos-
sibly several sub-lattices). LBM operates on a highly efficient “stream-along-
links-and-collide-at-nodes” schedule making the method almost ideally com-
pliant with parallel architectures (for a general reference on LBM see, e. g.
[35, 15, 36]). At present, LBM can be regarded as an established method for
hydrodynamic simulations [14, 2]. Later, in a series of works [33, 4, 7, 8, 5], lat-
tice Boltzmann equation has been derived from the continuous kinetic theory.
Owing to their outstanding computational features and established relations
to the continuous kinetic theory there is increasing interest in applying lattice
Boltzmann models also to micro-flow simulation [10, 4, 31, 39, 6, 5].

In this paper we use the lattice Boltzmann models in order to address
one of the central issues of non-equilibrium statistical physics, namely, how
the system with many degrees of freedom reduces to a system with a smaller
number of degrees of freedom. The study of this question was pioneered in
the framework of the Boltzmann kinetic equations by the works of Hilbert,
Enskog, Chapman and Grad [12, 20]. This sometimes is referred to as the
closure problem. Over the years, several directions of research grew from this
question, in particular, equation-free multi-scale computations [38, 27] and
the method of invariant manifolds [17, 19].

However, till now there is a limited access to validation of various as-
sumptions behind the closure approximations, especially in nontrivial flows.
Therefore, numerical studies which can shed light on this question are re-
quired. Such a study is presented in this paper. We study the simplest kinetic
equation pertinent to a micro-flow in a lid-driven cavity (the isothermal two-
dimensional nine-velocity model [7]). We use this model in order to validate
the relevance and accuracy of the two classical closure approximations, the
Chapman-Enskog closure leading to the Navier-Stokes approximation of hy-
drodynamics, and the Grad closure approximation. Aside from the obvious
relevance of this study to the general question of validity of closure approx-
imations, it should have important practical consequences for such issues as
grid refinement, boundary conditions etc.

The paper is organized as follows: For the sake of completeness, the kinetic
model is briefly presented in section 2. In section 3, we show the relation of our
model to the well-known Grad moment system derived from the Boltzmann
kinetic equation [20]. We compare analytically the dispersion relation for the
present model and the Grad moment system. This comparison reveals that
the kinetic model of section 2 is a superset of Grad’s moment system, rather
than just a superset of the Navier-Stokes equations. In section 4, a brief de-
scription of the lattice Boltzmann method is given. In section 5, a parametric
numerical study of the flow in a micro-cavity is presented. Results are also
compared to direct simulation Monte Carlo data. Section 6 is the main focus of
this study. In this section, the reduced description of the model kinetic equa-
tion is investigated, and a visual representation quantifying various closure
assumptions is achieved. The major finding of this section is that the Grad
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closure approximation is much more accurate than the Chapman-Enskog clo-
sure for all values of the Knudsen number, even in the incompressible limit
of the flow. This indicates that Grad’s distributions can be used for various
grid-saving simulation strategies. A specific example is considered in section
7 where Grad’s distribution function is used in order to establish outflow
boundary condition for the simulation of open flows. The new outflow con-
dition is validated with a three-dimensional simulation of a backward-facing
step flow. We conclude in section 8 with a spectral analysis of the steady state
flow (which can be regarded as yet another closure approximation) and some
suggestions for further research.

2 Minimal Kinetic Model

We consider a two-dimensional discrete velocity model with the following set
of nine discrete velocities:

cx = [0, 1, 0,−1, 0, 1− 1,−1, 1] ,
cy = [0, 0, 1, 0,−1, 1, 1,−1,−1] . (1)

The local hydrodynamic fields are defined in terms of the discrete population,
fi, as:

9∑
i=1

fi{1, cx i, cy i} = {ρ, jx, jy}, (2)

where ρ is the local mass density, and jα is the local momentum density of the
model. The populations fi ≡ f(x, ci, t) are functions of the discrete velocity
ci, position x and time t. We consider the following kinetic equation for the
populations (the Bhatnagar-Gross-Krook single relaxation time model):

∂tfi + ci · ∂xfi = −1
τ

(fi − f eq
i (f)) , (3)

where τ is the relaxation time, and f eq
i is the local equilibrium [7]:

f eq
i = ρWi

(
2−
√

1 + 3ux2
)(

2−
√

1 + 3uy2

)
×
(

2ux +
√

1 + 3ux2

1− ux

)cxi
(

2uy +
√

1 + 3uy2

1− uy

)cyi

, (4)

with uα = jα/ρ, and the weights Wi are

W =
[
16
36
,

4
36
,

4
36
,

4
36
,

4
36
,

1
36
,

1
36
,

1
36
,

1
36

]
. (5)

The local equilibrium distribution f eq
i is the minimizer of the discrete H

function [25]:
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H =
9∑
i=1

fi ln
(
fi
Wi

)
, (6)

under the constraints of the local hydrodynamic fields (2). Note the important
factorization over spatial components of the equilibrium (4). This is similar
to the familiar property of the local Maxwell distribution, and it distinguishes
(4) among other discrete-velocity equilibria. In the hydrodynamic regime, the
model recovers the Navier-Stokes equation with viscosity coefficient μ = pτ ,
where p = ρc2s is the pressure; c2s = 1/3 is the speed of sound in this model.

The kinetic model just described was derived upon discretization of the
velocity set from continuous kinetic theory in Ref. [7] (see also an earlier
relevant study [33], and an extension to a weakly compressible case [5]). It
has been recently shown by several groups that this model compares well
with analytical results of kinetic theory in simple flow geometries (channel
flows), as well as with molecular dynamics simulations for small but finite
Knudsen numbers [4, 8, 6, 31, 37, 39, 29, 41]. We use it here as a realistic
kinetic theory at low Mach and Knudsen numbers in order to access the
quality of various closure approximations. In the next section, we shall make
a first step in quantifying this model as a superset of the Grad moment system
of continuous kinetic theory.

3 Grad’s Moment System and the Kinetic Model:
Linear Case

3.1 The Moment System

It proves useful to represent the discrete velocity model (3) in the form of a
moment system. In this section, in order to derive some analytical results, we
shall consider the linearized version of the model. While any linearly inde-
pendent set of variables can be used to write a moment system equivalent to
(3), we choose the following nine non-dimensional moments as independent
variables:

M =
[
ρ

ρ0

,
jx
ρ0cs

,
jy
ρ0cs

,
P

ρ0c
2
s

,
N

ρ0c
2
s

,
Pxy
ρ0c

2
s

,
qx

2ρ0c
3
s

,
qy

2ρ0c
3
s

,
ψ

2ρ0c
4
s

]
, (7)

where
ψ = Ryyyy +Rxxxx − 2Rxxyy (8)

is a scalar obtained from the 4th-order moments

Rαβγθ =
9∑
i=1

ficαicβicγicθi, (9)

and
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N =
9∑
i=1

fi(c2xi − c2yi)/2 ≡ (Pxx − Pyy)/2 (10)

is the difference of the normal stresses. Furthermore,

P =
9∑
i=1

fic
2
i ,

is the trace of the pressure tensor, and

qα =
9∑
i=1

ficαic
2
i ,

is the energy flux obtained by contraction of the third-order moment,

Qαβγ =
9∑
i=1

ficαicβicγi.

Time and space are made non-dimensional in such a way that for a fixed
system size L they are measured in the units of mean free time and mean free
path, x′ = x/(LKn), t′ = t/τ , where

Kn = τcs/L

is the Knudsen number. The linearized equations for the moments M (7) read
(from now on we use the same notation for the non-dimensional variables):

∂tρ + ∂xjx + ∂yjy = 0,
∂tjx + ∂x (P +N) + ∂yPxy = 0,
∂tjy + ∂xPxy + ∂y (P −N) = 0,
∂tP + ∂xqx + ∂yqy = (ρ− P ) ,

∂tN + ∂x (qx −Qxyy)− ∂y (qy −Qyxx) = −N,
∂tPxy + ∂xQyxx + ∂yQyyx = −Pxy,

∂tqx + ∂xRxxαα + ∂yRxyαα = (2jx − qx) ,
∂tqy + ∂xRxyαα + ∂yRyyαα = (2jy − qy) ,

∂tψ + ∂x (jx − qx) + ∂y (jy − qy) = (2ρ− ψ) . (11)

By construction of the discrete velocities (1), the following algebraic relations
are satisfied:
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Qxyy = 2qx − 3jx,
Qyxx = 2qy − 3jy,
Rxyαα = 3Pxy,

Rxxαα = 3
(
P +

1
2
N

)
− 1

2
ψ,

Ryyαα = 3
(
P − 1

2
N

)
− 1

2
ψ. (12)

Apart from the lack of conservation of energy and linearity of the ad-
vection, equation (11) is similar to Grad’s two-dimensional 8-moment system
(see [20] for the original derivation of Grad’s moment systems, and [19] for a
modern discussion and extensions). It should be reminded here, that the vari-
ables used in the D-dimensional Grad’s system are density, D components of
the momentum flux, D(D + 1)/2 components of the pressure tensor and D
components of the energy flux. The number of fields in Grad’s system is 8 for
D = 2 and 13 for D = 3. However, in the present case a particular component
of the 4th-order moment is also included as a variable. In other words, Grad’s
non-linear closure for the 4th-order moment is replaced by an evolution equa-
tion with a linear advection term. We note here that while the formulation
of boundary conditions for Grad’s moment system remains an open problem,
the boundary conditions for the extended moment system are well established
through its discrete-velocity representation (3) [4]. The moment system (11)
reveals the meaning of the densities appearing in model: The dimensionless
density is the dimensionless pressure of the real fluid in the low Mach number
limit, while the momentum flux density should be identified with the veloc-
ity in the incompressible limit. With this identification, we shall compare the
moment system (11) with Grad’s system.

3.2 One-Dimensional Grad’s Moment System

Since energy is not conserved by model (3), the comparison will be with
another Grad moment system which (for D = 3) is usually referred to as the
10-moment system. The variables used in this D-dimensional Grad’s system
are density, D components of the momentum flux, andD(D+1)/2 components
of the pressure tensor, resulting in 6 and 10 variables for D = 2 and D =
3, respectively. For one-dimensional flows, the linearized Grad’s 10-moment
system can be written as:

∂tp+ γ∂xux = 0,
∂tux + ∂xPxx = 0,

∂tPxx + 3∂xux = − (Pxx − p) , (13)

where γ is the ratio of the specific heats of the fluid, and γ = (D+2)/D for aD-
dimensional dilute gas. This model can be described in terms of its dispersion
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relation, which upon substitution of the solution in the form ∼ exp (ωt+ ikx)
reads:

ω3 + ω2 + 3k2ω + γk2 = 0. (14)

The low wave-number asymptotic represents the large-scale dynamics (hy-
drodynamic scale of Kn � 1), while the high-wave number limit represent
the molecular scales quantified by Kn� 1. The low wave number (Kn � 1)
asymptotic, ωl, and the large wave number (Kn� 1) asymptotic, ωh, are:

ωl =
{

(−3 + γ)
2

k2 ± i
√
γk, −1− (−3 + γ)k2

}
,

ωh =
{

(−3 + γ)
6

± i
√

3k, −γ
3

}
.

The two complex conjugate modes (acoustic modes) of the O(k2) dynamics,
are given by the first two roots of ωl, and represent the hydrodynamic limit
(the Navier-Stokes approximation) of the model. The third root in this limit
is real and negative, corresponding to the relaxation behavior of the non-
hydrodynamic variable (stress): the dominant contribution (equal to−1) is the
relaxation rate towards the equilibrium value, while the next-order correction
suggests slaving of viscous forces, which amounts to the constitutive relation
for stress ((−3 + γ)/2k2 ). Furthermore, the k2 dependence of the relaxation
term justifies the assumption of scale separation (the higher the wave-number,
the faster the relaxation). The real part of the high wave-number solution ωh

is independent of k, which shows that the relaxation at very high Knudsen
number is the same for all wavenumbers (so-called “Rosenau saturation” [18,
34]). Thus, the assumption of scale-separation is not valid for high Knudsen
number dynamics.

3.3 Dispersion Relation for the Moment System

The dispersion relation for the one-dimensional version of the moment system
(11) (i.e. neglecting all derivatives in the y-direction) reads:

(ω3+ω2+3k2ω+k2)(ω3+2ω2+(3k2+1)ω+k2)(1+ω)((1+ω2)+2k2) = 0. (15)

The real parts of the roots of this equation (attenuation rates Re[ω(k)]) are
plotted in Fig. 1 as functions of the wave vector k. It is clear that for one-
dimensional flows, the dynamics of three of the moments (ρ, jx, and P ) are
decoupled from the rest of the variables, and follows of the dynamics of the
one-dimensional Grad’s moment system (13) with γ = 1.

The similarity between Grad’s moment system and the present model is
an important fingerprint of the kinetic nature of the latter. Grad [20] already
mentioned that moment systems are particularly well suited for low Mach
number flows. Qualitatively, this is explained as follows: when expansion in
the Mach number around the no-flow state is addressed, the first nonlinear
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Fig. 1: Real part of the solutions of the dispersion relation (equation (15)). Roots
ω2,3 and ω1 correspond to Grad’s subsystem (13). The real-valued root ω6 and the
complex conjugate roots ω2,3 are extended hydrodynamic modes.

terms in the advection are of order u2/c2s ∼ Ma2. On the other hand, the
same order in Ma terms in the relaxation contribute u2/(τc2s ) ∼ Ma2/Kn.
Thus, if Knudsen number is also small, nonlinear terms in the advection can
be neglected while the nonlinearity in the relaxation should be kept. That is
why the model (3) - linear in the advection and nonlinear in the relaxation -
belongs to the same domain of validity as Grad’s moment systems for subsonic
flows. Note that in the case of two-dimensional flows, the agreement between
the present model and Grad’s system is only qualitative. The present moment
system is isotropic only up to O(k2). Thus, the dispersion relation of the
model (3) is expected to match the one of Grad’s system only up to the same
order. In the hydrodynamic and slip-flow regime addressed below, this order
of isotropy is sufficient. In the presence of boundaries and/or non-linearities,
it is necessary to resort to numerics. In the next section we shall give details
on the lattice Boltzmann and entropic lattice Boltzmann discretization of the
model (3).

4 Lattice Boltzmann Method

The lattice Boltzmann method [22, 32, 7] is the second-order accurate im-
plicit scheme for the kinetic equation (3). Let us briefly derive it here. After
integrating (3) over the time δt, applying the trapezoidal rule in order to
evaluate the BGK collision term (second-order accuracy in δt), and using the
transformation [21, 1],

gi(f) = f − δt

2
Qi(f), (16)
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where
Qi = −1

τ
(fi − f eq

i ), (17)

is the short-hand notation for the BGK collision term, we derive the discrete-
time scheme for (3):

gi(x + ciδt, t + δt) = gi(x, t) +
2δt

2 τ + δt

[
geq
i (x, t)− gi(x, t)

]
. (18)

Furthermore, fixing the grid points in such a way that if x is a grid point
then also x ± ciδt are the grid points, equation (18) becomes the fully dis-
crete second-order accurate lattice Boltzmann scheme. Note that this implicit
second-order scheme for the populations fi can be interpreted as an explicit
first-order scheme for the variables gi (16) obtained from a kinetic equation
of the form (3) with a renormalized relaxation time τ ′,

τ ′ = τ +
δt

2
. (19)

The time stepping in the second-order accurate entropic lattice Boltzmann
method [26, 25, 11, 7] is done on the populations in such a way that the
collision update respects the monotonicity constraint on the H function:

fi(x + ciδt, t + δt) = fi(x, t) +
αδt

2 τ + δt

[
f eq
i (x, t)− fi(x, t)

]
, (20)

where α replaces the factor 2 in (18), and is obtained by solving the entropy
estimate,

H (f ) = H (f + αQ(f)) . (21)

Close to the local equilibrium, α is equal to 2. The local adjustments of the
relaxation time (via the parameter α), as dictated by compliance with the H
theorem, guarantee positivity of the distribution function also for the case of
discrete time steps, thereby ensuring the non-linear stability of the numerical
scheme. While this is important for other applications such as flows at high
Reynolds numbers, the distinction between the two schemes is not important
in the present study. What will be important below is the discrete-time trans-
form of the populations (16) which enables to interpret certain constructions
of populations in the continuous kinetic theory (primarily, Grad’s distribu-
tions) also for second-order accurate fully discrete schemes.

5 Flow in a Lid-Driven Micro-Cavity

The two-dimensional flow in a lid-driven cavity was simulated over a range
of Knudsen numbers defined as Kn = Ma/Re. In the simulations, the Mach
number was fixed at Ma = 0.01 and the Reynolds number, Re, was varied.
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Initially, the fluid in the cavity is at rest and the upper wall of the domain
is impulsively set to motion with ulid = csMa. Diffusive boundary conditions
are imposed on the walls [4], and the domain was discretized using 151 points
in each spatial direction. Time integration is continued till the steady state is
reached.

5.1 Validation with DSMC Simulation of the Micro-Cavity

In the hydrodynamic regime, the model was validated using results available
from continuum simulations [3]. For higher Kn ∼ 0.1, we compared our re-
sults with the DSMC simulation of [23]. Good agreement between the DSMC
simulation and the ELBM results can be seen in Fig. 2. It can be concluded,
that even for small but finite Knudsen number, the present model provides a
semi-quantitative agreement, as far as the flow profile is concerned. We remind
here again, that the dimensionless density in the present model corresponds to
the dimensionless pressure of a real fluid so that, for quantitative comparison,
the density of ELBM model should be compared with the pressure computed
from DSMC.

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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0.8

1

1.0

1.02
0.98

0.96 1.04 1.06
0.94

Fig. 2: Flow in a micro-cavity for Kn = 0.1 and Ma = 0.14: DSMC simulation [23]
(left) , velocity vector plot and density isolines from ELBM (solid lines) with the
DSMC density isolines (dashed lines) superimposed (right).

5.2 Parametric Study of the Flow in the Micro-Cavity

Fig. 3 shows the dimensionless density profiles with the streamlines super-
imposed for Kn = 0.001, 0.01, 0.1. For Kn = 0.001 (Re = 10), the behavior
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expected from continuum simulations with a large central vortex and two
smaller recirculation zones close to the lower corners can be observed. As the
Knudsen number is increased, the lower corner vortices shrink and eventually
disappear and the streamlines tend to align themselves with the walls.

The density profiles, as a function of Kn, demonstrate that the assump-
tion of incompressibility is well justified only in the continuum regime, where
the density is essentially constant away from the corners. This observation is
consistent with the conjecture that incompressibility requires smallness of the
Mach as well as of the Knudsen number. In hydrodynamic theory, the den-
sity waves decay exponentially fast (with the rate of relaxation proportional
to Kn) leading effectively to incompressibility. Thus, it is expected that the
onset of incompressibility will be delayed as the Knudsen number increases.

(a) (b)

(c)

Fig. 3: Density isocontours for (a) Kn = 0.001, (b)Kn = 0.01 , and (c) Kn = 0.1 (the
variation of the density is 0.995 ≤ ρ ≤ 1.005). Superimposed are the streamlines.
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6 Reduced Description of the Flow

The data from the direct simulation of the present kinetic model were used
to validate various closure approximations of kinetic theory in the presence of
kinetic boundary layers in a non-trivial flow. In this section, we will present
such an analysis for two widely used closure methods, the Navier-Stokes ap-
proximation of the Chapman-Enskog expansion and Grad’s moment closure.

6.1 The Navier-Stokes Approximation

The Chapman-Enskog analysis [12] of the model kinetic equation leads to a
closure relation for the non-equilibrium part of the pressure tensor as (the
Navier-Stokes approximation):

σxy = −τc2s (∂yjx + ∂xjy). (22)

Fig. 4 shows a scatter plot of the xy component of the non-equilibrium
part of the pressure tensor Pxy−P eq

xy , versus that computed from the Navier-
Stokes approximation of the Chapman-Enskog expansion (22). The upper row
is the scatter plot for all points in the computational domain, while the lower
row is the scatter plot obtained after removal of the boundary layers close
to the four walls of the cavity, corresponding to approximately 10 mean-free
paths. In all plots, the dashed straight line of slope equal to one corresponds
to the Navier-Stokes closure. These plots clearly reveal that the Navier-Stokes
description is valid away from the walls in the continuum as well as in the
slip-flow regime. On the other hand, it fails to represent hydrodynamics in
the kinetic boundary layer, even at very low Knudsen numbers.

6.2 Grad’s Approximation

In contrast to the Chapman-Enskog method, the Grad method has an ad-
vantage that the approximations are local in space. As the analysis of section
3 suggests, the dynamics of the density, momentum and pressure tensor are
almost decoupled from the rest of the moments, at least away from the bound-
aries. This motivates the Grad-like approximation for the populations,

fGrad
i = Wi

[
ρ+

jαci α
c2s

+
1

2 c4s

(
Pαβ − δαβρc

2
s

) (
ci αci β − c2sδαβ

)]
. (23)

The set of populations parameterized by the values of the density, momentum
and pressure tensor (23) is a sub-manifold in the phase space of the system
(3), and can be derived in a standard way using quasi-equilibrium procedures
[19].

Various moments (7) can now be evaluated on the functions (23) analyti-
cally. In Fig. 5, the scatter plot of the computed energy flux qx and the Grad’s
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Fig. 4: Scatter plot of the non-equilibrium part of the off-diagonal component of the
pressure tensor Pxy − P eq

xy and corresponding value computed from Navier-Stokes
approximation σxy (22) for all points in the domain ((a) and (b)), and after the
removal of the boundary layer corresponding to approximately 10 mean-free path
((c) and (d)). Fig. (a,c) correspond to Kn = 0.001, while Fig. (b,d) correspond to
Kn = 0.01. Navier-Stokes behavior is indicated by the straight line of slope equal to
one.

closure qGrad
x is presented. Same as in Fig. 4, the off-closure points in Fig. 5

are associated with the boundary layers. The comparison of the quality with
which the closure relations are fulfilled in Fig. 4 and Fig. 5 clearly indicates
the advantage of that a Grad’s closure. It is quite revealing that even in the
case of small Knudsen numbers where one expects the Navier-Stokes closure
to be good, the quality of the Grad’s closure is much better. The general con-
clusion from the present visualization is that for slow flows Grad’s closure is
superior to the Navier-Stokes closure.

7 Application: Outflow Condition in Lattice Boltzmann
Simulations

Above, we have demonstrated with a specific example (lid-driven cavity flow)
that the Grad approximation contains most of the dynamics of the system.
This finding is quite remarkable because it suggests that Grad’s distribution
function (23) can be used for extrapolation of the so-called “missing data”
in the lattice Boltzmann simulations. Here we shall give an example how this
can be used in imposing the outflow boundary conditions, following Ref. [16].
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Fig. 5: Scatter plot of the computed energy flux, qx, versus Grad’s closure, qGrad
x :

(a) Kn = 0.001, (b) Kn = 0.01.

Although the field of applications of LBM has increased considerably dur-
ing the last decade, there remain outstanding issues (stability, boundary con-
ditions, grid-refinement etc) which so far hindered a wider acceptance of LBM
for computational fluid dynamics applications. One of these issues, namely nu-
merical stability of simulations of flows at large Reynolds numbers, has been
solved in the framework of the entropic formulation of LBM (see section 4).
This solution was essentially based on the choice of a time step that does
not violate the entropy growth condition (a physically relevant condition pre-
scribed by the second law of thermodynamics). Furthermore, the boundary
conditions at solid walls were derived from the continuous kinetic theory [4].
However, other major difficulties that are not related to the sub-grid instabil-
ity at high Reynolds numbers, still persist. Such difficulties are here referred
to as “missing data”, and are typical in situations where off-lattice structures
are present (open boundary conditions, curved solid wall boundaries, grid re-
finement etc.). It is common to these problems that some populations of the
links at certain nodes are not available. It is best to illustrate this with an
example.

A typical problem of this kind is the specification of the outlet bound-
ary condition in duct-like flows with large aspect ratio. Such flows are most
common in engineering and medical applications such as wind tunnels, blood
vesicles etc. In Fig. 6, we show a situation at the outlet node. Since there are
no lattice nodes beyond the outlet, populations of the three discrete velocities
pointing into the fluid are not known and need to be fixed by additional con-
siderations. At present, there is no established way to cope with this problem
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Flow

Outlet

Fig. 6: Situation at the outlet node. Data are missing for the populations of the
velocities pointing into the fluid (dash).

[14]. Because specification of pressure at the outlet has no significance in long
pipes, one relies on interpolation schemes (see, e.g. [40]). Interpolation often
becomes a major source of inaccuracy in the simulations.

We shall use Grad’s approximations for the populations (23) in order to
extrapolate the missing populations. Namely, we impose the outlet condition
(see Fig. 6) by the following rule: At time step n + 1, the populations of the
links at the outlet pointing into the fluid are assigned the values (23), whereas
the values of the moments ρ, j, and Pαβ are taken from the previous time step
n at the same nodes. Initially, all links are at equilibrium.

The three-dimensional backwards-facing step flow was used to validate the
outlet boundary condition. The standard D3Q15 lattice Boltzmann model
with the polynomial equilibrium [32] was used. Geometry of the setup was
chosen to model the experiment of Armaly et al [9]: The channel length (X)
was 20S, where S is the backwards facing step height, the channel width (Y )
was 2S. The step heights was S = 10 (lattice units), the step length was 2S.
The ratio of the span width (Z) to the step height was equal 36 : 1 (that
is, the span width was 36S lattice units). The total number of grid points
was about 1.5 × 106. Kinetic boundary conditions [4] were applied on the
wall nodes. The inflow was a fully developed velocity profile in a duct flow
(simulated separately in the duct with the dimension 15S × S × 36S). The
inflow velocity maximum ranged between 10−2 to 4×10−2 while the kinematic
viscosity was fixed at ν = 10−3. The outlet condition (23) was applied both in
the backwards-facing step channel and in the the auxiliary duct simulations.
All simulations were done on a single-processor facility (PC) till steady state
was reached in whole domain, a single run time ranged between one to several
hours depending on the Reynolds number, Re = (2US)/ν, where U is cross-
section averaged inlet velocity.

Before reporting the results, it should be pointed out that the same three-
dimensional lattice Boltzmann model with the outlet boundary conditions
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based on a simple second-order interpolation formula for the missing popu-
lations (see, e. g. [40]) failed at Reynolds number Re < 50. The reason for
such a poor performance is the errors which start at the outlet and propagate
upstream.

The range of Reynolds number covered in our simulation with the new
outlet was 100 < Re < 392. In Fig. 7, snapshots of the velocity on the mid-
plane at Re = 270 are shown in the full computation domain, including the
outlet. It is visible in Fig. 7 that the velocity profile stays smooth during
the whole simulation. In Fig. 8, the primary flow reattachment length (the
distance at which the velocity field on the bottom wall becomes directed
towards the outlet) is compared with the results of the simulations of the
incompressible Navier-Stokes equation by various numerical techniques [24,
28], with the recent two-dimensional lattice Boltzmann simulation on a non-
uniform grid [40], as well as with the experimental data of Armaly et al [9],
and was found to be in excellent agreement. We stress that the accuracy and
stability achieved with the new outlet boundary condition allowed us to use
a small step size of only ten grid points, much less than it would be required
with different boundary conditions.
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Fig. 7: Snapshots of the velocity field on the mid-plane at Re = 270 at 9 × 103,
18× 103, and 40× 103 time steps in lattice units (from top to bottom).



Lattice Boltzmann Method and Kinetic Theory 419

Re

X
1

/S

0 100 200 300 400
0

2

4

6

8

10

Experiment
Kim & Moin
Kaiktsis et. al.
Ubertini & Succi
Present (LBGK)

Fig. 8: Primary reattachment length X1 normalized by the step height S. Compari-
son of the present simulation with the experiment of Armaly et al [9], and simulations
of Kaiktsis et al [24], Kim and Moin [28], and Ubertini and Succi [40].

8 Discussion

We considered a specific example of a kinetic model in order to compare vari-
ous theories of non-equilibrium thermodynamics in a nontrivial flow situation.
Our major finding is that the minimal kinetic model can be quantified as a su-
perset of the Grad’s moment systems, and hence the populations stay close to
the low-dimensional manifolds described by discrete-time Grad’s populations
(23). This is at variance with a viewpoint that lattice Boltzmann method
is a superset of just the Navier-Stokes equations. For the case of a driven
cavity flow, different closure approximations were tested against the direct
simulation data. Grad’s closure for the minimal model was found to perform
better than the Navier-Stokes approximation in the whole range of Knudsen
number. Thanks to its simplicity, the Grad approximation within the lattice
Boltzmann models can be used in the situations where a part of the infor-
mation about populations is missing in order to reconstruct the unavailable
data. Such situations are quite frequent in lattice Boltzmann simulations, for
example, in the case of in- and outflow boundary conditions, grid refinement
etc. The fact that Grad’s sub-manifold contains almost all of the dynamics
can be used then in order to extrapolate populations on the missing links of
the lattices via the explicit formula (23).

Whereas we have explored two classical closures of kinetic theory, we con-
clude this paper with a validation of yet another closure based on a spectral
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decomposition. To that end, the ELBM code was coupled with ARPACK [30]
in order to compute the leading eigenvalues and the corresponding eigenvec-
tors of the Jacobian field of the corresponding map at the steady state. In
all cases, the eigenvalues are within the unit circle (Fig. 9(a)). The leading
eigenvalue is always equal to one (reflecting mass conservation), and the cor-
responding eigenvector captures most of the structure of the steady state.
As the Knudsen number decreases, eigenvalues tend to get clustered close
to the unit circle. This happens because when the Knudsen number is small
the incompressibility assumption is a good approximation, and mass is also
conserved locally. The very close similarity between Fig. 9(b) and Fig. 4(a),
reveals that states perturbed away from the steady state along the leading
eigenvector are also described well by the Navier-Stokes closure.

Fig. 9: (a) Leading eigenvalues of the minimal kinetic model at steady state (square:
Kn=10−4, circle: Kn=10−3, X: Kn=10−2, +: Kn=10−1); (b) Scatter plot as in
Fig. 4(a) for a state perturbed away from the steady state along the leading eigen-
vector (Kn=10−3).
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8. S. Ansumali, I.V. Karlin, H.C. Öttinger: Thermodynamic Theory of Incom-
pressible Hydrodynamics. Phys. Rev. Lett. 94, 080602 (2005)

9. B.F. Armaly, F. Durst, J.C.F. Pereira, B. Schonung: Experimental and The-
oretical Investigation of Backwardfacing Flow. J. Fluid Mech. 127, 473–496
(1983)

10. A. Beskok, G.E. Karniadakis: Microflows: Fundamentals and Simulation
(Springer, Berlin 2001)

11. B.M. Boghosian, J. Yepez, P.V. Coveney, A.J. Wagner: Entropic Lattice Boltz-
mann Methods. Proc. Roy. Soc. Lond. 457, 717–766 (2001)

12. S. Chapman, T.G. Cowling: The Mathematical Theory of Non-Uniform Gases
(Cambridge University Press, Cambridge 1970)

13. H. Chen, S. Chen, W. Matthaeus: Recovery of the Navier-Stokes Equation Using
a Lattice-Gas Boltzmann method. Phys. Rev. A 45, R5339–R5342 (1992)

14. H. Chen, S. Kandasamy, S. Orszag, R. Shock, S. Succi, V. Yakhot: Extended-
Boltzmann Kinetic Equation for Turbulent Flows. Science 301, 633–636 (2003)

15. S. Chen, G.D. Doolen: Lattice Boltzmann Method for Fluid Flows. Annu. Rev.
Fluid Mech. 30, 329 (1998)

16. S.S. Chikatamarla, S.Ansumali, I.V. Karlin: Grad’s Approximation for Missing
Data in Lattice Boltzmann Simulations. Europhys. Lett., in press, 2006

17. A.N. Gorban, I.V. Karlin: Method of Invariant Manifolds and Regularization
of Acoustic Spectra. Transport Theory Stat. Phys. 23, 559–632 (1994)

18. A.N. Gorban, I.V. Karlin: Short-wave Limit of Hydrodynamics: A Soluble Ex-
ample. Phys. Rev. Lett. 77, 282–285 (1996)

19. A.N. Gorban, I.V. Karlin: Invariant Manifolds for Physical and Chemical Ki-
netics, vol. 660 in Lect. Notes Phys. (Springer, Berlin Heidelberg 2005)

20. H. Grad: On the Kinetic Theory of Rarefied Gases. Comm. Pure Appl. Math.
2, 331–407 (1949)

21. X. He, S. Chen, G.D. Doolen: A Novel Thermal Model for the Lattice Boltzmann
Method in Incompressible Limit. J. Comput. Phys. 146 (1), 282–300 (1998)

22. F. Higuera, S. Succi, R. Benzi: Lattice Gas-Dynamics with Enhanced Collisions.
Europhys. Lett. 9, 345–349 (1989)

23. J.-Z. Jiang, J. Fan, C. Shen: Statistical Simulation of Micro-cavity Flows. 23rd
Int. Symposium on Rarefied Gas Dynamics, pages 784–790, (2003)



422 S. Ansumali et al

24. L.K. Kaiktsis, G.E. Karniadakis, S.A. Orszag: Onset of Three-dimensionality,
Equilibria, and Early Transition in Flow Over a Backward-facing Step. J. Fluid
Mech. 231, 501 (1991)
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Summary. This article is concerned with the spatial coupling of a lattice Boltz-
mann model (LBM) and the finite difference discretization of the corresponding
partial differential equation (PDE). At the interface, we have a one-to-many prob-
lem since the macroscopic PDE variables have to be mapped to more LBM variables.
We show how this mapping can be done either analytically, using results from the
Chapman-Enskog expansion or numerically, using a fixed point iterative scheme. The
results are illustrated for different diffusive systems on a one-dimensional domain.

1 Introduction

A dynamical system can be described by various models, each operating on
a different level of abstraction. On the macroscopic level, there are partial
differential equations (PDEs) that describe the system’s evolution in terms of a
few macroscopic variables, like density, velocity, etc. On a finer level, there are
mesoscopic or pseudo particle models, like lattice Boltzmann models (LBMs)
that use idealized particle distribution functions on a regular grid to describe
the system. On the truly microscopic level, one has molecular dynamics and
kinetic Monte Carlo methods that model the interactions between particles
individually.

The choice for a particular model depends on several criteria. Macroscopic-
level models, like PDEs, typically have a small dimensional state space and in
general allow large time steps during simulation. However, they often fail to
describe the dynamics of complex systems. Mesoscopic models like LBMs on
the other hand allow the incorporation of complex physics in a more bottom-
up way than macroscopic models but typically require more variables and
smaller time steps. Furthermore, they can treat irregular domain boundaries
in a natural way. Similar advantages apply to microscopic models, but simula-
tion with these models can be very expensive and often becomes prohibitive.
Finally, when modeling a system with a higher level model fails because it can
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not be written in terms of variables at that particular level of abstraction only,
i.e. when the higher level model does not close, a lower level model describing
the same physics in more detail should be used.

Sometimes, the level of detail required to model a physical system changes
from region to region and different models have to be used on different parts
of the domain. At the interface between the models, there will be a mismatch
in the kind (and number) of variables used by the different models. There, the
variables have to mapped to one another. Many such hybrid models, which
couple a microscopic particle method to a macroscopic continuum method,
have already been well developed, see e.g. [2, 6, 10, 11, 12, 15] and references
therein.

In this article, we will spatially couple a LBM and a PDE model describing
the same diffusive system in different regions of space on a one-dimensional
domain. The PDE is discretized using finite differences and has the particle
density as the sole macroscopic variable. For this setup, the corresponding
LBM has three times as much variables (the particle distribution functions).
Since there are more LBM than PDE variables, we have a one-to-many prob-
lem at the interface where we have to map densities to distribution functions.
The inverse mapping of distribution functions to densities is straightforward
because density is defined as the sum of the distribution functions.

Albuquerque et al. [1] used the Chapman-Enskog expansion to write the
missing distribution functions at the interface as a functional of the density
variable only. We will use the same concept but a different implementation.
For cases where these functionals are not available or difficult to obtain ana-
lytically, the constrained runs scheme developed by Gear and Kevrekidis [8, 7]
can be used to obtain these functionals numerically. This scheme performs a
series of short microscopic (here LBM) simulations and resets the lowest order
velocity moment (density) to its initial value while leaving the higher order
moments unchanged. Van Leemput et al. showed in [17] that the application of
the scheme to the LBM discussed here, produces a numerical approximation
of the Chapman-Enskog relations that is correct up to first order.

The work described in this article is a step in the development of efficient
methods for the coupling of LBM and PDE models. In the discussion, we have
made some simplifying assumptions, e.g. we used the same time step and grid
spacing for both the PDE and LBM. Taking different time steps can further
optimize the methods presented here.

This article is organized as follows. In Sect. 2, we discuss different LBMs
and the corresponding PDEs. Section 3 describes the constrained runs scheme
applied to diffusive LBM. The issues concerning the coupling of the LBM and
PDE are discussed in Sect. 4. In Sect. 5 we present numerical results on a)
the FitzHugh-Nagumo reaction-diffusion system, b) a pure diffusion example
and c) a growth-diffusion example where the LBM reaction term depends on
both the density and the velocities of the particles. Section 6 summarizes the
main conclusions.
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2 Models for One-Dimensional Diffusive Systems

In Sect. 2.1, we describe the finite difference discretization of the partial dif-
ferential equation for one-dimensional reaction-diffusion systems. In Sect. 2.2,
we describe the corresponding lattice Boltzmann BGK model with a reac-
tion term depending on density only. Section 2.3 shows that both models are
equivalent when the macroscopic solution is smooth. In Sect. 2.4, we briefly
describe a lattice Boltzmann BGK model with a velocity dependent reaction
term to simulate growth-diffusion systems. The corresponding PDE is also
given.

2.1 Partial Differential Equation (PDE)

In a one-dimensional reaction-diffusion system, the partial differential equa-
tion (PDE) describing the evolution of the particle density (concentration)
ρ(x, t) as a function of space x and time t is given by

∂ρ(x, t)
∂t

= D
∂2ρ(x, t)
∂x2

+ F (ρ(x, t)) (1)

where D is the diffusion coefficient and F (ρ(x, t)) a macroscopic reaction force
term which depends on ρ(x, t) only.

To find a solution of (1), the equation is discretized using finite differences
(forward difference in time and central difference in space) to obtain

ρ(x, t +Δt) = ρ(x, t) +
ΔtD

Δx2
(ρ(x+Δx, t)− 2ρ(x, t) + ρ(x−Δx, t))

+ΔtF (ρ(x, t))
(2)

with Δx and Δt the corresponding space and time steps.

2.2 Lattice Boltzmann Model (LBM)

Boltzmann models describe the evolution of a distribution function f(x, v, t)
that represents the number of particles that move with certain velocity v at
position x and time t. Lattice Boltzmann models (LBM) [3, 13] use discretized
distribution functions fi(x, t) with velocity vi that are defined on a space-time
lattice with grid spacing Δx in space and Δt in time. On a one-dimensional
domain, only three values are considered for the velocity (D1Q3 model):

vi = ci
Δx

Δt
, ci = i ∈ {−1, 0, 1} (3)

with ci the dimensionless lattice velocity.
The lattice Boltzmann evolution law for the distribution functions is

fi(x + ciΔx, t +Δt) = (1 − ω)fi(x, t) + ωfeqi (x, t) +Ri(x, t) (4)
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for i ∈ {−1, 0, 1}. The right hand side of (4) updates the values fi(x, t) to
post-collision values f�i (x, t�) (with t < t� < t+Δt). Afterwards, these values
propagate to a neighboring lattice site according to their velocity direction
(left hand side of (4)). Diffusive collisions are modeled by the Bhatnagar-
Gross-Krook (BGK) collision term−ω(fi(x, t)−feqi (x, t)) in (4) as a relaxation
to a local diffusive equilibrium

feqi (x, t) =
1
3
ρ(x, t). (5)

The BGK relaxation coefficient ω in (4) will be defined in Sect. 2.3. Reactions
are modelled by the term Ri(x, t) in (4) as [14, 5]

Ri(x, t) =
Δt

3
F (ρ(x, t)) (6)

with F (ρ(x, t)) defined in (1). Here, it is assumed that reactions occur at the
local diffusive equilibrium [4].

The particle density ρ(x, t), i.e. the macroscopic variable (cf. (1)), is defined
as the zeroth order velocity moment of the distribution functions

ρ(x, t) =
1∑

i=−1

fi(x, t) =
1∑

i=−1

feqi (x, t), (7)

where the second equality expresses that the BGK diffusive collisions locally
conserve density (compare (5)).

In a similar way, we define the dimensionless first and second order velocity
moments (up to the factor 1/2 for the second order moment) as

φ(x, t) =
1∑

i=−1

ci fi(x, t) ξ(x, t) =
1
2

1∑
i=−1

c2i fi(x, t) (8)

We will refer to these moments as the “momentum” φ and (kinetic) “energy”
ξ (although these are non-conserved quantities in a diffusive system). The
state of the LBM at time t and position x is then fully determined by either
the distribution functions f = [f−1 f0 f1]′ or the moments 
 = [ρ φ ξ]′. By
definition, ⎡⎣ ρφ

ξ

⎤⎦ =

⎡⎣ 1 1 1
−1 0 1

1
2 0 1

2

⎤⎦⎡⎣ f−1

f0

f1

⎤⎦ ⇔ 
 = M f (9)

and vice versa f = M−1
 (one-to-one relationship).

2.3 Relations between LBM and PDE

When the solution of the LBM varies slowly on a macroscopic length and
time scale, we can show that the LBM from Sect. 2.2 reduces to the PDE
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introduced in Sect. 2.1 using a multiscale Chapman-Enskog expansion [3].
Under this condition, both models describe the same macroscopic behavior.
To this end, we define a small tracer parameter ε and the scaling xε = εx,
tε = ε2t such that

∂

∂x
= ε

∂

∂xε
and

∂

∂t
= ε2

∂

∂tε
. (10)

For reaction-diffusion problems, we further assume that the reaction term
Ri(x, t) in (4) is of second order, i.e. Ri = ε2Ri, ε [3, 5], which explains the
choice in (6).

A second order Taylor expansion of the term fi(x + ciΔx, t + Δt) in (4)
around fi(x, t) leads to

ciΔx
∂fi
∂x

+Δt
∂fi
∂t

+
c2iΔx

2

2
∂2fi
∂x2

+ ciΔxΔt
∂2fi
∂x∂t

+
Δt2

2
∂2fi
∂t2

= −ω(fi − feqi ) +Ri

(11)

Introducing the tracer scaling (10) and dropping the subscript ε notation, we
obtain

εciΔx
∂fi
∂x

+ ε2Δt
∂fi
∂t

+ ε2
c2iΔx

2

2
∂2fi
∂x2

+ ε3ciΔxΔt
∂2fi
∂x∂t

+ ε4
Δt2

2
∂2fi
∂t2

= −ω(fi − feqi ) + ε2Ri

(12)

The distribution functions fi(x, t) are expanded in terms of increasingly
higher order contributions f [0]

i , f [1]
i , . . . as follows

fi = f
[0]
i + εf

[1]
i + ε2f

[2]
i + . . . (13)

We substitute (13) in (12) and keep only terms up to second order to obtain

εciΔx
∂f

[0]
i

∂x
+ ε2ciΔx

∂f
[1]
i

∂x
+ ε2Δt

∂f
[0]
i

∂t
+ ε2

c2iΔx
2

2
∂2f

[0]
i

∂x2

= −ω(f [0]
i + εf

[1]
i + ε2f

[2]
i − feqi ) + ε2Ri

(14)

This equation should hold for each order separately. Equating the zeroth order
terms leads to

f
[0]
i = feqi =

1
3
ρ (15)

The part of order ε leads to the following expression for the first order correc-
tion f

[1]
i (x, t)

f
[1]
i = −ciΔx

ω

∂f
[0]
i

∂x
= −ciΔx

3ω
∂ρ

∂x
, (16)

Gathering the terms of order ε2 in (14), we have

ciΔx
∂f

[1]
i

∂x
+
c2iΔx

2

2
∂2f

[0]
i

∂x2
+Δt

∂f
[0]
i

∂t
= −ωf [2]

i +Ri (17)
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Substitution of (15), (16) and (6) results in the following expression for the
second order contribution f

[2]
i (x, t)

f
[2]
i = −c

2
iΔx

2

6ω2
(ω − 2)

∂2ρ

∂x2
+
Δt

3ω

(
F (ρ)− ∂ρ

∂t

)
(18)

When we sum (18) over all velocities, we obtain

∂ρ

∂t
= − Δx2

3ωΔt
(ω − 2)

∂2ρ

∂x2
+ F (ρ) (19)

where we used the fact that
∑

i f
[2]
i = 0 (sum up (13) and use (7)). Comparing

(19) to (1), we obtain the relation between D and ω (cf. [14])

ω =
2

1 + 3D Δt
Δx2

. (20)

Expansion (13) together with (15), (16) and (18) can be used to repre-
sent the state of the LBM system. Note that, since we dropped the index ε
notation in the derivation, the actual macroscopic derivatives are obtained
by combining (10) with (13). Using (9), the equivalent higher order moments
φ(x, t) and ξ(x, t) can be computed as functionals of the density ρ(x, t) only

φ = −2Δx
3ω

∂ρ

∂x
+O(ε3),

ξ =
ρ

3
− Δt

6ω

(
F (ρ)− ∂ρ

∂t

)
+O(ε4) .

(21)

These functionals, and by extension (15), (16) and (18), are called slaving
relations.

Note that, using the PDE (19) itself, (18) can be rewritten as

f
[2]
i = −Δt

6ω
(3c2i − 2)

(
F (ρ)− ∂ρ

∂t

)
= −Δx2

18ω2
(ω − 2)(3c2i − 2)

∂2ρ

∂x2
. (22)

2.4 Velocity Dependent Mesoscopic Reactions: Growth-Diffusion

Many microscopic systems have reaction rates that depend on the velocities of
the colliding particles. One example is the ionization reaction that appears in
electron transport through a molecular gas. During transport, the electrons
collide with the molecules and transfer part of their energy. Fast electrons
slow down by kicking additional electrons out of the molecule during reactive
collisions. Slow electrons collide elastically and only change their direction.
This can only be modeled by a velocity dependent reaction term.

The LBM (4) in Sect. 2.2 is not suitable to describe such system because
the reaction term (6) depends on the density only. However, the classical
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lattice Boltzmann BGK equation can be extended to include a more general
velocity dependent reaction term

fi(x+ciΔx, t+Δt)−fi(x, t)=−ω(fi(x, t)−feqi (x, t))+Δt
∑
j

Aijfj(x, t). (23)

At each time step, the rate Aij denotes the chance that either a particle with
speed cj ends up with speed ci or that a particle has been created or destroyed
during the reaction. The microscopic velocities are again crudely discretized.
As in Sect. 2.2, we implemented the D1Q3 model (3) on a one-dimensional
domain.

In this article, we discuss a limited class of models with velocity dependent
reaction rates. We specifically look at a problem that gives rise to a growth-
diffusion PDE on a macroscopic scale when the solution of (23) is slowly
varying. As described in [18], this reduced model can be derived through a
Chapman-Enskog expansion similar to the one outlined in Sect. 2.2, and is
given by

∂ρ(x, t)
∂t

= D
∂2ρ(x, t)
∂x2

+ αρ(x, t) , (24)

where both D and the growth rate α depend on the microscopic reaction rates
Aij and relaxation parameter ω. As in Sect. 2.1, (24) can be discretized using
finite differences.

3 Constrained Runs Scheme

Given only the density values on the domain, the full state of the LBM can
be represented by the slaving relations (15), (16) and (18) as described in
Sect. 2.3. Assuming that such relations are unavailable or difficult to obtain
analytically, the constrained runs scheme [8, 7] can be used to approximate
these relations numerically.

The application of the constrained runs scheme to the LBM from Sect. 2.2
or Sect. 2.4 is outlined in Algorithm 1. Given the initial density profile ρ(0), an
initial guess for fi(x, t) is computed using e.g. (5). The LBM is then repeatedly
used to evolve the state for a short time τ . After each such simulation the
transformation (9) is used to reset the lowest moment of the distribution
functions to the initial density profile.

The constrained runs scheme can be defined as a map


(k+1) = Cτ (
(k)) ; k = 0, 1, 2, . . . ,K (25)

on the state vector 
(k) = [ρ(0) φ(k) ξ(k)]′; with k the iteration number and
τ the simulation time of the inner microscopic model, here the LBM. Since
ρ(k+1) is reset to ρ(0) after each step, the map effectively iterates on the higher
order moments φ and ξ to obtain a fixed point.
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Algorithm 1 Constrained runs scheme for a one-dimensional diffusive LBM

Required: ρ(0) = ρ(x, 0)

f
(0)
i = wi ρ(0) ;

�1
i=−1 wi = 1, e.g. wi = 1/3 Choose f

(0)
i s.t. (7) holds

repeat
f (k+1) = LBM(f (k)) LBM simulation (4) over time τ

(k+1) = Mf (k+1) Corresponding φ(k+1) and ξ(k+1) (9)
ρ(k+1) = ρ(0) Reset macroscopic variables
f (k+1) = M−1
(k+1) Map back (9)

until convergence heuristic < θ , with θ � 1

A straightforward choice for the convergence heuristic in Algorithm 1 is

||φ(k+1)(x) − φ(k)(x)||2 < θ and ||ξ(k+1)(x) − ξ(k)(x)||2 < θ (26)

with θ a user-defined tolerance (θ � 1). Figure 1 sketches the evolution of the
procedure.

�

�

approx.

slow

{φ(0), ξ(0)}

{φ̃, ξ̃}
{φ(ρ(0)), ξ(ρ(0))}

ρ(0) ρ̃

�

�

�

�

�

�
��

Fig. 1: Sketch of the evolution of the constrained runs scheme. The higher order
moments φ and ξ are plotted with respect to the macroscopic variable ρ. The density
ρ is reset to the given ρ(0) after each LBM simulation. The constrained runs scheme
iterates towards a fixed point {φ̃, ξ̃} that is an approximation to the slaved state
{φ(ρ(0)), ξ(ρ(0))} (21). The fixed point lies on an “approximate” manifold while the
exact solution lies on the slow manifold described by ρ. The value ρ̃ is the density
corresponding to {φ̃, ξ̃} (before the final reset to ρ(0)) and will be useful as an
estimate for the error.

In [17] we analyzed the application of the constrained runs scheme for
the initialization of the LBM for one-dimensional reaction-diffusion problems
(see Sect. 2.2). We have proven that the scheme is unconditionally stable and
convergent. Below, we restate the main theorems.
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Theorem 1 (Stability theorem). The constrained runs scheme for the
lattice Boltzmann BGK model that describes a one-dimensional reaction-
diffusion system with either periodic, no-flux or Dirichlet boundary conditions
(and with the reaction term depending on ρ only (6)), is unconditionally sta-
ble.

Proof (Outline). The eigenvalues μ of the linearization (the Jacobian matrix)
of one step of the fixed point iterator (25) determine the stability of Algo-
rithm 1. If all eigenvalues in the spectrum σ(Cτ ) lie within the unit circle, i.e.
∀μ ∈ σ(Cτ ) : |μ| < 1, the iteration is stable. For the three types of boundary
conditions considered, we prove in [17] that these eigenvalues lie on a circle
centered at the origin with radius |1 − ω|. The constrained runs iteration is
unconditionally stable because 0 < ω < 2 [13] (compare (20)) and thus always
|μ| = |1− ω| < 1.

Theorem 2 (Asymptotic convergence factor). As a corollary of the
above proof, the asymptotic convergence factor η := max{|μ| : ∀μ ∈ σ(Cτ )} is
equal to |1− ω|.

Theorem 3 (Convergence theorem). The constrained runs algorithm for
the LBM described in Theorem 1 converges to a first order correct approxi-
mation {φ̃, ξ̃} of the slaved state (21). The approximation error depends on
ρ̃− ρ(0), where ρ(0) is the initial density and ρ̃ is the internal simulated-upon
density corresponding to {φ̃, ξ̃} (before the final reset to ρ(0)).

The proof is quite technical and given in [17]. Using the one-to-one rela-
tionship between 
 and f (9), the expressions for the constrained runs fixed
point {(ρ(0)), φ̃, ξ̃} from [17] can be written as follows

f̃i =
1
3
ρ(0) − ciΔx

3ω
∂ρ(0)

∂x
− Δt

6ω
(3c2i − 2)

(
F (ρ(0))− 3

(ρ̃− ρ(0))
Δt

)
. (27)

When we compare this expression with the expansion of fi (13) in its
Chapman-Enskog components f [0]

i , f [1]
i and f

[2]
i (15)–(18), we see that (27)

is indeed correct up to first order in the Chapman-Enskog expansion. Due to
the approximation error (the third term) in (27), the fixed point f̃i (or equiv-
alently {φ̃, ξ̃}) lies on an “approximate” manifold instead of the true slow
manifold described by the macroscopic variable ρ (cf. Fig. 1). To make this
error as small as possible, we choose τ = Δt (one LBM time step).

4 Spatial Coupling

4.1 Problem Specification

In this section, we describe how to couple the PDE and LBM from Sect. 2.
In our setup, shown in Fig. 2, the one-dimensional domain is split into two
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PDE LBM

� � � �
�

f�
1 (xpde)

xpde −Δx xpde xlbe xlbe + Δx

Fig. 2: Spatial coupling of a PDE (left) and LBM (right) on a one-dimensional
domain. The interface lies in between two lattice sites. The evolution of the solu-
tion in the LBM region requires the propagating (post-collision) distribution value
f�
1 (xpde, t

�) coming from the PDE domain. Since the PDE only evolves density val-
ues ρ(x, t), this value is unavailable.

non-overlapping sublattices. Another option, using one overlapping lattice site
is discussed in [1]. The PDE is applied to the left sublattice and the LBM to
the right sublattice. We use the same lattice spacing Δx and time step Δt for
both the PDE and LBM, i.e. the simplest coupled space-time lattice. Since
the LBM is a mesoscopic model (as opposed to a truly microscopic model),
using the same Δx is very reasonable. On the other hand, using the same
Δt is an important simplification. More efficient coupling schemes, especially
those that allow for different Δt, will be the subject of future research.

Since the PDE and LBM use a different set of variables, namely ρ ver-
sus f = [f−1 f0 f1]′, we have to be careful how to exchange information at
the interface during time simulation. To evolve the PDE in xpde, the value
ρ(xlbe, t) = ρ(xpde+Δx, t) (see Fig. 2) is needed in (2). This value is computed
from the LBM variables fi(xlbe, t) using (7).

The inverse problem, where we have to transfer information from the PDE
to the LBM region is more difficult. To evolve the LBM (4) in xlbe from t
to t + Δt, we need to map a single density value onto three corresponding
distributions. This is formally stated as

ρ(xpde, t) �→ fi(xpde, t) ; i ∈ {−1, 0, 1} . (28)

Since (7) should hold, this leaves two degrees of freedom.
The initialization of a LBM from a given density profile as described in

[17] faces the same one-to-many problem, but there the problem concerns the
whole domain instead of a single lattice site.

We will use the analytical slaving relations (15) and (16) or the corre-
sponding numerical approximation (27) by the constrained runs scheme to
derive the distributions at the interface given only the value of ρ(xpde, t). In
the next sections we discuss these two strategies.

4.2 Implementation using First Order Perturbations

In order to evolve the solution in the leftmost site xlbe of the LBM sublattice,
we need the value of the distribution function f1(xpde, t) coming from the
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PDE lattice that propagates into the LBM sublattice (see Fig. 2). This value
is missing, but can be computed as follows.

The key observation is that the PDE (2) simulates “directly” from t to
t+Δt, while the LBM (4) executes in two phases: first, collisions and reactions
to go from t to t� and secondly, propagation of the post-collision distributions
f�i to get from t� to t + Δt. Thus we actually need the post-collision value
f�1 (xpde, t�) instead of the value f1(xpde, t).

First, we compute the distribution f1(xpde, t) corresponding to the PDE
density ρ(xpde, t) at time t, using the first order perturbations (15) and (16)

f1(xpde, t) = f
[0]
1 (xpde, t) + f

[1]
1 (xpde, t)

=
1
3
ρ(xpde, t)−

Δx

3ω
ρ(xlbe, t)− ρ(xpde −Δx, t)

2Δx

(29)

In (29), the derivative ∂ρ(xpde, t)/∂x is approximated with central differences.
The value ρ(xlbe, t) is obtained from the LBM domain using (7).

Afterwards, the corresponding post-collision value f�1 (xpde, t�) is computed
from f1(xpde, t) (29) using the LBM:

f�1 (xpde, t�) = (1− ω)f1(xpde, t) +
ω

3
ρ(xpde, t) +

Δt

3
F (ρ(xpde, t)) (30)

Finally, it is this value that is propagated to xlbe, i.e.

f1(xlbe, t+Δt) = f�1 (xpde, t�) (31)

Note that the outgoing post-collision value f�−1(xlbe, t
�) that enters the PDE

domain is never used.

4.3 Implementation using Constrained Runs

As explained in Sect. 3, the numerical computation of fi(x, t) from a given
ρ(x, t) by the constrained runs scheme is accurate up to first order. As an
alternative to the procedure from Sect. 4.2, we can thus replace (29) with
Algorithm 1 and apply (30) and (31) to the result.

As already mentioned in Sect. 4.1, Algorithm 1 solves the one-to-many
problem for the LBM on the full domain, whereas the mapping problem for
spatial coupling (28) is an issue in a single lattice site xpde only.

Since information in the (explicit) LBM (4) propagates over only one lat-
tice site in each iteration, Algorithm 1 requires initial density values on a
sublattice with at least 2K+1 lattice sites, symmetrically distributed around
xpde, with K the number of iterations needed for convergence of the algorithm.
We can impose arbitrary boundary conditions on this sublattice because the
boundary information will not have reached xpde within K iterations.

Alternatively, one can drop the outer lattice sites (and distribution func-
tions) during propagation in each iteration to obtain a funneled scheme. Here
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we keep only the information streaming towards xpde. Again it is important
that there are at least 2K + 1 initial sites, symmetrically positioned around
xpde. Note that this funneled scheme decreases the amount of work with a
factor two. On the other hand, this implementation requires changes to the
propagation step of the LBM in Algorithm 1, which may not be desirable.

Of course, for the above implementations to work, the number of con-
strained runs K has to be obtained first. To this end, one could do a prelimi-
nary run on (part of) the domain with Algorithm 1 and observe its convergence
(see also [17]).

Depending on the implementation, the amount of work needed by the
scheme is either K2 or K2/2. If K is large and the full domain is small, this is
an expensive overhead since the scheme has to be used in between each time
step Δt. Of course, for situations where the analytical slaving relations (29)
are unknown or difficult to obtain analytically, it is the only alternative.

5 Numerical Results

5.1 FitzHugh-Nagumo Reaction-Diffusion System

We will apply the proposed coupled PDE/LBM method to the FitzHugh-
Nagumo (FHN) reaction-diffusion system on a one-dimensional domain. For
this problem, both the PDE and LBM are known and valid on the full domain.
The system consists of two species: an activator and an inhibitor.

The PDE system describes the evolution of the activator ρac(x, t) and
inhibitor ρin(x, t) concentration (density) and is given by⎧⎪⎪⎨⎪⎪⎩

∂ρac

∂t
= Dac ∂

2ρac

∂x2
+ ρac − (ρac)3 − ρin ,

∂ρin

∂t
= Din ∂

2ρin

∂x2
+ ε(ρac − a1ρ

in − a0) .
(32)

For each species, the LBM is described in Sect. 2.2. Given the PDE reaction
terms in (32), the LBM reaction terms are defined as (6)

Raci (x, t) =
Δt

3
(
ρac(x, t) − (ρac)3(x, t) − ρin(x, t)

)
,

Rini (x, t) =
Δt

3
ε
(
ρac(x, t)− a1ρ

in(x, t)− a0

)
, i ∈ {−1, 0, 1}.

(33)

For our numerical tests, we choose the parameter values as Dac = 1,
Din = 4, a0 = −0.03, a1 = 2 and ε = 0.05. The domain has length L =
20. At the boundaries of the domain, we impose homogeneous Neumann (or
no-flux) boundary conditions which are implemented in the LBM using the
halfway bounce-back scheme [9]. For both models, the lattice points x lie at
the midpoints of 200 lattice intervals, such that Δx = 0.1. We choose the time
step Δt = 0.001 [16].
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5.2 Spatial Coupling of the FHN PDE and LBM
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Fig. 3: Solution of the coupled FHN PDE/LBM model after 1000 time steps. We
used either zeroth order perturbations (34), first order perturbations (Sect. 4.2)
or constrained runs (Sect. 4.3) at the interface. The activator density ρac(x, t) at
t = 1000Δt is shown left and the difference with respect to the reference solution,
the LBM steady state on the full domain, is shown right. The dotted line shows the
position of the interface.

In this section, we spatially couple the FHN PDE (left) and FHN LBM
(right) models from Sect. 5.1. The domain is divided as in Fig. 2 with the
interface positioned at x = 5 (in between two lattice sites). Correspondingly,
we solve predominately with the LBM. We initialize the coupled model with
the LBM steady state computed on the full domain (see [16]). As described
in Sect. 4, we use either first order perturbations or constrained runs at the
interface. For our problem, the number of constrained iterations needed for
convergence is K = 25 (see [17]).

As an illustration, we also compare our results with a modification of the
scheme described in Sect. 4.2. We drop the spatial derivatives from (29) to
obtain

f1(xpde, t) = f
[0]
1 (xpde, t) =

1
3
ρ(xpde, t) (34)

and replace (29) by (34). Afterwards, we proceed as in Sect. 4.2. We call this
modification the zeroth order coupling scheme.

We first look at the short time behavior of the coupled problem. Figure 3
shows the results after 1000 time steps. On the time scale considered, the dif-
ference between the densities cannot be resolved visually. The corresponding
error is shown in the right panel. Here, we see that the zeroth order coupling
scheme results in a significant interfacial error, while the error with first order
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or constrained runs coupling is much smaller. Clearly, neglecting first order
contributions in the coupling scheme is not a good option.
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Fig. 4: The solution of the coupled FHN PDE/LBM model for different coupling
mechanisms after 30000 time steps. Shown on the left is the activator density
ρac(x, 30). In the right panel, we compare the corresponding errors to the differ-
ence between the PDE and LBM density computed on the full domain. The latter
is marked by the label “steady”.

Next, we look at the long term effects of this interfacial error. In Fig. 4,
we show the solution after 30000 time steps. The left panel shows that the
error of the zeroth order coupling has now propagated over the domain and
shifted the solution globally to the right. In fact, all coupled models converge
towards a steady state that is different from the steady state obtained with
one model on the full domain.

The right panel shows that the modeling errors as a result of the coupling
with first order and constrained runs are comparable to the modeling error
between the LBM and PDE solution computed on the full domain. These
errors are most pronounced in the region where the solution varies strongly
(cf. Sect. 2.3). Note that we compared to the PDE steady state reference
solution on the full domain here, as we chose to solve predominately with the
LBM in the coupled model.

From the numerical experiments, we can also learn something about the
relation between the error and the spatial derivatives of the solution at the in-
terface. The (small) interfacial error in Fig. 3 for the coupling with both first
order perturbations or the constrained runs scheme comes from the second
order term f

[2]
1 (xpde, t) (18) that is neglected in the computation of the dis-

tribution function at the interface. This term is related to the second spatial
derivative ∂2ρ(xpde, t)/∂x2 of the solution at the interface (see (22)). Since this
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second derivate is nonzero at the interface for our FHN example, we observe
a local interfacial error.
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Fig. 5: Illustration on how the error depends on the spatial derivatives of the solution.
The example is a pure diffusion system with Dirichlet boundary conditions on the
domain [0, 1] for two types of initial conditions. The coupled PDE/LBM system
is simulated for 10000 time steps. The position of the interface is marked by a
dotted line. Figures (a) and (b) show the solution and the error when the initial
condition is a straight line connecting the two boundary conditions. Figures (c) and
(d) show respectively the reference solution and solution with first order coupling
and the corresponding error for an initial profile with nonzero second derivatives.
First order coupling is correct for a solution with only first derivatives, but has a
small error when the solution has a nonzero second derivative.

In Fig. 5 we perform an experiment to illustrate this relation. Here, we
consider a pure diffusion model problem with Dirichlet boundary conditions
ρ(0, t) = 0 and ρ(1, t) = 1. The domain [0, 1] is discretized with 200 lattice
points and the parameters are chosen as D = 0.2 and Δt = 0.00001. The
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interface is located at x = 0.5. The steady state solution is a straight line con-
necting the density values at the boundary. We simulate the coupled system
for 10000 time steps. We impose two different initial conditions: the steady
state solution (Fig. 5 (a)-(b)) or an initial condition with a nonzero second
derivative (Fig. 5 (c)-(d)). In the first case, Fig. 5 (b) shows that the error is
zero when first order coupling is used, since ∂2ρ/∂x2 = 0 here. In the second
case, the solution at t = 10000Δt has a nonzero second derivative and the first
order coupling error behaves similar to the error of the zeroth order coupling
in Fig. 5 (b). Note the different scale of Fig. 5 (b) and (d).

Of course, when simulating the system in Fig. 5 (c)-(d) for long enough
time, the interfacial error for the first order coupling will become zero since
the solution converges to the steady state as in Fig. 5 (a)-(b). For the FHN
example however, the steady state has a nonzero second derivative at the
interface and both the local interfacial error and the resulting global modeling
error evolve to a constant nonzero value.

Figures 3 and 4 suggest that the coupling with constrained runs is more
accurate than coupling with first order perturbations. This can be explained
by comparing (27) to (22). We see that the part corresponding to the reaction
term in (22) is approximated correctly by (27) while it does not appear in the
first order coupling scheme. At least for our example, this results in a higher
accuracy for the constrained runs coupling.

5.3 Spatial Coupling of a Growth-Diffusion PDE and LBM

In this section, we will spatially couple the LBM (23) and the finite difference
discretization of the corresponding PDE (24) for the growth-diffusion system
from Sect. 2.4. The setup on the one-dimensional domain is described in Fig. 2.
We used the D1Q3 scheme and a reaction matrix

A = [Aij ] =

⎡⎣ −R 0 0
1.1R 0 1.1R

0 0 −R

⎤⎦ (35)

with R = 0.02. The relaxation parameter is ω = 1.6160. This LBM leads
to a macroscopic growth-diffusion problem (24) with D = 0.1856 and α =
1.315 · 10−3. Grid parameters are Δx = 1/399 and Δt = 2.5 · 10−6. The
interface is positioned at x = 0.25.

Instead of using the analytical slaving relations derived through a tedious
Chapman-Enskog expansion [18], we will use the constrained runs scheme to
derive the distributions at the interface numerically, given the density value.
Although we only proved stability and convergence of the constrained runs
scheme for the BGK LBM with density dependent reaction term (6) in [17]
(see Sect. 3), we expect that the scheme can be applied more generally also.

Figure 6 shows the density profile ρ(x, t) and corresponding error of the
coupled PDE/LBM model for the growth-diffusion system from Sect. 2.4. As
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Fig. 6: The solution of the coupled PDE/LBM model for the growth-diffusion system
from Sect. 2.4 as a function of space and time. The left panel shows the density ρ(x, t)
while the right panel shows the corresponding absolute error. We used constrained
runs at the interface, which is positioned at x = 0.25.

explained in Sect. 5.2, an interfacial error exists because the solution has a
nonzero second derivative at the interface. Since the solution grows over time,
the error grows as well.

6 Conclusions and Future Work

In this article, we have studied the coupling of a lattice Boltzmann model
(LBM) and a partial differential equation (PDE) describing the same diffusive
system, each on a part of a one-dimensional domain. We discretized the PDE
using finite differences.

At the interface between the two models, we have a one-to-many problem:
the PDE variables (here density) have to be mapped to more LBM variables
(the distribution functions). We showed that this can be done both analyti-
cally, using results from the Chapman-Enskog expansion, or numerically, using
the constrained runs scheme [8, 7]. We use the results from [17], where it is
shown that this scheme applied to the LBM under discussion approximates
the results from the Chapman-Enskog expansion correctly up to first order.
We illustrate these concepts for several diffusive systems.

We show that the solutions of the coupled model are comparable in accu-
racy to the solution of either the PDE or LBM model on the full domain. We
also show that the error made at the interface is proportional to the second
derivative of the solution at the interface. The latter is related to the error
term for the constrained runs scheme and to the second order term in the
Chapman-Enskog expansion.

For certain classes of problems, the current approach is not sufficient and
coupling that is correct to higher order is required. In this case, higher order
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terms in the Chapman-Enskog expansion could be used if these analytic ex-
pressions are available. If these are not available, constrained run schemes as
proposed in [7] in the context of ODEs, could be useful.

In the current discussion, we used the same space and time step Δx and
Δt for both the PDE and LBM sublattice. The focus was on the details of the
coupling and how information is exchanged between the two sublattices. The
use of different Δx and Δt values in both regions, optimized to local stability
properties, would be a further development. When e.g. the time step of the
PDE is a multiple of the LBM time step, interpolation of densities between
two PDE time steps is then required to provide the necessary information to
the LBM region.

We foresee several applications of a coupled PDE/LBM simulation ap-
proach. One example is plasma physics where detailed reaction rates in lo-
calized regions determine the macroscopic behavior. Here, the system has a
solution that varies rapidly in a localized region of the domain but behaves
smoothly in the remainder. In the former region, the approximations made to
derive a PDE model will break down and the LBM with the complete reaction
details has to be used. In the smooth region, in contrast, the PDE approx-
imations are valid. It is important that the interface is situated in a region
where the solution is still slowly varying such that the slaving relations from
the Chapman-Enskog expansion hold.
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Modelling and Control Considerations for
Particle Populations in Particulate Processes

Within a Multi-Scale Framework

N. Bianco and C. D. Immanuel�

Department of Chemical Engineering, Centre for Process Systems Engineering,
Imperial College London, South Kensington, London SW7 2AZ, UK

Summary. This article deals with a class of distributed parameter systems, the so-
called particulate processes that are modelled by population balances. Population
balances have been employed in modelling chemical, physical and biological processes
for over 40 years. The population balance equation is a hyperbolic partial differen-
tial equation that presents challenges in numerical solution. Recent advances in the
understanding of the underlying mechanisms of the particulate processes enables
formulation of more comprehensive population balance models for these complex
processes by the incorporation of multi-scale representations for the kernels of the
constituent rate processes. These multi-scale modelling ventures lead to additional
numerical challenges for model solution. Further, the purposes of these comprehen-
sive models is towards use for control of distributions in these processes. This control
becomes challenging in view of the different scales represented by the manipulated
and controlled variables and in view of the underlying process complexity. This ar-
ticle first presents an efficient numerical solution technique to handle multi-scale
population balance models, and then discusses a potential model-based strategy for
control of distributions in particulate processes.

1 Introduction

Particulate processes are characterised by a distribution of particles and con-
stitute a considerable fraction of chemical engineering unit operations, falling
under the general class of distributed parameter systems. The most common
examples of distributed particulate processes are polymerisation processes
that are characterised by a distribution of chain lengths of the polymeric
entities; crystallisation and granulation processes that are characterised by
a size distribution of the crystals; and dispersed phased systems including
emulsions that are characterised by a particle/droplet size distribution (Refer
to [4] for insight into a wide range of distributed parameter systems including
novel nano-structured materials and microfluidics).
� Corresponding author, c.immanuel@imperial.ac.uk
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The incorporation of particle-level details in models of particulate
processes is both important and feasible. The feasibility of such ventures is
attributed to the availability of intricate measurements on the one hand, and
the enhanced computation capabilities on the other hand. The importance of
such ventures is attributed to the direct need for the control of population
distributions on the one hand and the need for high fidelity models com-
mensurate with the state-of-the-art knowledge and measurement capabilities
on the other hand. These ventures translate into the development of particle
population distribution models.

To elaborate on the need for such population distribution models further:

• There is a strong incentive for the control of particle populations in partic-
ulate processes [13, 4, 2]. For instance, in processes that involve particle size
distribution, certain applications necessitate broad or even multimodal dis-
tributions to tailor the packing densities and other end-use properties. In
certain other processes such as those that involve distributions of polymeric
chains, there is a necessity to ensure a narrow distribution of chain lengths
for increased strength and cohesion. These clearly highlight the need for
control of particle and molecular entities. The distribution control prob-
lem is clearly presented by Semino & Ray in the form of comprehensive
controllability studies to determine the ability to influence distributions
and their shapes [41, 42]. Subsequently, several researchers have shown
the importance and the feasibility of this problem [13, 4, 2].

• Another class of processes are cellular biological processes, wherein, the
complexity of the process and the need for high-fidelity models warrant the
introduction of information at the cellular levels and even at the molecular
level for application in various systems engineering tasks [8, 15, 43]

With the incorporation of particle-level information, such process models
assume a multi-scale character. The particle population is determined by a
complex array of particle-level phenomena of nucleation (birth), continuous
growth, discrete growth (aggregation and breakage), and death. Each of these
particle-level phenomenon exhibits strong dependence on one or more of the
population traits, the so-called internal coordinates, the most common of these
being the particle size, cell age and molecular weight. Each of these internal
coordinates covers a wide range of values in their representative systems,
thereby leading to computation-intensive models. Figure 1 depicts the multi-
scale model and the control problem that underlie particulate processes. It
has to be mentioned that these process models are usually less multi-scale
in character compared to the models that will be necessary for material and
product design applications. Nevertheless, the distributed character of the
process-level variables still renders these models with a high computational
requirements. Thus, there is still a need for efficient computation to enable
online applications such as process control.
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Fig. 1: Depiction of the multi-scale modelling and control problems that underlie
particulate processes

Different computational methods have been adopted to tackle this prob-
lem. These can be broadly classified as follows, employing the spirit of previous
classifications [25]:

• Particle-ensemble approach: This approach is focussed only on the particle
level, either in the form of statistical Monte Carlo simulations or in the
form of discrete element methods. Such models infer behaviour at the
process (vessel) level only through the particle-level solutions.

• Segregated or sequential approach: A segregated modelling approach em-
ploys particle-level models to determine phenomenological equations which
are then employed in process-level models. Such models will usually be re-
stricted in application, as in most systems the particle-level phenomena are
dynamic and vary during the process. Thus, a segregated determination of
the phenomenological laws will be less suitable for those cases. However,
if applicable, this approach is the best recourse.

• Multi-scale or simultaneous approach: The simultaneous multi-scale mod-
els seek to solve both the particle-level and process (vessel)-level models
together. Although there are several ways of performing this combined
modelling, a simple approach is to appropriately simplify the model at one
of the two levels, depending upon the intended objectives and the needed
accuracy levels. See [25] for a more detailed and elaborate classification of
such approaches.

The approach adopted in this study is based on using the guiding theo-
ries of the underlying particle-level physics (such as kinetic theory, colloids
theory etc.) to transform the particle-level model, to a form which can then
be embedded into the process-level model, borrowing the terminologies of [25].
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The process-level behaviour in particulate processes is exemplified by the par-
ticle size distribution, and is described employing the so-called population
balance equations [39]. There are several research challenges associated with
population balances. The first of these is the difficulty in identifying closed-
form kernels or constitutive relationships for the underlying particle-level rate
processes (for example, particle nucleation, growth, aggregation etc.). The sec-
ond challenge lies in the numerical solution of the population balance models,
which are characterised by a computation-intensive and multi-scale character.
The third challenge lies in the control of such processes. Although control is
mainly sought at the macroscopic level of the particle size distribution, it will
be shown later that this is best achieved through control of the underlying
particle-level rate processes.

With regard to the first challenge mentioned above, different particulate
processes are at different levels of advancement. For example, processes such as
the crystallisation, precipitation and emulsion polymerisation processes have a
strong fundamental understanding for the development of particle-level mod-
els, while processes such as granulation and several biological processes have
reduced advances in this front. This issue is elaborated in section 2. The nu-
merical solution techniques are presented in section 3, and the control issues
are addressed in section 4.

2 Population Balance Models

The general population balance equation (PBE) is naturally suited to model
processes characterised by birth, aging and death phenomena such as partic-
ulate processes. The PBE is given by:

∂

∂t
ζ(η, t)+

∂

∂η
(ζ(η, t)�growth) = �birth(η, t)−�death(η, t)+�realignment(η, t)

(1)
�realignment(η, t) = �formation(η, t)−�depletion(η, t) (2)

�formation(η, t) =
1
2

∫ η−ηnuc

η′=ηnuc

β(η′, η − η′)ζ(η′, t)ζ(η − η′, t) dη′ (3)

�depletion(η, t) =
∫ ηmax

η′=ηnuc

β(η′, η − η′)ζ(η′, t)ζ(η − η′, t) dη′ (4)

where ζ(η, t) is called the population density function. This represents the dis-
tribution of particles with respect to the internal coordinates η. The internal
coordinates could represent one or more distributed variables such as particle
size, cell age, cellular metabolites, molecular weight, intraparticle composi-
tion, etc. The terms �nuc, �growth = dη

dt , �realignment and �death account
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for particle-level phenomena of nucleation (birth), continuous growth, dis-
crete growth, and death, respectively, and constitute the source of the model’s
multi-scale character. As mentioned in the introduction, the particle-level phe-
nomena are converted, employing theories such as kinetic and colloids theory,
into phenomenological laws (constitutive equations). This is typically exempli-
fied by the aggregation (coagulation) phenomenon, which is a discrete growth
phenomenon, and is illustrated next for the emulsion polymerisation problem.

Emulsion polymerisation is a heterogeneous multi-phase polymerisation
method in which the polymer is produced in the form of sub-micron particles
that are dispersed in the continuous phase (water). The internal coordinate
η is the particle size (volume) V , and the particle density ζ is defined as
ζ(η, t) = FV (V, t) such that FV (V, t)dV is the moles of particles of volume
between V and V + dV per unit volume of the continuous phase (Vaq). The
particle population distribution is determined by three major particle-level
phenomena of nucleation, growth due to polymerisation and swelling, and
inter-particle coagulation. The particle size distribution (PSD) is a major
determinant of the polymer properties.

In emulsion polymerisation, the coagulation phenomenon is driven by col-
loidal forces of attraction and repulsion that influence the particles. The forces
of attraction are usually the van der Waals’ forces, while the forces of repul-
sion are attributed to the presence of surfactant chains adsorbed onto the
surface of the particles. In the case of ionic surfactants, surfactant adsorption
results in charged particles (with ‘like’ charges), thereby causing inter-particle
repulsion. In the case of non-ionic surfactants, the bulkiness of the surfactant
chains adsorbed onto the particles causes steric repulsion (space constraints).
The strength of the repulsion forces depends on the level of adsorption (parti-
cle coverage), which in turn is determined by the PSD, as depicted in Figure
2. Thus, the inter-particle force balances on the particle pairs will need to
be performed dynamically while solving the process-level population balance
model. In addition, the forces themselves are dependent on the particle size.

As mentioned previously, in this work, the dynamic force/potential bal-
ances is performed in an implicit semi-analystical framework to obtain the
phenomenological law representing the coagulation kernel β, also called the
intrinsic coagulation rate. In order to undergo coagulation, the net attrac-
tive force acting on the particle pairs must overcome an activation barrier
as governed by the kinetic transition state theory. This activation barrier is
represented in terms of a stability ratio W for the particle pair (r, r′) given as
follows:

W (r, r′) = (r + r′)
∫ ∞
D=(r+r′)

e
Ψ(D)

kT

D2
d(D) (5)

where k is the Boltzmann constant, T is the temperature of the emulsion, and
Ψ(D) = ΨR(D)−ΨA(D) is the net potential acting on the particles, ΨR and ΨA
representing the repulsive and attractive potentials respectively. The terms r
and r′ represent the radii of the two particles involved. The coagulation kernel
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Fig. 2: Schematic representation of the need for both process-level and particle-level
details in models of emulsion polymerisation

can then be calculated as follows:

β(r, r′) = c
4πD0(r + r′)

W
(6)

where c is an adjustable constant and D0 is the diffusion co-efficient. See
detailed modelling of coagulation kernel in [19] and references therein on the
underlying colloids theory.

Thus, the dynamic inter-particle force balance is reduced to the above phe-
nomenological law, facilitating the solution of the multi-scale model. However,
the model is still computation-intensive, both in the calculation of β (which
needs to be computed for each combination of the particle pairs), and the
terms appearing in the PBE. Thus, efficient strategies are necessary for the
solution of the resulting multi-scale models.

Also, as depicted in Figure 2, in addition to the amount of surfactant
utilised for stabilisation, the PSD also determines the amount of free surfac-
tant which is then available for the nucleation of new particles. Further, PSD
also affects the monomer partitioning among the particles, thereby affecting
the growth phenomenon. These clearly elucidate the need for a simultaneous
incorporation of details at the particle-level and the process level in models
of the emulsion polymerisation process.

3 Solution Techniques for Population Balance Models

3.1 Literature Review

The method of moments has been successfully applied and developed to han-
dle population balances problems [37, 9, 10, 11]. The developments focus on



Multi-Scale Modelling and Control of Particulate Processes 449

making the method applicable to systems with size-dependent particle-level
behaviour and to overcome problems with unclosed system of equations. How-
ever, the application is most suitable to those problems where distribution
control is not of direct interest. A notable and representative application is
presented by Chiu & Christofides [3] for a model of a continuous crystallizer,
and the study describes the application of an approximate inertial manifold
method to extract a low-dimensional model from the discretised Galerkin’s
version of the PBE. However, when the distribution itself is the controlled
variable of interest, the method of moments is less suitable. In this regard,
a relatively new method that relies on the moments called the quadrature
method of moments is presented by Marchisio & Fox [34] for application to
problems with size-dependent kernels and for complex systems which are not
easily amenable to the more common method of moments.

The general solution techniques for PBE models can be classified into
two major types, one of which approaches the PBE as any general partial
differential equation (PDE) [26, 7, 33], while the other considers the underlying
physics of the evolution of PSD in formulating a solution strategy [16]. With
regard to the first class, a general PDE is usually solved by either

• a finite difference scheme that approximates the differentials in terms of
differences or

• a method of weighted residuals that solves the PDE by casting the solu-
tion in terms of pre-determined (chosen) basis functions and seeking to
minimise the approximation error at fixed points along the independent
variables.

Both these methods have been employed for PBE models. Crowley et al. [6]
present a detailed evaluation of the relative merits and drawbacks in the ap-
plication of the finite difference methods for the solution of PBE. Melis et
al. [36] employ the finite difference method for the solution of a complex and
realistic example system in emulsion polymerisation. Ma et al. [32] present
a high-resolution finite difference method that exploits the relative advan-
tages of the upwind and Lax-Wendroff methods with respect to numerical
diffusion and oscillation. Hu et al. [17] apply the finite different scheme for
a seeded batch crystallizers adopting a method that could be classified as a
Eulerian-Lagrangian framework. Bennett and Rohani [1] adopt a finite dif-
ference method for a crystallisation problems, based on a combination of the
Lax-Wendroff and Crank-Nicholson techniques to minimise spurious oscilla-
tions and maintain stability due to the implicit forms of the finite differences.
As regards the method of weighted residuals, applications range from the
Galerkin’s method to orthogonal collocation on finite elements to wave-let
based basis functions [7, 33, 31, 20, 35, 27]

The PBE is unique in relation to partial differential equations, attributed
to the strong size-dependence (or more generally, dependence on the in-
dependent variables) of the particle rate processes of nucleation, growth,
death, and discrete realignment phenomena. This uniqueness, coupled with



450 N. Bianco and C. D. Immanuel

the computation-intensive character of the phenomenological laws as well as
the terms in the PBE, motivates the development of custom-built solution
techniques for the PBE. A seminal work in this regard was presented by
Hounslow et al. [16], which was adopted and/or extended in a wide range of
studies [29, 28, 26].

A so-called hierarchical two-tier solution technique which falls under the
second category above was presented recently by Immanuel & Doyle [23]. Fig-
ure 3 shows a schematic representation of the proposed algorithm. At each
time step, the first tier of the algorithm involves the calculation of the rates
of nucleation, growth, and coagulation individually, while holding the PSD
constant. Then the PSD is updated in the second tier employing the rates
calculated in the first tier. The calculation then proceeded to the next time
step. Employing such a hierarchical algorithm provides the following advan-
tages:

• an ability to simplify both the phenomenological laws and the rate terms
of the PBE, thereby reducing the on-line computational requirements

• a possible time scale separation, and hence a reduction in the stiffness of
the model equations

In that work, a fine discretisation along the particle size was employed
to ensure accuracy. The study presented in section 3.2 proposes a method
to cope with the varying size-dependence of the underlying rate processes by
employing a multi-level discretisation of the distribution domain.

Ramkrishna and Mahoney [40] highlight that despite years of research
and advancement, population balances still remain at the forefront of re-
search. This is in view of the plethora of novel applications necessitating multi-
dimensional population balances and applications to stochastic systems. Ma
et al. [32] successfully applied the high-resolution algorithms mentioned previ-
ously for two-dimensional problems; one of the first reports on the solution of
multi-dimensional PBE. The hierarchical two-tier technique has also been ap-
plied to solve three-dimensional problems in granulation processes [18], with
some early results reported for applications in 6-D problems characterising
bioprocesses [24].

3.2 Two-Level Discretisation-Based Two-Tier Hierarchical
Algorithm

The hierarchical two-tier algorithm mentioned previously is based on the dis-
cretisation of the particle population into finite elements or bins. The two-tier
framework enables a consideration of the different rate processes of nucleation,
growth, coagulation, etc. separately from each other. Figures 4 and 5 show
that while the coagulation model is less sensitive to the bin width, the nu-
cleation and growth models necessitate a fine discretisation. Fortuitously, the
coagulation model is the more computation-intensive one and hence will ben-
efit from a coarser discretisation. Thus, a two-level discretisation is proposed,
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SET INITIAL CONDITIONS

HOLD PSD CONSTANT

CALCULATE RATES OF 
NUCLEATION, GROWTH
AND COAGULATION

UPDATE        t

t = t + t

t > FINAL TIME

IS

t = 0

STOPNO YES

UPDATE PSD

(OPTIONAL)

FIRST TIER

SECOND TIER

Fig. 3: The schematic of the hierarchical two-tier algorithm [23]. The first tier in-
volves the calculation of the rates of nucleation, growth and coagulation individually
while holding the PSD constant. The PSD is then updated in the second tier. Itera-
tion over these two tiers can be employed to exchange information between the two
tiers.

with the growth rates being solved employing a finer discretisation and the
coagulation rates being solved employing a coarser discretisation. Nucleation
is restricted to the smallest finer grid. Figure 6 shows the resultant two-level
discretisation of the particle size domain.
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Fig. 5: Validation of growth and nucleation model. (a) The variation the endpoint
number density under growth-only conditions, employing different grid widths. The
analytical solution is also shown. (b) The variation the endpoint number density
under coagulation-free conditions, employing different grid widths. The analytical
solution is also shown.

a)

b)

Fig. 6: Two-level finite element discretisation of the particle size domain. (a) Finite
element discretisation on the coarser level. rnuc is the size of the nucleus, ri is the
representative size for finite element i on the coarser level, rbi is the upper boundary
of finite element i on the coarser level. (b) Finite element discretisation of a given
coarser grid at the finer level. rgi is the representative size for finite element i on
the finer level, rbgi is the upper boundary of finite element i on the finer level.

In the proposed two-level discretisation algorithm, two particle densities
are defined, one at the coarser level F c(r, t) and the other at a finer level
F f (r, t). The coagulation events are updated at the coarser level as follows:

F cnew,i = F ci −Δt (H(iupper − i)�formationi −H(icut−off − i)�depletioni )(7)

where F ci is the total particles in the ith coarse bin. H is the heaviside function
defined as H(i) = 1 for i > 0 and H(i) = 0 for i <= 0; and iupper and icut−off
account for the underlying physics and represent the number of the largest
coarse bins in which particles can form due to coagulation and particles can
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participate in coagulation, respectively. In the above implementation, a first
order Euler method is depicted for the integration for ease of illustration. A
more elaborate higher order integration technique might be employed, such
as the sixth order Simpson’s rule given below. An Euler integration method
will be depicted for the rest of the equations, purely for ease of illustration.

F cnew,i = F ci −H(iupper − i)(
Δt

4
)(14�formationi,1 + 64�formationi,2

+24�formationi,3 + 64�formationi,4 + 14�formationi,5)
(

1
45

)
−H(icut−off − i)(

Δt

4
)(14�depletioni,1 + 64�depletioni,2

+24�depletioni,3 + 64�depletioni,4 + 14�depletioni,5)
(

1
45

)
(8)

In Equation (8), �formationi,j and �depletioni,j are the total rates of formation
and depletion, respectively, of particles in ith coarse grid at the j th time sub-
step. Note that for the Euler integration method (Equation (7)), j = 1 as
there is only one time sub-step within any given major time interval. The
nucleation and growth events are updated at the finer level to obtain the PSD
as follows:

F fnew,1 = F f1 − F f1
(rb1 − ri1)

ΔR1
+ (Δt) (�nuc) (9)

and

F fnew,i = F fi − F fi
(rbi − rii)

ΔRi
+ F fi−1

(rbi−1 − rii−1)
ΔRi−1

(10)

where F fi represents the total number of particles in the ith fine grid, rii is
the cut-off size for growth event in the ith fine grid computed as follows:

ri3i = rb3i − (Δt) (�Growthi) (11)

where �Growthi is the growth rate during this time instance in bin i.
Having accounted for the coagulation phenomenon at the coarser level and

the nucleation and growth phenomena at the finer level, the next step is to
combine the effects of all the three phenomena. This is done via two informa-
tion exchanges as follows. The information from the finer level is transferred
to the coarser level to update the PSD on the coarser level as follows:

F cnew,j = F cj + F f(j−1)NF E

Growth(j−1)NF E

ΔV(j−1)NF E

− F fjNF E

GrowthjNF E

ΔVjNF E

+H(jupper − j)(Δt)(�formationj )−H(jcut−off − j)(Δt)
(�depletionj ) (12)
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In the above equation, NFE is the number of finer grids per coarser grid.
It is imperative to also exchange information from the coarser level to

the finer level. This second exchange of information between the levels is
achieved in a straightforward manner. Upon updating the particle densities
in the coarser grids employing Equation (12), the particle density in each fine
grid ‘i’ within any given coarse grid j is updated as follows:

F fnew,i = F fi
F cnew,j

ΣNFE

k=1 F
f
k

(13)

The proposed two-level discretisation algorithm is implemented in the
emulsion polymerisation model. In emulsion polymerisation, the coagulation
kernel β(r, r′) is a strongly size-dependent quantity. Thus, instead of calcu-
lating the coagulation rate constant at a representative point within each
coarse grid, an averaging procedure is employed by involving each of the finer
bin within any given coarse bin, as shown in Equation (14). Thus, the co-
agulation rate constant within any given coarse grid is averaged based on
finer-level discretisation, although the actual coagulation computations (the
integrals shown in Equations (3) and (4)) are performed at the coarser level.

βci,j =

∫ Vi

V ′=Vi−1

∫ Vj

V ′′=Vj−1
βfV ′,V ′′ dV ′ dV ′′∫ Vi

V ′=Vi−1

∫ Vj

V ′′=Vj−1
dV ′ dV ′′

βci,j =

∑NF E

k=1

∑NF E

l=1 βf(i−1)NF E+k,(j−1)NF E+l ×ΔV g(i−1)NF E+kΔV g(j−1)NF E+l

ΔViΔVj

(14)
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Fig. 8: The comparison of the evolution of PSD based on the one-level discretisation
and the two-level discretisation. (a) The evolution of PSD based on hierarchical
two-tier algorithm with one-level discretisation. (b) The evolution of PSD based on
two-level discretisation algorithm.

Figure 7 shows the comparison of the endpoint weight-averaged PSD based
on the hierarchical two-tier algorithm with one-level discretisation and the
two-level discretisation algorithm. Note that the plots are averaged distribu-
tions, with the errors in absolute distributions being below the measurement
accuracy. In the two-level algorithm, the finer grids are based on Δrf = 2nm,
while the coarser grids are based on Δrc = 10nm. The one-level discretisa-
tion employs uniform fine grids of Δr = 2nm each for the solution of each of
nucleation, growth and coagulation models.

Figure 8 shows the evolution of the PSD throughout the course of batch
based on one-level discretisation and the two-level discretisation algorithms,
which again indicates a very good qualitative agreement. The technique has
been validated for several other operating conditions (not presented here). The
single-level discretisation results based on the finer discretisation (Δr = 2 nm)
have been validated previously against experimental results (see [19]). This in
turn implies the validity of the present two-level discretisation method.

4 Distribution Control Considerations

4.1 Problem Definition and Literature Review

The control objective in particulate processes is the tailoring of the PSD to
specified targets. A motivational study in this regard is the controllability
analysis of Semino and Ray [41, 42], which was followed by several seminal
contributions to this field. Some of the major challenges in the development
of distribution control for particulate processes are

• limited degrees of freedom, thereby necessitating optimal strategies
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• complexity of the underlying optimisation problem such as nonconvexity
and possible discontinuity in employing a multi-scale process model for
control

• sparsity of measurements
• complexity in the underlying processes such as an integrated and interact-

ing nature of the particle-level processes and irreversibility traits.

To cope with the last issue, a multi-objective strategy lends itself natu-
rally [22]. It seeks to attain the target PSD while providing a decoupling
of the underlying particle processes, in an optimal manner with the limited
actuation available. This perspective is elucidated in Figure 9, wherein the
manipulations at the vessel (process) level are used to tailor particle-level be-
haviour so as to obtain the desired population distribution. These studies are
presented in section 4.2. A representative literature account on distribution
control is presented for the rest of this section.

The studies on distribution control can be grouped into the following ma-
jor classes. Studies that deal with recipe optimisation for batch/semi-batch
processes to attain target distributions; studies that address feedback con-
trol either in a batch-to-batch sense or in an in-batch sense. Crowley et
al. [7] present one of the first studies in both open-loop and in-batch feed-
back control of PSD in emulsion polymerisation processes. Subsequent stud-
ies [5, 12] described batch-to-batch feedback control studies also for emulsion
polymerisation as a means to account for inevitable model mismatch. Kalani
& Christofides [26] present a nonlinear output feedback control in combination
with a Luenberger-type observer for aerosol processes involving simultaneous
chemical reaction, nucleation, condensation and coagulation. The method of
moments is used to derive a low-order model and a presupposition of the
form of distribution (log-normal) is made so as to avoid closure problems.
Flores-Cerrillo & MacGregor [14] present a mid-course correction strategy as
a means of in-batch feedback control. The correction strategy is implemented
if significant deviation is expected from the target PSD mid-course of the
process. Lee et al. [30] present a batch-to-batch iterative control strategy for
precipitation processes. The strategy is defined in the typical model predictive
control framework and have demosntrated the use of either a nonlinear model
or a linearized model to perform the optimization. Park et al. [38] describe a
model-predictive control applied for on-line in-batch feedback control of PSD,
employing low-order partial least squares model for the process. The MPC acts
over open-loop optimal control trajectories to account for model-mismatch
and process disturbances. Similar open-loop control trajectory generation is
presented in other studies [21].

4.2 Open-Loop Recipe Optimisation Studies

In this section, open-loop optimisation studies aimed at developing the oper-
ating policies for semi-batch emulsion polymerisation to attain target PSD is
discussed. Two different strategies are presented as follows
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• employing a detailed multi-scale model to directly develop the optimal
recipes that match the target PSD

• an exploitation of the multi-phase process physics in combination with a
suitable (multi-scale) model to develop the optimal recipe, as depicted in
Figure 9.

Fig. 9: A hierarchical control srategy proposed for particulate processes

The feed rates of the reagents (surfactant, monomers and initiators) suit-
ably discretised along time into piece-wise constants are used as the de-
cision variables (manipulations). Three objective functions are considered
in the present study, to meet the two strategies indicated above: θ1 =∫ rmax

rnuc
W (r, tf ) − Wref (r))2 dr, θ2 =

∫ tf
t=0(sc(t) − scref (t))2 dt and θ3 =∫ tf

t=0 wi(np(t)−npref (t))2 dt. These were used to build four different formula-
tions of the optimisation problem as listed below. Among these, formulations
1-3 fall under the first strategy, while formulation 4 falls under the second
strategy.

1. Single objective Minimise θ1

2. Weighted sum Minimise θ = w1θ1 + w2θ2 + w3θ3

3. Weighted min−max Minimise θ = max(w1θ1, w2θ2, w3θ3)
4. Pareto optimisation Minimise θ1 under the conditions:

a) θ2 ≤ ε2
b) θ3 ≤ ε3
c) θ2 ≤ ε2 and θ3 ≤ ε3

The first formulation is a single objective formulation accounting for the
error between the end-point and the target weight-averaged PSDs (θ1). The
next two are multi-objective strategies in which terms accounting for solids
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content (θ2) and number of particles (θ3) were included. A weighted sum of θ1,
θ2 and θ3 and a weighted maximum among θ1, θ2 and θ3 were the objective
functions for these two cases, respectively. Thus, each of these formulations
rely on the multi-scale model to indirectly tailor the particle-level behaviour
so as to meet the process-level behaviour (target PSD).

In the fourth case, a complete set of pareto solutions were also obtained
through epsilon-constraint formulations applied to one or two of the above
objective functions when implemented in the two and three-objective formu-
lation respectively. In view of the highly integrated nature of the process,
coupled with the process irreversibility traits with regard to the underlying
particle rate processes, it is important to implement a decoupling of the par-
ticle rate processes of nucleation and growth for effective feedback control.
This is the rationale behind the multi-objective optimization formulation 4.
The objectives are the attainment of the target PSD while also meeting target
nucleation rates and growth rates. The design nucleation and growth rates are
represented as profiles of total particles and solids content over the course of
the batch.

The copolymer system vinyl acetate (VAc)- butyl acrylate (BuA) was con-
sidered, which is a commercial adhesive polymer. The VAc and surfactant feed
rates were used as manipulated variables. The duration of the batch is divided
into different time intervals, and these manipulated variables are discretised
as piece-wise constants within these time intervals. A Sequential Quadratic
Programming (SQP) algorithm is used to solve the underlying optimisation
problem. FORTRAN subroutines from the numerical algorithm group (NAG)
are employed for this purpose.

As seen in Figure 10, the optimisation formulations 1-3 are effective in
identifying operating policies that reaches the target PSD. Figure 11 shows
the corresponding sub-optimal feed rates of the reagents.
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Fig. 10: Comparison of the optimal weight-averaged PSD with the target PSD based
on optimisation problem formulations 1-3.
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Fig. 11: Comparison of the sub-optimal decision variables with the actual solutions
based on formulations 1-3 (a) Surfactant solution (b) Vinyl acetate monomer.

Pareto optimisation studies were performed through formulation 4. The
three formulations 4(a), 4(b) and 4(c) indicated above were implemented.
Pareto solutions are a set of non-dominated solutions, i. e., each solution
is better than every other solution in the set at least with respect to one
of the objectives. Of all the pareto solutions computed following the above
strategy we picked out only those that were closest to the utopia point. The
utopia point is where all the objective functions taken in account assume the
corresponding smallest value in the set. One such pareto set is shown in Figure
12 for the case of the two-objective epsilon-constraint problem formulation
4(b).
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Fig. 12: Set of pareto solutions obtained applying case 4(b).

Figures 13 and 14 show that it is possible to attain the target PSD as well
as bring about the required decoupling (independent control of nucleation and
growth phenomena) with the limited resources. Further investigation reveals
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Fig. 13: Comparison of the optimal weight-averaged PSD with the target PSD based
on the three-objective optimisation problem formulation 4(c).
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Fig. 14: Comparison of the profiles of total number of particles and solids content
obtained from the three-objective optimisation problem formulation 4(c) (a) Total
particles (b) Solids content.

that any further reduction in the actuation (the usage of only surfactant
feed as the manipulated variable) results in loss of independent control of
the nucleation and growth phenomena. Figure 15 shows the input profiles
corresponding to the solution presented in Figures 13 and 14.

5 Summary and conclusions

In this article, modelling and control studies for population distributions in
particulate processes were presented. The models assume a multi-scale char-
acter, with the macro-scale being represented by the population dynamics at
the vessel (process) level, and the micro/meso scale being represented by the
particle behaviour. A population balance is employed at the macro-level, with
the particle-level behaviour being embedded within, using the terminology of
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Fig. 15: Comparison of the sub-optimal decision variables with the actual solutions
based on the three-objective optimisation problem formulation 4(c) (a) Surfactant
solution (b) Vinyl acetate monomer.

Ingram et al. [25]. The embedding is achieved by employing kinetic and col-
loids theory to transform particle-level behaviour models into phenomenolog-
ical laws (constitutive equations). This approach renders the process model
feasible for application in process decision making (open-loop optimisation,
in-batch and batch-to-batch feedback control).

The embedded multi-scale model is still computation-intense, both due to
the terms that appear in the PBE (complex integrals) and the calculations
involved in the phenomenological laws. Thus, an efficient solution strategy is
presented [23, 44]. This is based on a discretisation of the population distrib-
ution into finite elements (bins) and the employment of a two-tier integration
framework to incorporate the particle-level behaviour into the population bal-
ance. Two hypothetical discretisation are defined, one at a coarser level and
the other at a finer level. The computation-intensive but less sensitive coag-
ulation phenomenon is solved at the coarser level, while the more sensitive
nucleation and growth phenomena are solved at the finer level. A two-way in-
formation exchange is employed to extract the particle size distribution from
the two hypothetical distributions.

Finally, on the control side, open-loop recipe optimisation studies are pre-
sented for the attainment of target PSD. Two different approaches are pre-
sented to solve this problem. The first is a straightforward control of the
macro-level behaviour employing the multi-scale model. The second is the
manipulation of the particle-level behaviour to control te population distribu-
tion. An inferential control strategy is employed in the implementation of the
latter approach. This approach also enables decoupling of the particle-level
processes and hence facilitate feedback control.

Future work in this topic will be focussed along the following areas:
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• Generalisation of the strategies presented here for manipulation and trans-
formation of microscale models to embed them into macroscale process
models, to enable efficient process control [24]

• Further extension of the proposed novel implementation of the hierarchi-
cal two-tier numerical solution algorithm to multi-dimensional population
balance problems

• Development and implementation of feedback control for PSD, both by
direct manipulation of the particle-level behaviour and indirectly through
the multi-scale models in a model predictive control framework.
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Summary. Fault detection and diagnosis in large-scale process systems is of great
practical importance and present various challenging research problems at the same
time. One of them is the computational complexity of the algorithms that causes
an exponential growth of the computational resources (time and memory) with
increasing system sizes [21]. One remedy of this problem is to decompose the system
model and effectively focus on its relevant sub-model when doing the fault detection,
isolation and loss prevention.

Multi-scale modelling is an emerging interdisciplinary field that offers a sys-
tematic way of constructing, analyzing and solving dynamic models of large-scale
complex systems [22]. The aim of this paper is to propose a model reduction ap-
proach based on multi-scale modelling of process systems for diagnostic purposes.
Because lumped or concentrated parameter process models are the most impor-
tant and widespread class of process models for control and diagnostic applications,
therefore we also restrict ourselves to this case.

1 Introduction

1.1 Multiscale Modelling in Process Systems Engineering

The field of multiscale modelling is quite broad that spans many disciplines,
including physics, chemistry, bio-chemistry, mathematics, statistics, image
processing, chemical and mechanical engineering, as well as materials science.
Some of them, like physics, chemical kinetics (see e.g. [5], [6]) and image
processing use advanced bottom-up ”coarse graining” techniques to decom-
pose the system into different in magnitude time scales and simplify the so-
lution by using the fast scale and slow scale dynamics separately. Here the
starting point of the analysis and reduction is a detailed model on a small
length scale that is decomposed into two models, one for the fast and another
for the slow time scale, respectively.
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In engineering one uses a different, top-down approach to construct a
multi-scale model that provides an effective way both of decomposing and
handling the available information in large-scale complex systems. Here one
first identifies the relevant scales, most often the relevant length or detail
scales for the problem, constructs appropriate sub-models for each scale and
then somehow organizes the information exchange between these sub-models
to obtain a multiscale model.

From the viewpoint of dynamic simulation, the problem of multiscale mod-
elling is seen as how to design a simulator architecture that employs dynam-
ically coupled codes in such a way that no numerical instabilities occur [20],
[3]. The methods and tools of linear and nonlinear systems theory has been
applied there to develop a sufficient condition for the numerical stability of
the coupled codes and to design suitable filters for the coupling.

The systematic multiscale modelling approach in process systems engi-
neering (see e.g. [9], [4], [10]) provides us with a natural mechanism-driven
hierarchical decomposition of the underlying process model with any related
information and an integration framework to organize the information ex-
change between the partial models. This is the multiscale modelling method-
ology that forms the basis of our approach in this paper.

1.2 Reduction of Process Models

The most effective way of focusing to a part of a dynamic system relevant to
our purposes is to apply model reduction or model simplification techniques.
Many of such is reported in the systems and control engineering, as well as
in the process systems engineering literature both for linear and nonlinear
models. The engineering approach to model reduction starts with a detailed
model that is intended to be used for a given purpose. Then one can try to
leave out the unnecessary parts in the model, that is, to reduce the model such
that the properties relevant for the given purpose still remain unchanged.

In linear system theory, there is a well-known model reduction technique
for linear time-invariant state-space models that is based on controllability and
observability indices, called gramians and on linear state transformations to
construct a balanced realization. This method is purely black-box in its nature
because the physical meaning of the state variables in the reduced model is
completely lost. [7] generalize this method for stable nonlinear systems for
nonlinear model-based predictive control purposes.

The reduction of nonlinear lumped dynamic process models that exhibit
multiple time scale behaviour is usually done by using singular perturbation
technique [17]. The singular and regular perturbation analysis gives an insight
into the system structure and thereby one can eliminate superfluous model
equations or reduce them to other forms [19].

The same singular perturbation analysis was used to investigate the non-
linear dynamics of process systems with recycle [14] and that of integrated
process networks with multi-rate reactions [1]. The engineering conditions of
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time scale separation in these process systems have been established and re-
duced models have been developed from the overall model for the fast and
slow time scales separately.

Model structure simplification methods [16] offer a grey-box alternative to
model reduction where the number of state variables is reduced using steady-
state and/or variable lumping transformations and the physical meaning of the
remaining state variables remains unchanged. The model reduction approach
proposed in this paper can be regarded as an extension to this method.

Almost all of the reported model reduction and simplification methods apply
analytical or combinatorial techniques that are difficult to apply in a mul-
tiscale context where naturally both analytical and qualitative methods are
used. Therefore, our aim was to propose a mixed method for model reduction
of multiscale process models for diagnosis that effectively utilizes the model
structure inherent in the multiscale nature of the model.

2 The Model Reduction Problem

The basic notions for formulating and solving the model reduction problem
are briefly described in this section.

2.1 Process System Models and their Modelling Goals

Process systems are a sub-class of systems that obey the law of thermody-
namics. This implies that dynamic process models based on first engineering
principles are constructed by using the first and second law of thermodynam-
ics.

The construction of process models starts by formulating a modelling prob-
lem statement in the following general form.

Given : a process system together with a modelling goal
that can be process design, process control or diagnosis to mention
just a few,

Construct : a model for the modelling goal .

Construction principle. Process models for control and diagnostic pur-
poses are constructed from the dynamic conservation balances of mass, com-
ponent masses and energy (see e.g. [8]). The terms in the conservation balances
correspond to the various mechanisms that are taken into account:

• in-convection (inlet term),
• out-convection (outlet term),
• (interphase) transfer,
• sources (and sinks including chemical reactions)



468 E. Németh, R. Lakner, and K. M. Hangos

Modelling goal and its effect on the model. It is important to em-
phasize that the modelling goal has a determining effect on the model to be
constructed: it determines the model performance variables, the mechanisms
to be taken into account and the desired accuracy of the model in terms of
its performance variables, as well as the type (static – dynamic, deterministic
– stochastic, lumped parameter – distributed parameter) of the model. There
is no matured systematic way of how to take the effect of the modelling goal
on the model into account, just a few early steps about the ”goal-directed
modelling” [15] is available.

2.2 The Structure of Process Models

Lumped process models that are constructed on first engineering principles
possess a well defined structure. The model equations form a set of DAEs,
where the

• conservation balances are the differential equations that are equipped with
• constitutive equations being algebraic equations.

The structure of the model equations gives rise to the classification of the
variables of a state-space model that has been derived from a process model
based on first engineering principles.

• The state variables are the intensive pairs of conserved extensive quantities
(mass, concentrations, temperature) [8] for which conservation balances
are constructed, while

• the inputs, outputs and disturbance variables are problem formulation de-
pendent.

2.3 Functionally Equivalent Process Models

Two process models of the same process system are called functionally equiv-
alent, if they fulfill the same modelling goal [15]. If the modelling goal is
formulated in terms of performance indices that are predicates defined on
the performance variables, than the functional equivalence can be determined
algorithmically.

Suitably defined size indices that give the size of a model in a generalized
sense can be used to relate functionally equivalent models and to determine
which one is of less size, i.e. ”reduced” compared to the other. Fig. 1 shows
how the performance and size indices relate to each other.

2.4 The Problem Statement of Model Reduction

The aim of model reduction is to find a ”simple” model that is function-
ally equivalent with a given detailed ”original” one but it is easier to handle
computationally, i.e. it is of smaller size than the original one.
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Quality (size) indices determine
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application
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equivalent models that
satisfy modelling goal

"Minimal" model for
stated goal

Fig. 1: Functionally equivalent models and their reduction

If one wants to obtain reduced models for diagnostic purposes, then the
following assumptions can be made about the process system and its model:

A1 Lumped dynamic process models are considered for both the original and
the reduced model.

A2 The process system has smooth nonlinearities and we want to describe its
behaviour in the neighbourhood of a steady-state operating point.

Under the above assumptions it is possible to formulate the problem statement
of model reduction to this special case as follows.

Given:

• a detailed process model that originates from first engineering principles
• a set of prescribed input-output scenarios that define the required perfor-

mance of the models,
• a set of simplicity indices as generalized size indices being the number of

state variables (dynamic conservation balances) and the linearity of the
model

Compute: the ”simplest” reduced model that is

• functionally equivalent with the detailed process model in terms of the
prescribed input-output scenarios, and it is

• of the smallest size with respect to the simplicity indices.

The reduced model with the above two properties can be called minimal
model [15] with respect to the specified simplicity indices. Note that minimal
models are not necessarily unique.

2.5 Elementary Model Reduction Steps

Under the assumptions A1 and A2 one can consider two basic elementary
model reduction steps that are applicable to nonlinear state-space models: the
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reduction of the number of state equations by separating the different time-
modes (fast, medium and slow modes, for example) and the linearization of
the state equations around a steady-state point.

Reduction of the number of state equations. State equations originate
from dynamic conservation balances in a process model derived from first
engineering principles with the constitutive equations substituted. If balances
for different conserved quantities, such as component masses and energy, or
balances over balance volumes with largely different total holdup are present,
then one observes the separation of the time-constants. There are also formal
methods based on singular perturbation analysis (see e.g. [14], [1] and the
references therein) to find the separated characteristic times and to obtain
dynamic models from the original detailed model separately for each time
level by model reduction.

If one considers the elementary steps of model reduction as model transfor-
mations, specifically projections acting on the set of lumped dynamic models
of a process system, then the transformation applicable in the case of time-
scale separation can be characterized by a steady-state assumption for a
”fast” or ”slowly changing” variable χ. Formally one applies the trans-
formation

dχ
dt
≈ 0 (1)

to a set of model equations. As a result of the transformation, the differential
equation that originates from the dynamic conservation balance for χ becomes
algebraic, and thus it should be substituted to the remaining differential equa-
tions. Thus the number of state equations (and the number of state variables)
decreases by one, and χ formally disappears from the equations (see [16] for
the details).

Linearization. Linearization around a steady-state point is a basic and
well-known model simplification (or reduction) operation [8]. The applicability
condition is that the original model should have smooth nonlinearities and the
linearized model will be valid only within a more-or-less narrow region of a
nominal operating point.

One may apply linearization for the total model or for a part of the model
only depending on the nonlinearities along the variable-coordinate directions.

Properties of the elementary model reduction steps. It can be shown
that both the reduction of the number state equations and the linearization
as model transformations possess the following basic properties:

• They preserve the basic dynamic properties (e.g. controllability, observ-
ability and stability) of the model [16].

• Their actual result is strongly steady-state point dependent.
• They are both applicable in the ”initial phase” of a fault when the system

is in the neighbourhood of a steady-state nominal operating point.
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3 Prediction-Based Diagnosis and Loss Prevention

Prediction of a system’s behaviour is used for deriving the consequences of a
state of the system in time that is usually performed in process engineering
by dynamic simulation. With the help of prediction, however, the faulty mode
of the system can also be detected based on the comparison between the real
plant data and the predicted values generated by a suitable dynamic model.
This type of fault detection and diagnosis is called prediction-based diagnosis
[21]. Because of the high complexity of multiscale process models, however, the
computational load of performing the prediction can be substantial. Therefore,
the need of model reduction arises.

3.1 Modelling Goal for Diagnosis

If one intends to construct a process model for diagnostic purposes this mod-
elling aim has important implications on the model and its variables as follows.

• The model should be dynamic and should be able to produce dynamic
input-output behaviour with the measurable quantities as output variables.

• One usually defines symptoms from the measurable output signals, which
are qualitative performance output signals of the model.

• The actuator input variables correspond to manipulable input variables,
that can be used for preventing dangerous consequences of the considered
faults.

• Root causes are usually considered as disturbances that may determine
the ”failure modes” of the system with possibly different process models
(i.e. a hybrid model is often needed).

3.2 Elements of Prediction-Based Diagnosis

The most important notions of prediction-based diagnosis are briefly summa-
rized here.

Symptoms. Similarly to medical diagnosis, the diagnosis of process systems
is usually based on symptoms. Loosely speaking, symptoms are deviations
from a well-defined ”normal behaviour”. Symptoms are formally described by
using Boolean-valued predicates that contains a measurable variable, e.g. T ,
such as

pTlow
= (T < Tss)

Because of the dependence of the symptom on a measurable signal, its value
is time-dependent, and can be regarded as a qualitative-valued performance
output of the process model.

A family of symptoms is a set of symptoms that are defined over the same
measurable variable.
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Diagnostic scenario. Similarly to an input-output scenario that is a finite
record of related input and output signals, a diagnostic scenario is a timed
sequence of symptoms from the same family (i.e. over the same measurable
output signal).

If one associates to the underlying measurable variable the symptoms de-
fined thereon as qualitative variables, then a diagnostic scenario can be re-
garded as a qualitative-valued output signal of the system.

Root cause. In model-based fault detection and diagnosis one usually
assigns a so called root cause to every faulty mode of the system, the variation
of which acts as a cause of the fault. Root causes are most often not measurable
and have discrete value (indicator variables) thus a root cause is described as
an unmeasurable disturbance in a process model for diagnosis.

Preventive action. If a fault occurs it is usually possible to take actions
in the initial phase of the transient to avoid serious consequences or to try to
drive the system back to its original normal state. Dedicated input signal(s)
serve for this purpose separately for each fault (identified by its root cause)
where the preventive action is a prescribed scenario for the manipulated input
signal.

3.3 Prediction for Diagnosis

In model-based diagnosis the model of the process system is assumed to de-
scribe the behaviour of the system in each of the considered faulty mode. This
is a quite severe requirement, thus one usually narrows the domain of the
model by assuming that the ”normal” operating mode of the system
is steady-state and only the initial deviations are considered.

The model is used for predicting diagnostic scenarios of the measured
output variables for at least two purposes related to diagnosis.

• Fault isolation
When the occurrence of a fault is detected the first task is to find out which
is the root cause of the fault, i.e. to isolate the fault. For this task one uses
the observed diagnostic scenario and tries to match it with the generated
diagnostic scenarios by using every possible root cause. The generation of
the possible diagnostic scenarios can be done by model-based prediction
using the dynamic model of the process system.

• Testing preventive actions
Having isolated the fault, i.e. assigned a root cause to the observed diag-
nostic scenario, one has to determine the course of actions to remedy the
situation. This can be done by performing ”what-if” type prediction by
using the dynamic model of the process system and applying every pos-
sible action. The selection of the suitable preventive action can then be
performed by comparing the final state of the system with the ”normal”
operation.
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Because process systems are highly nonlinear and their model can be dras-
tically changed depending on the actual fault mode, simple reduced models
are needed separately for every (root cause, diagnostic scenario, preventive
action) triplets.

3.4 External Diagnostic Knowledge: HAZOP and FMEA

HAZOP. Hazard and operability study (HAZOP), formalized by Imperial
of Chemical Industries (ICI) at the end of the 1960s, is the most widely used
methodology for hazard identification. HAZOP [13] is a systematic procedure
for determining the causes of process deviations from normal behaviour and
their consequences. The main idea behind HAZOP is that hazards in process
plants arise as a result of deviations from normal operating conditions. A
group of experts systematically identifies every conceivable deviations in a
plant, finds all the possible abnormal causes, and the adverse consequences of
that deviation. During the HAZOP these deviations are systematically ana-
lyzed by applying guide expressions (for example None, More of, Less of,
Part of, More than, Other, . . . ) in conjunction with process variables
and parameters. Driven by these guide words, failure causes and their effects
are listed in a systematical way.

The results of the HAZOP analysis are collected in a HAZOP result table.
A HAZOP analysis table (the structure of which is shown in Table 1) de-
fines logical (static) cause-consequence relationships between symptoms and
potential causes that can be traced to root causes of the deviation. These can
be used for fault detection and isolation.

Guide Devia- Action
word tion Possible causes Consequences required

Fresh NONE (1) Feed hopper empty � loss of production a) feed the hopper
Feed � shift in GSD b) check the hopper
Flow � decrease in recycle

and output
(2) Feed chute blockage � Covered by (1) c) check the hopper

...
...

...
...

Symptoms : Guide word
�

Deviation
Root Cause : Possible causes
Action : Preventive actions
Scenario : Consequences

Table 1: An example of a HAZOP result table

FMEA. Fault mode and effect analysis (FMEA) [12] is a qualitative analysis
of hazard identification, universally applicable in a wide variety of industries.



474 E. Németh, R. Lakner, and K. M. Hangos

Its use in the process industries has been more limited with HAZOP as one
of the main contenders for the preferred hazard identification tool. FMEA is
a tabulation of each piece of equipment, noting the various modes by which
the equipment can fail, and the corresponding consequences (effects) of the
failures. FMEA focuses on individual components and their failure modes.
Thus, each failure mode is only considered once, and all of its effects and
controls are listed together. This allows a more accurate assessment of the
risk associated with each component failure

4 Multiscale Process Models and Model Reduction

In the case of large and/or complex systems, the use of a multiscale modelling
[9, 10] approach is recommended. The basis of multiscale modelling is to divide
a complex problem into a family of sub-problems that exist at different scales.
Multiscale models of a system can be organized along various scales depending
on the system and on the intended use of the model. Generally, we distinguish
between the length, time and detail scales, but diagnosis requires having a
multiscale model organized along the time scale [18].

A multiscale model is then an ordered collection of partial models or sub-
models that are connected by a so-called integration framework. The serial,
subroutine-like organization [9], i.e. the simplest way the integration frame-
work integrates the partial models, is used in this paper.

4.1 Multiscale Modelling: the Length and Time Scales

Traditionally, multiscale models are built along the length scale because the
mechanisms that determine a model based on first engineering principles drive
the model building. The levels of the multiscale model are found if one looks
on the separation of the characteristic scales, if such separation exists.

In the case of process plant we generally distinguish at least the molecular
level for chemical kinetics, particle level when applicable, operating unit level
and plant level along the length scale. We try, if possible, build a multiscale
model where we can solve the sub-models or partial models separately, i.e.
when the sub-models are integrated using a serial integration framework [9].
This means that the solution of a sub-model in a lower level is used for de-
veloping so called correlations, i.e. static algebraic relationships between the
variables on the higher level. In a recent PhD thesis [11] the kernel functions
of the granule bed level model are found by solving the equations of motion
for a set of granules in the bed.

For model-based diagnosis, however, we focus on the time-dependent be-
haviour of our system, thus we have to arrange our sub-models along the time
scale. Fortunately, the characteristic times that define the levels along the
time scale in a multiscale model usually follow the separation of characteristic
lengths, i.e. the characteristic time belonging to a particular length scale level
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is an order of magnitude larger than that belonging to a higher length level.
For example, the characteristic time on a molecular level is in the order of
seconds, while the characteristic time constants on an operating unit level are
in the order of minutes (when particle level does not exist).

For a particular process system one can construct a so-called scale-map
that relates the identified time and length scales and connects them to the
mechanisms considered in the model. Fig. 3 shows an example of a scale-map
constructed for a granulator circuit.

It will be important for model-based diagnosis of multiscale process sys-
tems, that each variable is associated to a level in a model hier-
archy that is determined by the mechanism or governing conservation bal-
ance/constitutive equation the particular variable is assigned to (i.e. is de-
termined by). One can refine the scale-map of a multiscale process system by
denoting regions associated to particular variables that are important from the
viewpoint of diagnosis. Such a refined scale-map is called the model struc-
ture map. An example of such a refined scale-map is seen in Fig. 6.

4.2 Diagnosis of Multiscale Models: the Model Reduction Problem

As we have already seen in subsection 3.2, there are at least three character-
istic variables that determine a diagnostic scenario: a root cause, a symptom
variable that generates the symptoms and an input signal that is used for
implementing preventive actions. Associated to these variables we have the
following levels of interest along a scale, usually along the length scale:

• root cause level,
• target or symptom level,
• control or preventive action level.

Of course, the ideal case is when all the above three levels coincide, that is we
select symptom variables and preventive actions from the same level as the
root cause level is on.

Now we are ready to formulate the variant of the problem statement of
model reduction applicable for multiscale models as follows.

Given:

1. a multiscale process model that is able to describe the system’s behaviour
under the considered faulty model (generated by the set of root causes),

2. a nominal steady-state operating point,
3. a (root cause, symptom variable, preventive action) triplet,
4. reference input-output behaviour : in the form of diagnostic scenarios with

and without preventive actions,
5. simplicity index : the number of state variables and linearity.
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Determine:

• a reduced process model on a single time scale level that is linear and
generates the given reference behaviour for fault effect prediction.

Conceptual steps of the solution:

(1) Determine the target level on the time scale from the variables present in
the symptoms of interest. If there is more than one time-level correspond-
ing to the target length level, choose the one that corresponds to the given
diagnostic scenarios.

(2) Select the dynamic conservation balances from the target, cause and con-
trol levels from the length scale that belong to the target level on the
time scale. These together with their constitutive equations form the scale-
reduced nonlinear model.

(3) Linearize the above nonlinear model (possibly in a DAE form) around the
given nominal steady-state operating point. Form a standard linear state-
space model by substituting the algebraic equations into the differential
ones. The obtained model determines the structure of the scale-reduced
linear model.

(4) Determine the model parameters of the above obtained scale-reduced lin-
ear model by standard parameter estimation methods either by using real
measured data or by using data generated by simulation.

5 Case Study: Model Reduction of a Granule Bed for
Diagnosis

The proposed model reduction method is demonstrated on a commercial fer-
tilizer granulation drum example, where the granulator system is used for the
production of mono-ammonium and di-ammonium phosphate (MAP, DAP)
[4].

Granulator Dryer

Crusher

Screens �������

�	�
��	������	�

���	�����	

��	�����	

��
������	��	�������	�

����������	

���	��

Fig. 2: A flowsheet of a granulator circuit
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A typical granulation plant consists of a granulator drum, a dryer, screens
and a crusher arranged in a granulator circuit as seen in Fig. 2. Details of the
technology and the equipments involved are found elsewhere (see e.g. [2, 4]).

5.1 Scale-Map of a Granulator Circuit

If one considers the characteristic lengths or times of the various phenomena
taking part in a granulator circuit then 5 scale levels can be distinguished
along both scales as shown in Fig. 3 (adopted from [10]). The lower 4 levels
belong to the granulator drum itself, where we concentrate our attention.

Fig. 3: Scale-map of a granulator circuit

It is important to observe that there is a close relationship between the
characteristic length and time scales of a granulator circuit. Generally, the
higher the level of length is the higher level of characteristic times corresponds
to it. An exception to this rule is the time-length scale relationship of the levels
Granule bed, Vessel and Granule. Here the mechanisms characterizing the
granules have a direct substantial influence on the dynamic behaviour of the
variables on higher levels.

There is a clear separation of the characteristic lengths with a little over-
lap between the Particle and Granule levels. This enables to separate the
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overall model into sub-models along the time scale, this is how the multiscale
modelling of granulation processes takes place (see e.g. [11])

5.2 Granulator Drum: Levels, Variables and Mechanisms

As seen in Fig. 3 there are four scales or levels that can be identified in a
granulator drum as follows.

• Vessel level: the whole vessel
Variables : concentrations in the granules (pseudo-solid) and in the binder
(liquid) phases
Mechanisms : convection and phase transfer

• Granule bed level: slice of the vessel
Variables : particle size distribution (PSD) of granules, component : a size
range
Mechanism: phase transfer, particle (solids) convection

• Granule level: a single granule
Variables : size and composition of the granules together with their posi-
tion in time
Mechanisms : reaction, agglomeration, breakage, growth, coupled with col-
lisions with each other
and with the mechanical parts of the equipment

• Particle level: particle and binder
Variables : size, shape and porosity of the particles
Mechanisms : inter-granule processes, adsorption-desorption, reaction on
the surface etc.

Variables and symptoms of the granulator drum model
Table 2 shows the identified variables and symptoms of the drum based on
the results of the HAZOP studies.

Based on the scale-map of the granulator drum one can associate the
symptoms and their variables listed in Table 2 to the levels of the multiscale
model seen in Fig. 4.

5.3 Granulator Drum: the Model Structure Map

In order to develop the refined scale-map of the granulator drum to be used
for identifying the target, cause and control levels on the time scale we need
to have the detailed model of the system. The following model equations are
considered adopted from [2].
Component mass balances in the liquid phase:
the change of MAP, DAP and H2O mass over time

dmMAP

dt
= FMAP

L,in + FMAP
SL − FMAP

L,out − c1 · rMAP/DAP (2)
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Variable Symptom

Binder Flow NONE
Binder Flow MORE
Binder Flow LESS
Binder Viscosity MORE
Binder Viscosity LESS
Solids Feed PSD NARROW
Solids Feed PSD WIDE
Solids Feed Flow NONE
Solids Feed Flow MORE
Solids Feed Flow LESS
Solids Feed Size MORE
Solids Feed Size LESS
Granulator Drum Speed NONE
Granulator Drum Speed MORE
Granulator Drum Speed LESS
Granulator Exit Distribution NARROW
Granulator Exit Distribution WIDE
Granulator Exit Flow NONE
Granulator Exit Flow MORE
Granulator Exit Flow LESS
Granulator Exit Size MORE
Granulator Exit Size LESS

Table 2: The list of variables and symptoms connected to the drum

dmDAP

dt
= FDAPL,in + FDAPSL − FDAPL,out − ṁcrystals + c2 · rMAP/DAP (3)

dmH2O

dt
= FH2O

L,in + (1− ϕ)FH2O
SL − FH2O

L,out − F evapH2O
(4)

Overall mass balances

• liquid phase:

dML

dt
= FL,in + FSL + FNH3 − F evapH2O

− FL,out − ṁcrystals (5)

• solid phase:

dMS(i)
dt

= FS,in(i) + FMAP,sol
SL (i) + FDAP,solSL (i)− FS,out(i) +

+ ṁcrystals(i) +Agg(i) + Lay(i)−Break(i) (6)
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Fig. 4: The hierarchy of symptoms

Energy balances

• liquid phase:

dEL
dt

= EL,in + ESL + ENH3 + c2 ·ΔH · rMAP/DAP − EevapH2O
− EL,out −

− ELS − ṁcrystals ·ΔHcrys (7)

• solid phase:

dES
dt

= ES,in + EMAP,sol
SL + EDAP,solSL − ES,out(i) + ELS + Ecrystals (8)

In the above equations the notation in Table 3 is used:

State-space model It is seen from the above model equations that Eqs. (2)
- (8) form the state equations of the state-space model with the state vector

x =
[
mMAP mDAP mH2O ML MS(i) EL ES

]T (9)

The input variables (to be manipulated or to have as disturbances) are

u = [ FMAP
SL FDAPSL FNH3

SL FH2O
SL FMAP,sol

SL FDAP,solSL

TSL FMAP
SL FDAPSL FNH3

SL FH2O
SL TL,in

FNH3 TNH3 FS,in(i) TS,in TH2O
S,in ]T
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Variable Meaning

mMAP mass of MAP in the liquid phase

FMAP
L,in flow of MAP into the liquid phase

FMAP
SL flow of MAP solution with the slurry stream

FMAP
L,out flow of MAP with the liquid phase out of the drum section
c1 coefficient of reaction rate
rMAP/DAP reaction rate between ammonia and MAP
mDAP mass of DAP in the liquid phase

FDAP
L,in flow of DAP into the liquid phase

FDAP
SL flow of DAP solution with the slurry stream

FDAP
L,out flow of DAP with the liquid phase out of the drum section
ṁcrystals mass rate of crystallization onto existing solid phase
c2 coefficient of reaction rate
mH2O mass of H2O in the liquid phase

F
H2O

L,in flow of H2O into the liquid phase

ϕ flash fraction of water from slurry flow as it exits the spray nozzle

F
H2O

SL flow of H2O solution with the slurry stream

F
H2O

L,out flow of H2O with the liquid phase out of the drum section

F evap
H2O flow of water evaporated

ML mass holdup of liquid phase
FL,in flow of liquid phase in the drum section
FSL flow of slurry into the liquid phase section
FNH3 flow of ammonia uptaken into the liquid phase
FL,out flow of liquid phase out of the drum section
MS(i) mass holdup of the solids in each particle size interval i
FS,in(i) flow of solids in each particle size interval i flowing in each section

FMAP,sol
SL (i) flow of MAP crystals from the slurry stream deposited onto each size range i

FDAP,sol
SL (i) flow of DAP crystals from the slurry stream deposited onto each size range i
ṁcrystals(i) mass rate of crystallization into each size range i onto existing solid phase
FS,out(i) flow of solids in each particle size interval i flowing out of each section
Agg(i) birth and death agglomeration in each particle size interval i
Lay(i) layering in each particle size interval i
Break(i) breakage into each particle size interval i
EL energy content in the liquid phase
EL,in energy content in flow of liquid phase in the drum section
ESL energy content in flow of slurry into the liquid phase section
ENH3 energy content in flow of ammonia uptaken into the liquid phase
ΔH heat of reaction
Eevap

H2O energy content in flow of water evaporated

EL,out energy content in flow of liquid phase in the drum section
ELS energy transferred between the liquid phase and the solid phase
ΔHcrys heat of crystallization
ES energy content in the solids
ES,in energy content in total flow of solids in each drum section

EMAP,sol
SL energy content in flow of MAP crystals in the slurry stream

EDAP,sol
SL energy content in flow of DAP crystals in the slurry stream

ES,out(i) energy content in total flow of solids out of each drum section
Ecrystals energy content of crystallization

Table 3: The list of variables in the granulator drum model

The structure of the state equations can be described by the following
linear qualitative differential equation:

ẋ = Ax+Bu

where the matrices A and B are structure matrices with either fixed 0 or
nonzero & elements as follows:
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 & & & 0 0
& & & & & & 0
0 0 & & & & 0
& & & & & & 0
& & 0 & & & 0
& & & & & & &
& & 0 & & & &

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

& 0 0 0 0 0 0 & 0 0 0 0 & 0 0 0 0
0 & 0 0 0 0 0 0 & 0 0 0 & 0 0 0 0
0 0 0 & 0 0 & 0 0 0 & 0 0 0 0 0 0
& & & & 0 0 & & & & & 0 & 0 0 0 0
0 0 0 0 & & 0 0 0 0 0 0 0 0 & 0 0
& & & & 0 0 & & & & & & & & 0 0 0
0 0 0 0 & & & 0 0 0 0 0 0 0 & & &

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

The above structure shows that the overall model is highly coupled in the
general case, with little chance to apply black-box model reduction techniques
(such as modred in MATLAB).

5.4 Fault Scenarios and Time-Scale Separation

In order to investigate the possibilities of time-scale separation and model
reduction, and their dependence on the root cause of the faults, two fault
scenarios have been considered:

(A)the increase in the binder flow (”Binder flow=MORE”) that acts primarily
on the overall mass and energy variables,

(B) the increase in the width of the particle size density (”PSD=WIDE”) that
acts on every mechanisms and balance considered,

In both cases we have waited till a steady-state operating condition developed
and then issued a step-like disturbance in the relevant variable to the system
and observed the transient responses.

(A) Binder Flow – MORE the total amount of ammonia feed (FNH3) to
the granulator section is increased at t = 700s. The simulation result can be
seen in Fig. 5.

A time-scale separation between the masses of the particle size classes (slow
variables) and the rest of the state variables can be observed in Fig. 5 with
at least an order of magnitude difference in the dominant time constant. This
is in a good agreement with our engineering expectations that the increase
in the NH3 feed acts primarily on the overall mass and energy variables and
only a slower, secondary effect is expected in the PSD variables on the granule
level.

Time-scale separation Based on the step-response scenarios above, we can
construct a refined scale-map of the drum model (see in Fig. 6) by indicating
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Fig. 5: Simulation result of the increased binder flow rate
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the time-scale of the change in the particular variables effected by the root
cause of increasing the binder flowrate.

(B) Solids Feed PSD – WIDE the particle size distribution of solids
feed to the granulator is made wider (smaller size particles) at t = 700s. The
Figure 7 shows the transient of the state variables.

There is no time-scale separation in this case.

6 Conclusions

A systematic approach is proposed in this paper in order to reduce the number
of state variables and parameters of multiscale process models for prediction-
based fault detection and diagnosis. The method requires a well-documented
multiscale process model that is able to describe all considered faulty modes
of the system. In addition, the list of faulty modes together with their char-
acteristic time scales and dominant mechanisms are needed that drive the
reduction procedure applied for each faulty mode.

The proposed model structure-driven reduction method applies a refined
scale-map, the so called model structure map to form the scale-reduced non-
linear model of the system that only contains the dynamic balance equations
on the target time scale(s) with all the other dynamic equations reduced by
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Fig. 7: Simulation result of the PSD changing of the granulator solids feed
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steady-state assumptions. Thereafter local linearization is applied to obtain
the final reduced model.

The resulting set of reduced models preserves the engineering meaning of
the remaining state variables, while the number of state variables and para-
meters is decreased significantly.

The proposed model can only be applied if the following conditions hold.

• The system is in the initial phase of a fault.
• The normal operating point is steady-state.
• There is a time-scale separation in the set of dynamic conservation balance

equations to be reduced.

The proposed method is illustrated on the example of a granule bed in a
granulator circuit producing mono-ammonium and di-ammonium phosphate.
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Summary. Scalar (heat or mass) transfer in the macroscale is the result of mi-
croscale diffusion and convection effects. Our fundamental hypothesis is that heat
or mass transfer behavior can be synthesized from the behavior of a single, instan-
taneous, point source of heat or mass, and that understanding this behavior leads
to an improved understanding of transport. Based on this concept, a simulation
technique has been developed that involves the tracking of trajectories of heat or
mass markers in a flow field, and then applying simple statistical methods to extract
information about the macroscopic temperature or concentration field. The motion
of these scalar markers is decomposed into a convection part, which is calculated
using macroscopic flow simulations, and a diffusion part, which is simulated using
a mesoscopic Monte-Carlo approach. Three different cases where this simulation
methodology can been applied are presented, each one with different physics and
with distinct applications. The first case is about heat transfer without convection
(applied to the determination of the effective thermal conductivity of a nanocom-
posite material), the second case is the case of heat transfer in laminar flow (with
applications in microfluidics), and the third case is the case of heat transfer with
strong convective effects (applied to turbulent heat transport). The combination of
a macroscopic and a mesoscopic simulation applied here allows the simulation of
heat or mass transfer in cases that other conventional approaches are not feasible,
and it allows the investigation of the physics of heat or mas transport in a more
natural way.

1 Introduction

The transport of a passive scalar (either heat or mass) involves multiple length
and time scales. For example, heat transfer at the macroscale is a manifes-
tation of molecular level phenomena, such as transfer of heat at the phonon
level, and of macroscale phenomena, such as convection due to flow structures
that characterize the flow. A fully multiscale approach to scalar transport
would, thus, have to incorporate the full spectrum of scales starting from the
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molecular level and ending at the time and length scale of the process. Even
though such an approach is truly fundamental, it is unlikely to be necessary
(or feasible) for most cases of scalar transfer.

Methodologies for the multiscale simulation of flow have been recently
reviewed [1], with a focus on particle methods, such as vortex and probability
density function methods. The present paper focuses on the development of
a simulation methodology specifically for heat or mass transport in different
situations, where different physics may dominate.

The methodology is in essence a Lagrangian one, in which the trajectories
of scalar (heat or mass) markers are followed in a flow field that is simu-
lated with a macroscopic simulation. For example, the behavior of a heated
plane can be synthesized by the behavior of an infinite number of continuous
sources of heat that cover the plane [2, 3]. A practical advantage of this type
of simulations is that one can reveal interesting physics about the transport
process, in addition to the fact that simulations can be conducted in cases
where it is difficult to apply other conventional methods. The fundamental
concept is that heat or mass transport in the macroscale is the result of the
behavior of single, instantaneous sources of heat or mass. If this behavior is
known, then macroscopic transport properties can be obtained. The simula-
tion technique that has been developed based on this hypothesis (our group
refers to it as the Lagrangian scalar tracking method, LST) involves the track-
ing of trajectories of heat or mass markers in a flow field, and the application
of statistical methods to extract information about the macroscopic temper-
ature or concentration field. The motion of these scalar markers that carry
with them either heat or a substance is decomposed into a convection part,
which is calculated using macroscopic flow simulations, and a diffusion part,
which is simulated using a mesoscopic Monte-Carlo approach. The molecular
diffusion part depends on the properties of the fluid medium (i.e., the Prandtl
or Schmidt number). The macroscopic flow simulation is preferably a direct
method, such as a direct numerical simulation for turbulent flows (see among
others [4] - [13]) or a lattice Boltzmann method (see among others [14] - [18]),
and it provides the convection part of the transport.

In this paper we will examine the LST methodology in three different cases
(with three distinct physical applications) and will emphasize the problems
that can arise due to the differences in scale. First is the case of heat transfer
without convection. The specific physical problem is that of heat transfer in
Carbon nanotube composites, where it has been found experimentally that
the effective thermal conductivity is much lower than what is theoretically
expected. Second is the case of heat transfer in laminar, steady state flow.
The physical problem involves heat convection in microchannels that can have
walls lined up with Carbon nanotubes, or other high thermal conductivity
material. The third case is that of heat or mass transfer from the wall in
turbulent flow – a case in which the flow field is changing rapidly.
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2 Numerical Methodology

The basic assumption is that the macroscopic heat or mass transfer is the
result of the behavior of an infinite number of continuous sources of heat or
mass. Since it is not numerically feasible to simulate an infinite number of
sources, a grid of sources that are located at the hot surface within the com-
putational domain is employed. Scalar markers are released into the simulated
flow field from these grid points at one instant of the simulation. The con-
vective part of the marker motion is calculated using the fluid velocity V at
the particle position and integrating in time. The time integration can be a
simple Euler scheme [19] or an Adams-Bashforth scheme [20], depending on
the complexity of the flow field. The molecular part of the motion is simulated
by imposing a random jump at the end of each convection step. This random
jump takes values from a normal probability density function that has a zero
mean and a standard deviation that depends on the fluid properties. For
example, in the case of laminar flow, the equation of motion for each marker
in each space direction x is given by

xpt+1 = xpt + V p
t Δt + Zσ (1)

where xpt+1is the displacement of the marker relative to its source at time
t + 1, V p

t is the velocity of the fluid in the x direction at position xpt , Δt is
the time step, Z is a random number following a standard normal distribution
and σ is the standard deviation of the normal distribution that describes the
Brownian motion of the markers. The molecular motion is calculated based
on Einstein’s [21] theory for the dispersion of particles with Brownian motion,
which relates the rate of dispersion to the molecular diffusivity D

d(xp)2

dt
= 2D (2)

for the case of dispersion in the direction x. Therefore, the standard devi-
ation of the distribution that describes the molecular motion is given by
σ =

√
2D Δt. Effects of the fluid properties in the transport process can

be incorporated into the calculations by modifying σ.
There are different types of numerical error associated with the stochas-

tic tracking of markers, when the tracking is done as described above. First,
there is error associated with the calculation of the velocity field. This error
depends on the numerical method utilized in the macroscopic scale for the
simulation of the flow. Using direct numerical simulations (DNS) for cases of
rather complicated flows (e.g., turbulence) can minimize this type of error.
However, for steady laminar flows, or slowly developing flows, other conven-
tional numerical methodologies can work well. Second is the error associated
with the calculation of the velocity of the fluid at a marker location. Since
the tracking of particles is an off-lattice numerical technique, it would be a
rare occasion to find a marker situated on a lattice point of the numerical grid
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used for the velocity field simulations. In our experience, simple interpolation
schemes (linear or second order interpolation) work well for laminar flows.
However, for turbulent flows, this error can be significant, and higher order in-
terpolation schemes are necessary. Yeung and Pope [22] and Balachandar and
Maxey [23] have examined this issue for homogeneous isotropic turbulence,
and Kontomaris et al. [20] have investigated the accuracy of various interpo-
lation schemes for anisotropic turbulent flows simulated with pseudospectral
methods. The third source of error is the time integration scheme for the
equation of marker motion. It is related to the error of the Euler method or
the Adams-Bashforth method, and it can be controlled by reducing the time
step of the simulations. Finally, there is error associated with the number of
markers used in the calculations. Our early work with turbulent flows, which
utilized databases that tracked 16, 129 markers per run, addressed this issue
by examining the statistics of the marker trajectories (i.e., the mean position
and the mean dispersion in different directions) by repeating the calculations
with half the markers ([3, 24]). More recently, Mitrovic and Papavassiliou [25]
obtained results with one order of magnitude more markers for each simulation
(145, 161 markers). That work showed that results of acceptable accuracy can
be obtained with the sample size of 16, 129 markers, but it also showed that
when more markers are tracked, the statistics that characterize the marker
trajectories become smoother.

The behavior of each one of the point sources of heat or mass is finally used
to synthesize the macroscopic scalar field, and to extract the Eulerian macro-
scopic parameters that characterize the transport process. The building block
for this synthesis is the joint and conditional probability density function, P1,
for a marker to be at a location −→x at time t given that it was released at
location −→x o at time to. This probability density function can be interpreted
physically as temperature or concentration, if the physical properties of the
fluid (density and heat capacity) are assumed to be independent of the loca-
tion in the domain and of the number of markers [26, 27]. For the case of an
instantaneous scalar source, this is the temperature or the concentration of a
puff of markers. Probability P1 is calculated by simply counting the number
of markers in bin-cells that cover the computational domain. By integrating
(or, in the discrete case, summing up) P1 from time to to a final time tf , the
behavior of a continuous source, represented by the probability function P2,
can be obtained, where

P2

(−→
xp = −→x −−→x o, tf | −→x o

)
=

tf∑
t=to

P1

(−→
xp, t | −→x o, to

)
(3)

The marker cloud emitted from this continuous source, called a plume, is
a series of instantaneous clouds, each of which is released at every time unit.
Simulations done for turbulent channel flow [28, 24, 29, 30], have shown very
good agreement between results obtained with LST and both experiments and
simulations.
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For the specific case of heat transfer in a channel, where heat is added
through the channel walls, the temperature profile can be synthesized using
a series of continuous line sources covering one (the bottom), or two walls of
the channel (both the top and the bottom). Heat flux added to the bottom
wall can be simulated by integrating P2 over the streamwise direction

T (xf , y) ≡
xf∑
x=xo

P2 (x− xo, y − yo, tf | −→x o)

=
xf∑
x=xo

tf∑
t=to

P1 (x− xo, y − yo, t | −→x o, to) (4)

When tf → ∞ and xf → ∞, Equation (4) provides the fully developed
temperature profile, T (y), in the channel.

Given the above discussion, the following questions may arise: What is the
smallest or highest diffusivity (or in other words the Prandtl, Pr, or Schmidt,
Sc, numbers) that can be simulated with such a method? How large should the
time step for the mesoscopic simulation (i.e., for the particle time-stepping)
be relative to the time step of the macroscopic simulation? How long should
the tracking last to safely assume that tf → ∞? What should the boundary
conditions be for the marker movement? How can one validate the LST sim-
ulation results? Responses to these questions will be given as specific cases of
LST are discussed in subsequent sections. However, some general comments
can be offered at this point.

In principal, the methodology is a Monte-Carlo approach for the determi-
nation of the probability density function that characterizes the trajectory of
a single scalar marker emitted instantaneously from a point source (Equation
3). A Monte-Carlo approach should also be employed at a higher level, one
that would include repetitions of each numerical experiment by generating
more than one realizations of the flow field. Of course, generating many flow
realizations for a computationally intensive type of flow might not always be
reasonable.

Regarding the range of Pr that can be simulated, there should not be a
limit. This is quite important, considering especially the case of turbulent flow,
where steep mean temperature gradients close to the wall do not allow the
simulation of high Pr fluids and large production of temperature fluctuations
in the center of channels does not allow the simulation of low Pr fluids. In
fact, Eulerian direct numerical simulations for anisotrpic turbulent flow have
to-date been accomplished only for 0.025 ≤ Pr ≤ 10 [31] - [34] and one case
of Pr = 54 [35]. For homogeneous isotropic turbulent flows, recent Eulerian
DNS have examined cases of higher Sc [36]. Brethouwer et al., [37] studied
the range of 0.04 ≤ Sc ≤ 144, and Yeung and coworkers [38] examined the
case of 0.125 ≤ Sc ≤ 64, and later on [39, 40] the case of Sc ≤ 1024. For Small
Pr (i.e., large D, and, thus, large molecular diffusion terms in Equation 1) one
would need to use appropriately small time steps. An empirical guideline for
the determination of the time step of the macroscopic and the mesoscopic
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simulation is to use comparable time steps. Regarding the duration of the
simulations, if the flow is constrained, the simulation can be run until the
puff is uniformly distributed across the computational domain. The boundary
conditions for the tracking are important, and will be discussed when we
examine the case of microfluidics. Chandrasekhar [41] has also explored the
statistics of mass tracers and Brownian motion, and his manuscript can be
used as a resource for developing LST simulations. Finally, regarding the
validation of the results, comparisons with experiments are the best tests.
However, comparisons with cases where theoretical results are available are
necessary, and can provide insights regarding the LST implementation for
each physical problem that needs to be simulated.

3 Conductive Transport – the Case of Composite
Materials

The exceptional physical properties of Carbon nanotubes (CNs) (e.g., the
tubes are known to exhibit very high thermal and electrical conductivity, to
possess very high tensile strength, and to have a large Young’s modulus [42])
promise the development of new applications and the synthesis of new mate-
rials. For multi-walled CNs, the thermal conductivity is about 3000 W/(K.m)
[43] and for single-walled CNs it is about 6000 W/(K.m) [44], values that make
them comparable to diamonds in room temperature conditions. Based on the
predictions of Maxwell’s formula [45] or of the simple “mixture law”, one would
expect CN composites with low conductivity polymers (i.e., conductivity less
than 0.5 W/mK) to demonstrate an effective conductivity tens of times higher
than the conductivity of the polymer matrix, even for 1.0wt% CN. However,
experimental evidence has shown that the addition of up to 2.0wt% of CNs
into industrial epoxy composites increases their thermal conductivity by up
to 125% [46]. The problem for the development of composite materials that
can have high thermal conductivities (a problem that was actually known
since 1941 but was not readily recognized to be relevant) is the Kapitza heat
resistance [47] that exists at the interfaces between different solids [48] and be-
tween solid and liquid in contact [49]. Since heat is transferred by phonons in
insulator solids, mismatch of phonon frequencies (acoustic mismatch) causes
this additional resistance that could be large even at room temperatures [50].

Molecular dynamics simulations have been applied to obtain a fundamen-
tal understanding of the Kapitza effect [51] - [54]. Non-equilibrium molecular
dynamics (NEMD) [55] for heat transfer between a liquid and a solid showed
that, at non-wetting conditions, the Kapitza resistance is about 20-30 times
higher than at wetting conditions. The value of Kapitza length can reach 50
molecular diameters (about∼17 nm). Studies for solid-solid interfaces [56] also
showed that thermal resistance of the composite is dominated by the Kapitza
resistance. The Kapitza resistance becomes a first order effect as the size of
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Fig. 1: A model of nanotube composite materials. Shown here is a realization of the
case of disordered nanotubes at a filling fraction 4% and L/D = 7.50. Hot (cold)
walkers enter the system on the surface x = 0 (x = 2b) and performed a random
walk in the matrix.

the high thermal conductivity enclosure in the composite becomes smaller
[57], which is specifically the case of CN composites.

Molecular dynamics are computationally expensive and typically can pro-
vide detailed information for a single CN in a composite. They can also pro-
vide an estimation of the value of the Katitza resistance. However, the LST
methodology has been applied to investigate the macroscopic effects of sev-
eral parameters (such as the CN dispersion pattern, the CN aspect ratio, the
CN volume fraction in the composite) on the effective thermal conductivity of
the composite, given the Kapitza resistance at the matrix-CN interface [58].
The algorithm is computationally efficient for calculating the effective thermal
conductivity in a Multiwall CN composite. Thermal markers were released in
a composite matrix material with finite thermal conductivity, which included
cylindrical enclosures of very high thermal conductivity (see Figure 1). The
heat markers moved only due to molecular diffusion (i.e., the convective term
in Equation 1 was zero). The probability that allowed a thermal marker to
enter a CN enclosure was proportional to the thermal resistance at the CN-
matrix interface. Once inside the CN, a marker was allowed to randomly move
to any location occupied by the CN, taking, thus, into account the fact that
the CN thermal conductivity is orders of magnitude larger than that of the
matrix material. Tomadakis and Sotirchos [59, 60] have used a similar algo-
rithm to investigate cylindrical enclosures with different properties than the
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Fig. 2: Simulation results compared to the analytical solution (Equation 5) for heat
transfer through a heat slab of width 2b. The computational domain is a cube with
1283 bins and 90,000 walkers released in the domain.

matrix material, but did not take thermal resistance into account for their
simulations.

In order to test the numerical approach for heat transfer without convec-
tion, it was first applied to the heating of a computational domain of side 2b
with isothermal boundaries and with constant heat flux; cases for which ana-
lytical solutions are available [45, 61]. There were no CNs in the solid phase
for these test runs. The simulations were tested with three different numbers
of walkers (10,000, 40,000 and 90,000), with three different numbers of bins
(643, 1283 and 2563) and with three different time increments (0.1, 0.25 and
0.5 in dimensionless units). The computational results agreed very well to the
analytical solutions (within 0.5%). Figure 2 shows the simulation results and
the analytical solution for the case of heat transfer from both sides of a slab
that is initially at temperature To, and whose sides change to temperature T1

at time t = 0. The analytical solution for this case is given as [61]

T1 − T

T1 − To
= 2

∞∑
n=0

(−1)n(
n+ 1

2

)
π

exp

[
−
(
n+

1
2

)2

π2Dt

b2

]
cos
[(

n +
1
2

)
πy

b

]
(5)

The same procedure was then used for composites. Considering the com-
putational time needed for each simulation and the computational errors in-
volved, it was found that using 90,000 walkers, a time increment of 0.25 and
1283 bins was sufficient.

In order to calculate a value of the effective thermal conductivity for the
composites, it is convenient to simulate the case of heat transfer with constant
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heat flux through the domain with hot and cold planes at the two sides of the
domain (at x = 0 and at x = 2b, respectively). This can be done by having
“hot” walkers enter the domain at x = 0 and “cold” walkers (carrying negative
energy) enter at x = 2b. The theoretical solution of this problem at steady
state is a linear temperature profile whose slope is inversely proportional to
the medium conductivity. This time-independent result is trivial to fit, in
contrast with the changing exponential profiles of a time-dependent problem.

The assumption that a marker is distributed uniformly throughout the
space occupied by a CN, once the marker crosses into the CN, is the meso-
scopic result of the Brownian random movement of a thermal marker inside
a CN. In other words, the random Brownian phonon transfer inside the CN
appears as ballistic heat transport on the time scale for conduction in the ma-
trix material. If one wanted to simulate with Brownian movement the marker
motion once inside the CNs, a separate time step that would be several orders
of magnitude smaller than that used for the movement through the matrix
material would be necessary (recall that σ =

√
2D Δt). The determination of

the correct value of the probability that a marker has to bounce back into the
matrix (or back into the CN) when the random jump of the particle makes it
cross the matrix-CN (or the CN-matrix) interface is another issue where scale
considerations become important. The LST algorithm was developed so that
once a walker in the matrix reached the interface between the matrix and a
CN, the walker moved into the CN phase with a probability fm−CN , which
represented the thermal resistance of the interface (and it stayed at its pre-
vious position in the matrix with a probability (1− fm−CN). Similarly, once
a walker was inside a CN, the walker either re-distributed randomly within
the CN at the end of a time step (with a probability (1− fCN−m) ), or would
cross into the matrix phase with a probability fCN−m. Even though it was
assumed that the thermal resistance is the same for a heat walker traveling
from the matrix to a Carbon nanotube and from a Carbon nanotube to the
matrix phase, it was found that fm−CN �= fCN−m. The reason is that the
previous assumption (that of a uniform distribution of a marker once inside a
CN) removed a length scale from the problem (that of the length of the ther-
mal walker movement inside the CN). Therefore, the exit probability fCN−m
has to be weighted so that the flux of walkers into the CNs is equal to the flux
of the walkers exiting the CNs at thermal equilibrium. In order to maintain
equilibrium, the two probabilities must be related as

fCN−m = c
σAC
VC

fm−CN (6)

where Ac and Vc are the surface area and the volume of a nanotube, respec-
tively, σ is the standard deviation of the random jump in the matrix, and c
is a constant that depends on the shape of the high conductivity enclosures.
We now have recovered a length scale, Vc/Ac, in the problem. The value of
c can be found theoretically, or can be found computationally by conducting
numerical experiments at thermal equilibrium. According to the acoustic mis-



498 D. V. Papavassiliou

Fig. 3: Effective thermal conductivities of randomly-dispersed nanotube composites
as a function of the volume fraction of nanotubes at L/D=3.75. For each value of
thermal resistance and volume fraction of nanotubes, the thermal conductivity is the
average of three simulation runs with different initial nanotube random distributions
(Figure taken from Duong et al., 2005).

match theory [50], the average probability for transmission of phonons across
the interface into the dispersion, fm−CN , is given by

fm−CN =
4

ρ Cp Cm Rbd
(7)

where ' is the matrix density, Cp is the matrix specific heat, Cm is the velocity
of sound in the matrix, and Rbd is the thermal boundary resistance.

Figure 3 shows the effective thermal conductivities of randomly-dispersed
nanotube composites where the ratio of the nanotube length, L, over the nan-
otube diameter, D, is 3.75. When either the volume fraction of the nanotubes
increases or the thermal resistance decreases, walkers move from the matrix
into the CN easier. In addition, the walkers can move much faster inside a CN
than in the matrix due to its high thermal conduction. Hence the effective
thermal conductivity increases.

4 Convective Transport – the Case of Laminar Flow

The second case where the Lagrangian method has been applied is that of
heat transfer in laminar, steady state flow. The physical problem involves heat
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convection in microchannels that can have walls lined up with Carbon nan-
otubes, or other high thermal conductivity material. Understanding of heat or
mass transfer phenomena at the microscale (defined in this case as geometries
smaller than 1 mm) is important for the development of applications that
can take advantage of recent micro- and nano-technology advances. The main
issue for the study of flow and transport in this scale is that correlations that
apply in the macroscale do not necessarily apply in the microscale [62]. There
is a need to develop new appropriate correlations, as well as a need to develop
techniques for the investigation of phenomena in microfluidics.

The lattice Boltzmann method, LBM, efficiently links microscopic flow
phenomena to the macroscopic behavior of a fluid. It is a practical, easilly
parallelizable method that can be used for microfluidics as well as macroscopic
scale flows, and it has the additional advantage that it is effective for the
simulation of flows in complicated geometries (e.g., for flow in porous media
[16]). However, the simulation of scalar transfer with LBM is not as common or
as easy as the simulation for flow. Thermal LBM models have been developed,
initially for a narrow range of temperatures [63, 64]. Later on, models that
introduced a separate internal energy distribution function to calculate the
temperature field appeared in the literature [65] - [67].

The methodology suggested here is to combine an LBM (macroscopic level
simulation) with the tracking of scalar markers in the flow field (mesoscopic
level). A single simulation of the flow field can be used in conjunction with
several mesoscopic simulations, each one of which corresponds to different
types of fluids and/or to different thermal boundary conditions [19]. This
case can illustrate some of the errors involved in the numerical methodology,
as well as the development of a thermal LBM method for heat transfer in
microfluidics.

The specific LBM algorithm used in this work applies a multi-speed model
consisting of a 3-dimensional 15-component velocity (this configuration of the
model is known as D3Q15, see [68]). The simulation grid consists of nx, ny
and nz nodes in the x, y and z directions, respectively. Each fluid node con-
sists of discrete packets of fluid with density, ', represented by a particle
distribution function, fi, (i = 0, .., 14). These fifteen components of the distri-
bution function belong to one of three types, the rest position (i = 0), class I
(i = 1, . . . , 6), and class II (i = 7, . . . , 14) type components. Initially, the den-
sity at a fluid node is distributed according to the ratio 16 : 8 : 1 among the
three types of components. Periodic boundary conditions are applied at the
non-wall faces. The no-slip velocity condition at the walls is simulated by a
bounce-back scheme [69, 70] with Ziegler’s suggestion [71] of shifting the wall
boundary into the fluid by one-half mesh unit in order to achieve second-order
accurate results.

The particle distribution function, fi, is calculated as a function of space
and time from the discretized Boltzmann equation [72]

fi (−→x +−→e iΔt, t +Δt) = fi (−→x , t) +Ωi (−→x , t) + ffi (8)
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where −→e i is the velocity in the 15 directions of the numerical grid, t and
Δt are the time and the time step, Ωi is the collision operator and ffi is
the component of the forcing factor. The terms on the right hand side of
Equation (8) constitute the three fractional steps of the lattice Boltzmann
algorithm, namely the streaming, collision and forcing steps. At time t, during
the streaming step the rest component (f0) remains at the center of the face-
centered cubic lattice, while the 6 class I components (fi, i = 1, . . . , 6) move to
the nearest neighboring nodes and the 8 class II components (fi, i = 7, . . . , 14)
move along the diagonal towards the 8 corners of the cubic lattice. Boundary
conditions are then applied to restore the fluid moving towards the wall nodes
by bouncing it back in the opposite direction (no-slip). In the second step,
collision rules are applied to relax the fluid distribution function on a node
after a collision with fluid from neighboring nodes back to equilibrium. This
step is calculated according to the Bhatnagar, Gross and Krook approximation
[73, 74]

Ωi (−→x , t) = −1
τ

(fi − feqi ) (9)

In the above equation, τ is the relaxation time calculated as τ = 3ν + 0.5,
where ν is the kinematic viscosity of the fluid. The equilibrium distribution
functions are derived from the conservation equations of mass and momentum,
and are given below for rest (i = 0), class I (i = 1, . . . , 6) and class II (i =
7, . . . , 14) components:

f
(eq)
0 = '

[
1
8
−
−→
U 2

3

]

f
(I,eq)
i = '

[
1
8

+
1
3

(−→e i · −→U )+
1
2

(−→e i · −→U )2

− 1
6
−→
U 2

]
(10)

f
(I,eq)
i = '

[
1
64

+
1
24

(−→e i · −→U )+
1
16

(−→e i · −→U )2

− 1
48
−→
U 2

]
In the third fractional step, a pressure drop or forcing factor is added to the

fluid components moving in the positive streamwise direction and subtracted
from those moving in the negative x direction . We used the method described
by Noble [75] to calculate the fraction of the forcing factor applied on each of
the fifteen components in our 3D grid.

After the completion of the three fractional steps shown in Equation (8) the
macroscopic properties of the fluid, such as density and velocity, are calculated
from the conservation equations of mass and momentum, respectively, given
by

' =
14∑
i=0

fi (11)
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Fig. 4: Schematic of a channel with flow in the x direction and heat transfer between
a cold and a hot wall. The height of the channel is 2H.

'
−→
U =

14∑
i=0

fi
−→e i (12)

The velocity of the fluid at each fluid node is calculated by dividing Equa-
tion (12) with Equation (11). The simulations were carried out till steady
state velocity profiles were obtained throughout the domain.

In order to simulate the case of heat trasnfer in the flow field, the position
of all the markers that are released from the bottom wall of the channel is
tracked in time (see Figure 4 for a schematic of the physical situation). Their
convective and diffusive motion is tracked till their mean position in the y
direction reaches the center of the channel (H). This would ensure that the
markers are uniformly distributed throughout the height of the channel. Also,
the variance of this uniform distribution in the y direction should reach the
value 4H2/12.

An error analysis of the algorithm has been conducted to determine the
effects of the number of markers, the time step and the bin size on the sim-
ulation results [19]. The physical problems used for validation included the
heating of a semi-infinite solid whose surface is suddenly raised to a specified
temperature Tw and the problem of isoflux heat transfer between a hot and a
cold channel wall. The first problem has a known analytical solution that is
based on the error function. The temperature profile at small times is given
by T/|Tw| = erfc

(
y/
√

4Dt
)

[45]. However, this problem does not include
flow, and in that respect is similar to the problem discussed in the previous
section. The only difference is that one needs to introduce a weight function,
w(t), which weights the contributions of each puff to the final temperature of
a plume in a way such that the temperature at the surface of the slab is con-
stant through time (i.e., the number of thermal markers at the surcase remains
constant). Since the particle movement in the x direction was not important,
the puffs and plumes propagated only in the y direction. The weight functions
were then calculated for all t at the slab surface, and the temperature was
given by
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T (y) =
∫ tf

to

P1 (y, t− to|to)w(t) dt (13)

In the case of isoflux heat transfer between a hot and a cold channel wall
(Figure 4), the bottom wall of the channel was continuously heated and the top
wall was continuously cooled at the same rate. Theoretically, the temperature
profile is expected to be a straight line, with maximum and minimum temper-
atures at the hot and cold plates, respectively. At the center, the temperature
is expected to be the mean of the maximum and the minimum temperatures.
Assuming that the channel is symmetric, the temperature profile Tisoflux can
be calculated numerically from the temperature calculated in Equation (4)
using the relation

Tisoflux (xf , y) = T (xf , y)− T (xf , 2H − y) (14)

A scaling issue that requires special attention in these cases is to make
sure that the ratio of σ (the standard deviation of the probability distribution
that describes the molecular movement of the markers) to the width of the
channel is small (smaller than 10−2). When σ is larger, peculiar results might
be obtained, such as an increase of the relative error with increasing the
number of heat markers.

Temperature profiles calculated for a microchannel are presented in Figure
5. The simulated microchannel is heated only from the bottom wall with a
step change of the wall heat flux. It has dimensions (1.5× 0.5× 0.5)10−3 m3,
pressure drop 1000 Pa/m and Reynolds number Re = 18 . The temperature
is non-dimensionalized as follows

T+(x, y) =
T (x, y)
T ∗

= −Pr
T (x, y)

(dT/dy+)w
(15)

where (dT/dy+)w is the slope of the temperature at the wall of the channel
and y+ = u∗y/ν (u∗ is the bulk velocity of the fluid). Different Pr fluids were
simulated covering the range of liquid metals (Pr = 0.1), gases (Pr = 1)
and water (Pr = 6). Cases A, C and E had the same constant heat flux
from the bottom wall, while cases B, D, and F had higher heat flux at a
specific location xs in order to simulate the case where the bottom wall of
the channel has an area of high thermal conductivity. The strength of the
plume in this location was claculated to be 10 times higher than the strength
of the sources in the rest of the channel wall, corresponding to a material
that has 0.9wt % Carbon nanotubes. The temperature profile increased with
Prandtl number at all x locations in the channel. The temperature exhibits a
maximum value at the wall, where heat markers are released, and decreases
with the distance from that wall and is significant till half channel height,
H . The temperature profiles shown in Figure 5 are upstream of the location
that has higher thermal conductivity. When nanotubes are dispersed on the
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Fig. 5: Effect of backscattering of heat markers on the dimensionless temperature
profile in a microchannel. The temperature is shown at x/H=0.139 upstream from
the location of the high thermal conductivity zone on the microchannel wall. Cases
A,B have Pr=0.1, Cases C,D have Pr=1, and Cases E,F have Pr=6.

wall downstream from the location of step change in wall heat flux (xs > xo),
the temperature at and around the location of nanotubes increases. Both
the temperature profile and slope at the wall increase with the presence of
nanotubes. The dimensionless temperature, T+, which is proportional to the
ratio of these quantities (see Equation 15), increases. Figure 5 shows, therefore,
that back-scattering of temperature can be important in microfluidics, even
though an Eulerian computation might not accurately simulate an effect like
this. The temperature profiles can be further used to calculate other heat
transfer parameters, like the heat transfer coefficient as a function of the Pr
[76].

Finally, in the case of microfluidics applications, special attention needs
to be paid to the Knudsen number of the flow. If it falls in the first regime
of fluid rarefaction, where Kn < 10−3 [77], then the Navier-Stokes equation
and no-slip boundary conditions are applicable for that flow. In our numerical
simulations, the flow field in the microscale geometries has a Knudsen number
value on the order of 10−6, and thus the Navier-Stokes equation and no-slip
boundary conditions are inherently applicable.
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5 Convective Transport – the Case of Turbulent
Transport

The third case where we employ LST is that of heat or mass transfer from the
wall in turbulent flow – a case in which the flow field is changing rapidly. The
fluid velocity is calculated using a direct numerical simulation (DNS), which
determines the convective part of the scalar marker motion. The molecular
contribution of the motion is simulated as in the previous two cases, with the
important difference that the simulations of flow and of molecular diffusion
are run simultaneously. During each time step of the turbulence DNS, a mole-
cular diffusion step has to be completed. However, it is advisable (for passive
scalars) to incorporate diffusion steps corresponding to different diffusivities
during the same velocity step, simulating, thus, several types of fluids with
the same velocity field. These simulations can provide results for cases where
the macroscopic solution of the heat or mass balance equation is not feasible
(for example for very high values of the Schmidt number). In terms of physics,
questions that have been a matter of debate between turbulence theorists over
a long time can be answered, such as the dependence of turbulent transport
on the Schmidt number close to a solid surface.

Currently, Eulerian simulations are limited in the range of Pr or Sc that
they can cover because, in order to resolve all the scales of motion and tem-
perature [78], the number of grid points has to be analogous to Pr3/2Re9/4,
where Re is the Reynolds number of the flow. An increase of Pr by one order
of magnitude means an increase of the number of grid points by about thirty
times. Large eddy simulation (LES) has also been used to study turbulent
mass transfer for Schmidt numbers in the range 1 ≤ Sc ≤ 200 [79]. An impor-
tant issue with LES for anisotropic turbulence is that different scales of motion
contribute to heat transfer at different distances from the wall, and that these
scales are Pr dependent [80] making the determination of the spectrum cutoff
point difficult.

The particular DNS algorithm used in our group is based on the
pseudospectral method of Lyons et al. [5]. It can simulate fully developed
turbulent flow in an infinite channel for Poiseuille and for plane Couette flow.
The Navier-Stokes equations are integrated in time using the fractional step
method introduced by Orszag and Kells [81] with the pressure field correction
suggested by Marcus [82]. The fluid is considered to be incompressible and
Newtonian. In the case of a channel, the flow is driven by a constant mean
pressure gradient, and for the case of plane Couette flow it is driven by the
shear motion of the two moving walls of the channel [8, 30]. The Reynolds
number, defined with the centerline mean velocity and the half-height of the
channel for the Poiseuille flow channel, and defined with half the velocity
difference between the two walls and the half channel height for the Couette
flow channel, was 2660 for both. For the Poiseuille channel, the simulation was
conducted on a 128× 65× 128 grid in x, y, z, and the dimensions of the com-
putational box were 4πH × 2H × 2πH , where H = 150 in wall units. (In wall
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turbulence, quantities are commonly made dimensionless with the so called
viscous scales, i.e., the friction wall velocity u∗ =

√
τw/' where τw is the

shear stress at the wall, the friciton length scale l∗ = ν
u∗ , and the friction time

scale t∗ = l∗
u∗ . Dimensionless quantities obtained with such scaling are called

viscous or wall quantities. All quantities in this section are in wall units.) For
the Couette flow channel, the simulation was conducted on a 256× 65× 128
grid, and the dimensions of the computational box were 8πH × 2H × 2πH ,
where H = 150. The flow is regarded as periodic in the x and z directions,
with the periodicity lengths equal to the dimensions of the computational
box in these directions. The time step for the calculations of the hydrody-
namic field and the Lagrangian tracking was Δt = 0.25 and Δt = 0.25 for
the Poiseuille and Couette channels, respectively. Both simulations were first
allowed to reach a stationary state before the heat markers were released.

We focus here only on results that relate to the calculation of the heat
transfer coefficient. Other heat transfer parameters can be found in references
from our group cited herein. The heat transfer coefficient, h, is found in nu-
merous research papers and technical textbooks to be given in the form of a
correlation for the Nusselt number

Nu = ARebPrc (16)

where A, b, c are constants that depend on the type of flow (e.g., flow in a pipe
or a channel, flow around an immersed object, etc.). This type of correlation
originates from applications of dimensional analysis in transport phenomena.
However, experimental data have demonstrated scatter around this correla-
tion, implying that there is another functional relationship between the di-
mensionless numbers, Nu = f(Re, Pr), (see Churchill’s insightful discussion
about this issue [83]). Regarding Pr dependence, there is a controversy in the
literature among investigators who argue for a heat transfer coefficient that
goes as h ∼ Pr−3/4 and those who argue for h ∼ Pr−2/3. This argument has
its origin in the fundamental issue of the asymptotic behavior of the eddy
diffusivity, Ec, very close to the wall. If Ec ∼ y3 as y → 0 (see Monin and
Yaglom’s monograph [84]), then h ∼ Pr−2/3 but if Ec ∼ y4 as y → 0 (see
[85]), then h ∼ Pr−3/4. To further complicate the issue, there is experimen-
tal evidence that the exponent is neither of the above; instead it has a value
between –3/4 and –2/3 [86] and there is theoretical analysis that accounts
for the turbulence space-time correlation close to the solid-fluid interface and
for the diffusive dumping of the temperature fluctuations, and which suggests
that the exponent should be –7/10 [87].

Our LST results are obtained with a consistent methodology over a wide
range of Pr, and have produced predictive correlations for the heat transfer
coefficient as a function of Pr for both Poiseuille [29] and plane Couette flow
[88]. Figures 6 and 7 show the LST obtained data for the channel flow and the
plane Couette flow, respectively. The results of Figure 6 can be summarized
for channel flow and for 0.01 < Pr < 50000 as follows [29]:
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Fig. 6: Heat transfer coefficient as a function of Pr for turbulent channel flow. The
values have been obtained with a consistent methodology for all Pr. (Figure taken
from Mitrovic et al., 2004).

Fig. 7: Heat transfer coefficient as a function of Pr for turbulent Couette flow. The
values have been obtained using a DNS in conjunction with the Lagrangian tracking
of scalar markers in the flow field for all Pr. (Figure taken from Le and Papavassiliou,
2006).

h+ = 0.0465 Pr−0.510 for Pr ≤ 10

h+ = 0.0835 Pr−0.690 for Pr ≥ 100 (17)

and
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h+ =
0.0835 Pr−0.690[
1 +
(

25.85
Pr

)2]0.090 for all Pr

For Couette flow, the corresponding correlations were found to be (based
on simulations for 0.1 < Pr < 15000 [88])

h+ = 0.0634 Pr−0.532 for Pr ≤ 10

h+ = 0.0997 Pr−0.690 for Pr ≥ 100 (18)

and

h+ =
0.0997 Pr−0.690[
1 +
(

17.56
Pr

)]0.158 for all Pr

An important finding is that the heat transfer coefficients for plane Couette
flow show the same trend as for Poiseuille channel flow. The exponential values
(constant c in Eqn. 16) are the same or close to those in Poiseuille channel
flow, but the pre-exponential factors are higher. The interpretation of this
observation is that the mechanism of turbulent transport from the wall is the
same in both cases, i.e., only a part of the spectrum (the smaller wavenumbers
part) of the turbulent velocity field contributes to turbulent transport from
the wall, and this part depends on the fluid Pr (as Pr increases, a smaller part
of the spectrum contributes, see [80, 25]). However, the turbulent velocity field
is different in Couette and Poiseuille flow, with turbulence intensities being
higher in Couette flow, and this fact manifests itself as a larger pre-exponential
factor.

6 Summary and Conclusions

The three case studies discussed here illustrate that the combination of macro-
scopic and mesoscopic simulations, as described above, can allow the simula-
tion of heat or mass transport in cases that other conventional techniques are
not feasible, and that it can provide a natural way of investigating the physics
of scalar transport. For the case of transport without convection, the effective
thermal conductivity of composites with nanotubes dispersed in a continuous
matrix can be computed over a wide range of thermal resistance, CN vol-
ume fraction and nanotube aspect ratio. The proposed algorithm is efficient
in that it removes the need to perform random walks within the CNs. Scale
effects need to be taken into account carefully for the numerical treatment
of the CN-matrix interface. For the case of laminar flow and microfluidics, a
methodology for conducting thermal lattice Boltzmann simulations applica-
ble to passive scalar transport was implemented. Scale effects are important
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when the bounce back boundary condition for the thermal markers is im-
plemented, and the molecular diffusion random jumps should be at least two
orders of magnitude smaller than the dominant length scale of the microchan-
nel. Important physics, such as the Pr dependence of the scalar field and the
back-scattering of heat can be investigated. For the case of turbulent flow,
the proposed numerical methodology can allow the conduction of simulations
that are not currently trivial to pursue with other methods, in addition to
providing significant insights to the mechanism of turbulent heat transfer.

This manuscript would be incomplete without refering to other work that
has utilized the same or very similar methodology for the investigation of
problems that are different than those described here. These problems include
the simulation of heat transfer across the interface between a turbulent gas and
a turbulent liquid [89, 90], the simulation of mass transfer in low Re fluids and
non-Cartesian geometries for bubble dissolution in the presence of surfactants
[91], and the simulation of the effects of the flow on chemical reactions [92].
Finally, Mito and Hanratty [27] have studied the behavior of markers released
at different elevations in a turbulent flow channel in order to calculate the time
scales associated with the marker movement. Their goal was to use these time
scales to solve a modified Langevin equation for the prediction of the velocity
field along the trajectories of the markers, and subsequently use that velocity
field to predict the marker trajectories (in other words, they substituted the
DNS velocity in an LST procedure with the velocity field resulting from the
solution of the Langevin equation).
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Summary. A methodology is outlined for the efficient solution of dynamic opti-
mization problems when the system evolution is described by computationally ex-
pensive timestepper-based models. The computational requirements issue is circum-
vented by extending the notion of in situ adaptive tabulation to stochastic systems.
Conditions are outlined that allow unbiased estimation of the mapping gradient ma-
trix and, subsequently, expressions to compute the ellipsoid of attraction are derived.
The proposed approach is applied towards the solution of two representative dynamic
optimization problems, (a) a bistable reacting system describing catalytic oxidation
of CO and, (b) a homogeneous chemically reacting system describing dimerization of
a monomer. In both cases, tabulation resulted in significant reduction in the solution
time of the optimization problem.

1 Introduction

In recent years, there has been an increased focus towards atomistic/particle
simulation techniques for process modeling in place of traditional continuum
or mean-field approaches. The advantage of using atomistic models is their
capability to describe phenomena whose characteristic length and time scales
are much smaller than those for which the continuum approximation holds.
Simulation methods such as Molecular Dynamics (MD), kinetic Monte-Carlo
(kMC), Lattice-Boltzmann (LB) etc., have been utilized to model homoge-
neous reacting systems [7, 8], biological systems [23, 26, 29], microstructure
evolution during thin-film growth [22], crack propagation [31] and fluid flow
[21] to name a few. However, issues related to noise and high computational
requirements have limited their applicability for process optimization and con-
trol.

Dynamic optimization or open-loop optimal control has been the focus of
extensive research in recent years. The objective is to search for optimal input
trajectories for dynamic plants which optimize certain performance measures.
With the availability of detailed process models, considerable research effort is
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being directed towards efficient solution of the corresponding optimal control
problems [34, 35, 5, 15]. We are interested in the efficient solution of optimal
control problems for processes whose evolution is described by microscopic
simulations. Apart from the issue of noise inherent to microscopic simulations,
such optimization problems are also subject to evolution constraints which
are unavailable in closed form. The standard approach for the solution of
such problems is to compute the objective functional as a “black-box”, and
employ direct search algorithms such as Hooke-Jeeves, Nelder-Mead, pattern
search etc., to compute the optimal control trajectory [28, 2]. An alternative
methodology for global optimization for nonlinear programs constrained by
“nonfactorable” constraints (constraints defined by a computational model for
which no explicit analytical representation is available) was proposed in [24].
However, the above approaches are inefficient if the computation of the cost
functional (or the black-box simulation) is expensive, which is usually the case
for atomistic simulations. There are a number of approaches specially designed
for problems where computation of the objective function is expensive [3, 14],
but most of them have been employed for noise-free systems which limits their
applicability for the current problem.

Motivated by the above, we present an approach that addresses the issue
of computational requirements during process optimization when the available
process model is in the form of black-box timestepper. The approach employs
tabulation of process data within a database, which is constructed during the
solution of the dynamic optimization problem using situ adaptive tabulation
(ISAT) method. Since ISAT tabulates the process data and process sensitivi-
ties during the simulations, it is computationally less demanding than direct
tabulation since only the realizable region, which is the region of the parame-
ter space traversed during the computations, is tabulated and which is usually
a small subset of the whole state space. The critical issue of the computation
of process sensitivities is addressed through the use of finite differences with
common random numbers and conditions are outlined that allow their unbi-
ased estimation. Subsequently, standard search algorithms can be employed
for the solution of the optimization problem. We present two applications
of the proposed approach in the context of a bistable reacting system and
a reversible dimerization process. For the former case, we compute optimal
time-varying profiles of the manipulated input which transforms the state of
the system from one stationary state to another. For the latter case, we com-
pute optimal time-varying profiles of the manipulated input such that output
concentrations of the desired products are close to the set-point. We observe
that incorporation of ISAT resulted in computational savings by two orders
of magnitude.

The manuscript is organized as follows. In the next section, we formulate
the dynamic optimization problem for processes whose evolution is described
by black-box timesteppers. Subsequently, we describe the ISAT algorithm and
derivative estimation using finite difference with common random numbers
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which allows the extension of ISAT for stochastic systems. We conclude with
the application of ISAT algorithm in the context of two illustrative examples.

2 Problem Formulation

We investigate the issue of dynamic optimization problem formulation for a
class of systems described by the following discrete-time description [6]:

X(ti+1) = Π(X(ti), δti, ω; θi)
δti = ti+1 − ti

(1)

where X(ti+1) and X(ti) ∈ Ω1 ⊂ IRn are the vector of states of the system
at time instants ti+1 and ti, respectively, ti+1, ti ∈ [0 T ], θi ∈ Ω1 ⊂ IRp is
the control input vector which is constant for t ∈ (ti ti+1] and ω is a random
walk defined over some measurable space. Most of dynamic systems, contin-
uous or discrete, can be expressed in the form given by Eq. 1 when only an
input-output relationship is required. For example, spatially distributed par-
abolic partial differential equations (PDEs) arising frequently while modeling
transport-reaction processes assume the above form where the right-hand side
(RHS) is obtained from the appropriate spatial and temporal discretization of
the PDE. For systems which are modeled using atomistic simulations, such as
kMC, the RHS represents the corresponding evolution rule. The function Π(·)
in this case is fundamentally different from the one obtained by discretizing
PDEs as it is unavailable in closed-form. The latter systems, for which the
function Π(·) is a “black-box”, are the primary motivation of the current work.
We assume the following smoothness assumption with respect to parameters
for the process X(ti):

Assumption 2.1 The stochastic process X(ti,θ,x) with X(0,θ,x) = x de-
fined over the probability space [Ω,Σ, Pθ] is twice continuously differentiable
with respect to θ ∈ Θ and x ∈ IRn for all ω ∈ Ω with probability one.

We are interested in computing an optimal time-varying profile of the con-
trol input, θ∗(t), such that a particular goal for the averaged process dynamics
is realized. Such profile can be obtained from the solution of the following dy-
namic optimization problem:

min
θ(t)

∫ tf

0

Q(E(X), θ) dt+W(|E(X(tf ))− X̄(tf )|)

s.t.
X(ti+1) = Π(X(ti), δti, ω; θi), δti = ti+1 − ti

gd(X, θ) ≤ 0

(2)

where Q is a scalar cost function,W is an appropriate final-time penalty func-
tion, and gd denotes the set of inequality constraints on state and manipulated
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variables. Discretizing the time interval [0, tf ] into N sub-intervals and assum-
ing θ(t) to be piecewise constant during each sub-interval, we can obtain a
finite-dimensional approximation to the above dynamic optimization problem.
However, the equality constraints cannot be handled explicitly during opti-
mization due to their unavailability in closed-form. The standard approach for
the solution of the above optimization problem is to compute the objective
functional as a black-box during optimization and employ derivative-free opti-
mization algorithms such as Nelder-Mead, Hooke-Jeeves, pattern search [16],
etc. to compute θ∗(t). However, if the computation of the objective functional
is expensive, which requires the simulation of the timestepper for the period
[0, tf ], the solution time required may become prohibitive. To address this is-
sue, we extend the applicability of ISAT to accomplish efficient simulation of
the stochastic timestepper, resulting in efficient solution of the optimization
problem.

3 In Situ Adaptive Tabulation

The in-situ adaptive tabulation (ISAT) scheme was originally developed for
deterministic systems in the context of efficient implementation of combustion
chemistry [25]. In this section, a brief overview of the original algorithm is
provided (for details refer to [25, 33]). Consider a dynamically evolving process
with the following state-space description:

ẋ = f(x,u) = f(φ) (3)

where x ∈ Ω1 ⊂ IRn is the vector of state variables and u ∈ Ω2 ⊂ IRp

is the vector of control variables; The vector φ is defined as φ = [x u]T ,
φ ∈ Ω = Ω1 × Ω2. We define R(φ0) to be a nonlinear integral operator
representing the evolution of the system from initial state φ0 at time t0 to state
φ(t0 +τ) = R(φ0) at time t0 +τ (the time-step, τ , will be henceforth referred
as ISAT-reporting horizon). To reduce computational costs it is desired to
approximate R(φq) due to a “nearby” (in a sense that will become clear
later) state φq, based on the knowledge of {φ0,R}. One way to address this
issue is to tabulate a large number of doublets {φ,R(φ)} regularly spanning
the whole realizable region Ω into a database (an (n+ p)-dimensional mesh),
and subsequently interpolate within this database to estimate R(φq). The
interpolation error that is incurred can be controlled through refining the
mesh. However, the generation of the database, which is usually done in a
pre-processing phase, can become cumbersome if the dimensionality of state-
space (i.e. Ω) is large.

We, define the accessed-region, Ωa (Ωa ⊂ Ω), as the set of all states φ that
occur in the calculation. A crucial observation is that the accessed region is
much smaller than the realizable region. Exploiting this fact, ISAT constructs
the database online and hence tabulates only the accessed region, Ωa. More-
over, to control the interpolation errors, the mapping gradient matrix is also
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computed (and tabulated) which is defined as:

Aij(φ) ≡ ∂Ri(φ)
∂φj

(4)

Consider a tabulated triplet {φp,R(φp),A(φp)}. A linear interpolation for
R(φq) can be obtained as:

R(φq) ≈Rl(φq) ≡R(φ0) + δRl

δRl ≡ A(φp)δφ +O(| δφ |2), δφ = φq − φp
(5)

The error induced due to the interpolation can be analyzed as follows.
Assume φp and φq are such that | R(φq) −R(φp) |≤ εtol. It follows from
above that:

δφTAT (φp)A(φp)δφ ≤ ε2tol (6)

Eq.6 defines a hyper-ellipsoid (referred as Ellipsoid of Attraction, EOA) cen-
tered at φp with principle axes given by elements of the diagonal matrix Σ

such that QTΣQ is the singular value decomposition of A. Now given any
query φq, if there exist a tabulated φp such that Eq.5 is valid, the error due to
interpolation will be less than εtol. If such a φp is not found in the database,
direct integration of Eq.3 is performed and stored in the database.

The matrix A(φ) can be related to sensitivity coefficients. The first-order
sensitivity coefficients with respect to the initial conditions are defined as:

Bij(φ0, t) ≡
∂φi(t)
∂φj0

(7)

From the above, it can be seen that

A(φ0) = B(φ0, τ ). (8)

ISAT is implemented in practice using a binary tree. Ideally, once a query
point, φq, is generated, one would like to determine φ0 that is closest to
φq for interpolation purposes. However, a complete database search for φ0

could be expensive, especially if the database size is large. To circumvent this
problem, the database is organized as a binary tree comprising of leafs and
nodes. Each node contains the information regarding a convex region that is
likely to be spanned by the corresponding leafs, which, in turn, contain the
record comprising of φ0, R(φ0), A(φ0), Q and σ. The convex region contained
within each node is characterized by a vector v and scalar a such that leafs
pertaining to sub-region vTφ < a are on the left and leafs corresponding to
sub-region vTφ > a are on the right. The division into a number of convex
regions allows efficient search of the point within the database which most
likely to be nearest to the query point.

When the database is probed with a query (φq), three distinct possibilities
may arise:
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1. φq lies within EOA of φ0. In this case, presented in Fig. 1a, the corre-
sponding integral map based on interpolation around φ0 (Eq. 5) is re-
turned.

2. φq lies outside EOA of φ0; R(φq) is computed through simulation and
post simulation it is observed that |R(φq)−Rl(φq)| < εtol. In this case,
presented in Fig. 1b, the EOA around φ0 is grown to include φq; the
calculated R(φq) is returned.

3. φq lies outside EOA of φ0; R(φq) is computed through simulation and
post simulation it is observed that |R(φq)−Rl(φq)| > εtol. In this case,
presented in Fig. 1c, the database is augmented by a record for φq and
the original leaf, φ0 is replaced by a node. The records for φ0 and φq are
stored as left and right leafs, respectively, of the new node; the calculated
R(φq) is returned.

φqφ0 

φ0

φq

φ0 
 
φq

  
φ0

φ0

      φq

a) b) 

c)

vφ=a vφ=a 

Fig. 1: Three possibilities that will arise once the ISAT database is probed with a
query. a) φq lies within EOA of φ0. b) φq lies outside EOA of φ0, but |R(φq) −
Rl(φq)| < εtol. c) φq lies outside EOA of φ0, and |R(φq)−Rl(φq)| > εtol.

In contrast to deterministic black-box systems, the problem of derivative
estimation for stochastic black-box systems is complex due to the issues of bias
and variance. For example, finite difference approximations cannot be directly
employed in Eq.7 to obtain first-order sensitivity matrix. An extensive amount
of literature is available addressing this issue; important techniques include Fi-
nite Difference/Finite Difference with Common Random Numbers (FD/FDC)
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[18, 36, 9, 4], Infinitesimal Perturbation Analysis (IPA) [17, 12, 13, 36, 30] and
Likelihood Ratio estimation (LR) [27, 10, 11, 17]. In our implementation of
stochastic-ISAT, FDC was employed for derivative estimation. In the following
subsection we discuss sufficient conditions for unbiasedness and finite-variance
in derivative estimation using FDC.

3.1 FDC Derivative Estimation and EOA

Consider a stochastic process X(t,θ), X ∈ IRn θ ∈ Θ ⊂ IRm defined over
a probability space (Ω,Σ, Pθ) and let X(t,θ, ω) | t ≥ 0, ω ∈ Ω denote a
sample path. For the ease of notation we assume n = m = 1 for the rest of

the discussion. Let X ′(t, θ0) be the derivative
∂X(t, θ)θ=θ0

∂θ
for some θ0 ∈ Θ,

assuming it exists. FD and FDC estimates of the derivative X ′(t, θ0) are
defined as follows:

X̄ ′,FD(t, θ0) =
1
N

N∑
i=1

X ′,FDi (t, θ0)

X ′,FDi (t, θ0) =
X(t, θ0 + δθ, ω′)−X(t, θ0, ω)

δθ

(9)

X̄ ′,FDC(t, θ0) =
1
N

N∑
i=1

X ′,FDCi (t, θ0)

X ′,FDCi (t, θ0) =
X(t, θ0 + δθ, ω)−X(t, θ0, ω)

δθ

(10)

An immediate issue arising due to the above definitions is the appropriate
choice of N and δθ that would guarantee satisfactory unbiasedness and ac-
curacy of the derivative estimates. To make these concepts more precise, we
define the following loss function [18]:

Definition 1. The loss function associated with a derivative estimator
X̄ ′(t, θ0) based on N samples is defined as:

RN = E[X̄ ′(t, θ0)−X ′(t, θ0)]2 = V AR(X̄ ′(t, θ0)) +B2
N

BN = E[X̄ ′(t, θ0)]−X ′(t, θ0)
(11)

where the first term denotes the variance of the derivative estimators and the
second term denotes the bias. Also the convergence rate is said to be O(f(N))
if RN ∈ O(f(N)).

For the variance of FD and FDC estimators, we state the following result from
[9]:

Theorem 1. Suppose that X(t, θ, ω) is described by Eq.1 and assumption 2.1
holds, then for θ0 ∈ Θ, V AR[X(t, θ0 + δθ, ω′)−X(t, θ0 + δθ, ω)] is
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(i) O(1) if ω and ω′ are independent.
(ii) O(δθ2), if ω = ω′.

Theorem 1 states that variance of FD derivative estimators tends to infinity
as δθ → 0. However, using FDC the variance can be made vanishingly small.
Next, we state the following theorem from [18] to establish the convergence
of FDC estimates:

Theorem 2. Suppose that assumption 2.1 holds and Ψ(ω) defined as

Ψ(ω) =
{

supθ∈Θ | X̄ ′(θ, ω) |, if ω ∈ Ω;
0 otherwise,

is such that Ψ(ω) ≤ Γ (ω) for some function Γ : Ω → IR. If Γ (ω) satisfies∫
Ω

[Γ (ω)]2 dP (ω) <∞, then

RFDCN = σ2
FDC/N + [X ′′(ξ+)δθ/4]2 (12)

where θ0 ≤ ξ+ ≤ θ0 + δθ. As a consequence, the convergence rate of FDC
estimates is O(N−1/2) provided that δθ ∈ O(N−1/2). In the limit δθ → 0, the
bias also vanishes.

Combination of theorems 1 and 2 forms the theoretical rationale behind the
computation of derivatives based on finite differences with common random
numbers. From the simulation point of view, FDC can be implemented by
resetting the random seed of the random number generator while evaluating
X(t, θ0 + δθ, ω) and X(t, θ0, ω).

We now formally define the EOA for systems governed by equations of the
form Eq.1:

Definition 2. Let X(t,α,x), X(·) ∈ IRn be a stochastic process governed by
Eq.1 such that X(0,α,x) = x and let G : IRn × IRp → IRn×(n+p) be the first
order sensitivity matrix defined as:

G =
[
∂X
∂x

∂X
∂α

]
. (13)

Then the state z′ = [x′ α′]T , z ∈ IRn+p lies within the Ellipsoid of Attraction
of z = [x α]T if:

(z′ − z)TGTG(z′ − z) ≤ ε2tol (14)

In the next section, we present two applications of the above scheme when the
underlying dynamical system is modeled by a timestepper based description.

4 Applications

We initially consider a kinetic model describing CO oxidation by O2 on a
catalytic surface [1]. The model involves Langmuir adsorption for CO, disso-
ciative adsorption of O2 and second-order surface reaction to produce CO2,
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which desorbs instantaneously. The overall reaction can be summarized as
A + 1/2B2 → AB, where A, B and C represent CO, O and CO2, respec-
tively. The mean-field relationship between the surface coverage of A and B,
denoted as θA and θB respectively, and adsorption, desorption and surface
reaction rates are obtained as [1]:

dθA/dt = α(1 − θA − θB)− γθA − 4krθAθB
dθB/dt = 2β(1− θA − θB)2 − 4krθAθB,

(15)

where α, β, γ and kr denote the adsorption rate of A and B, desorption rate
of A and surface reaction rate, respectively. The system has been reported to
exhibit multiple steady-states for a range of values of β [1]. In the absence
of mean-field equations, the stochastic simulation algorithm (SSA) [7] can be
employed to obtain the profiles of θA(t) and θB(t). SSA samples the underly-
ing chemical master equation and provides unbiased realizations of the system
which converge to the mean-field solution when the number of particles em-
ployed during simulation tends to infinity. SSA proceeds, given X(t) to be
the state of the system at any time instant t, by choosing exactly one of the
events, j, to occur between t and t + dt with a probability proportional to
their current propensity functions, aj, and then jumping forward in time by
an interval, δt, during which exactly no event occurs, given by:

δt =
− ln(r)
a0(x)

, a0(x) =
M∑
j=1

aj(x) (16)

The above probabilistic description of the system is equivalent to a timestep-
per, and we employ the tabulation scheme presented in the previous section
for the solution of the following constrained dynamic optimization problem
[1]:

min
β(t)

= F (β(t))

F =
∫ NT

0

(β(t)− βss)
2(1− 0.3e−t)T

N∑
i=1

δ(t− iT ) dt+

50[1− e−R(|θA(tf )−θA,ss,f |−ε)e−R(|θB(tf )−θB,ss,f |−ε)]
s.t.,

θA(t = 0) = θA,ss,i, θB(t = 0) = θB,ss,i

(17)

The optimization objective is to compute an optimal adsorption rate profile,
β(t), such that state of the system switches from an initial stable stationary
state, θss,i, to another stable stationary state, θss,f , in time tf = NT , travers-
ing an unstable stationary state, θss,u (see Table 1 for the values of relevant
parameters). The constraints for the optimization problem arise from the (un-
available in closed form) dynamic evolution rule (SSA in the present case).
To solve the optimization problem, the interval [0, tf ] was parameterized into
N sub-intervals and with a piecewise-constant variation of the manipulated
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Table 1: CO oxidation process parameters

Parameter Value Steady states

kr 1.0 θA,ss,i .13944
α 1.6 θA,ss,u .67526
γ 0.04 θA,ss,f .97101

βss 3.5 θB,ss,i .63553
tf 5s θB,ss,u .11452

θB,ss,f .00137

input. For a given β(t), the underlying timestepper was integrated in time to
compute the objective functional F , so that the dynamic equality constraints
are implicitly satisfied during the optimization. A pattern-search algorithm
[32, 19, 20]† was employed for the solution of the above minimization prob-
lem. In order to reduce the computation of the timestepper, the ISAT algo-
rithm was used. Initially, the problem was solved for N = 10 and T = 0.5s
with an empty initial database. The database was concurrently built during
the solution of the optimization problem and necessary interpolations, when-
ever possible, were performed during the dynamic simulation of the system.
The ISAT reporting horizon was τ = 0.01s, so that the database was queried
500 times per objective functional evaluation. The optimal profile for the ma-
nipulated input is shown in Fig. 2 and the resulting optimal trajectories for
θA(t) and θB(t) are shown in Fig. 3. In Fig. 3 the profiles of θA(t) and θB(t)
are also compared with the ones resulting from exact SSA simulations, which
shows the accuracy of ISAT interpolations. In Fig. 4, the number of data-
base interpolations and the number of timestepper evaluations performed are
plotted as a function of objective functional evaluation during optimization.
It is observed that, initially the number of timestepper evaluations required
for the computation of F is high, which, however, continuously decreases as
the database size increases. A similar trend is observed for the wall-clock time
spent per F evaluation which is plotted in Fig. 5. The average number of
timestepper evaluations and CPU time-spent per F evaluation were 24 and
1.61s respectively, which is significantly lower than the corresponding values
without interpolation, namely, 500 and 24s, respectively (see also Table 2).
The CPU time reported are for a Pentium IV 3.01 GHz processor.

Subsequently, the optimization problem was solved with N = 50 and
T = 0.1s to obtain an improved temporal resolution in β(t). The database cre-
ated previously was employed during subsequent computations. The resulting
optimal profile for adsorption flux, β(t), is shown in Fig. 6 and the number
of database interpolations and number of timestepper evaluations performed
as a function of F evaluation during optimization are plotted in Fig. 7. The

† Software for pattern-search algorithm is available in Direct Search toolbox of
MATLAB.
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Fig. 2: Optimal control profile for N = 10.
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Fig. 3: Trajectories of θA(t) and θB(t) under the optimal profile of β(t); N = 10.

optimal control trajectory shows a noisy behavior which is a manifestation of
noisy behavior of the dynamic system resulting to performance deterioration
of pattern search algorithms. The advantage of preexisting database is clearly
evident in this case as the average number of timestepper evaluations per F
calculation reduced to 7 compared to 24 in the previous case. In Fig. 8, the
CPU time-spent per F evaluation is plotted, which is dominated by the time
spent during database retrieval. Efficient data mining schemes can further
decrease the required CPU time per iteration.

For the second application, we consider the following reaction sequence
which describes the formation of a stable “dimer” from a monomer [8]:
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Fig. 5: CPU time spent per objective function computation for N = 10.

S1
c1−→ 0

S1 + S1
c2−→ S2

S2
c3−→ S1 + S1

S2 +A
c4−→ S3

(18)

In the above scheme, the reversible dimerization of monomer S1 into an un-
stable dimer S2 is superimposed on the irreversible isomerization of S1. S2,
in turn, isomerizes into a stable form S3 in presence of an isomerizing agent
A. It is assumed that the A is present in excess. The assumed rate constants
and the initial conditions are:
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Fig. 7: Number of timestepper evaluations and database interpolations per objective
function computation for N = 50.

c1 = 1, c2 = 0.002, c3 = 0.5, c4 = 0.04a
X1(0) = 106, X2(0) = X3(0) = 0. (19)

where a is the concentration of A.
Fig. 9 presents the system evolution for the parameter values of Eq.19,

computed using SSA algorithm. It can be seen that the system dynamics ex-
hibits a two-timescale behavior with the concentration of S1 falling steeply in
the beginning, followed by a slow evolution. One of the major drawbacks while
simulating the above system using SSA algorithm is that the computational
requirements are considerably high. One can employ τ -leaping technique [8]
to accelerate computations, however we propose that the stochastic-ISAT al-
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Fig. 8: CPU time (in seconds) per objective function computation for N = 50.

gorithm may prove advantageous. We demonstrate this proposal through so-
lution of a representative optimization problem formulated as keeping the
concentration of stable dimer S3 close to a set-point at the end of process
operation tf , by minimally varying the concentration of the isomerizing agent
A. Mathematically the problem can be formulated as:
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Fig. 9: Concentration profiles of S1, S2 and S3 for nominal parameter values.
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min
A(t)

w1(X3(tf )− X̄3)2 + w2

∫ tf

0

A(t)2 dt

s.t.
X(ti+1) = Π(X(ti), δti, ω; θi)
δti = ti+1 − ti

(20)

where X̄3 is the set-point.
Fig. 10 presents the optimal trajectory of the concentration of the isomer-

izing agent A as obtained from the solution of the optimization problem of
Eq.20. The corresponding concentration profiles of the reacting species are
shown in Fig. 11. The set-point for concentration of S3 is also shown. It is
observed that by optimally varying the concentration of A, the concentration
of S3 can be stabilized to the desired set point. The figure also compares the
optimal trajectories of X1, X2 and X3 obtained from ISAT with those ob-
tained from SSA, which demonstrates the accuracy of ISAT interpolations. In
Figs. 12 and 13, the performance parameters of the ISAT algorithm, namely,
the number of time-steps evaluated using SSA, number of time-steps inter-
polated from the database and the solution time required per F evaluation,
are plotted for each iteration during optimization. Similarly to the previous
example, a marked reduction in timestepper evaluations and wall-clock time
is observed as the optimization progresses and wall-clock time is largely the
database retrieval time near the termination of the optimization. Fig. 13 also
presents the average CPU time required per iteration which is two orders of
magnitude less than the time required using SSA alone. Performance statistics
are summarized in Table 2.
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Fig. 10: Optimal profile of concentration of A obtained through the solution of
optimization problem of Eq.20.
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Fig. 11: Concentration profiles of S1, S2 and S3 under optimal variation of concen-
tration of A. Accuracy of ISAT interpolation (solid lines) is compared with SSA
simulations (solid circles).
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Fig. 12: Number of function evaluations and number of database interpolations as
a function of progress of optimization.

5 Conclusion

The current work outlines a methodology for the efficient solution of optimal
control problems arising in the context of systems described by computation-
ally expensive timestepper based models. The issue of computational require-
ments for the system evolution is circumvented by extending the notion of in
situ adaptive tabulation to stochastic systems. Conditions are outlined that
allow unbiased estimation of the mapping gradient matrix and, subsequently,
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Fig. 13: Time spent per iteration as a function of progress of optimization. The
dashed line represents average time spent per iteration.

Table 2: Optimization summary

Example 1 Timestepper Evaluation/Iteration 24
N = 10 Database interpolation/Iteration 476

CPU Time/Iteration 1.61 s
CPU Time required/Iteration without interpolation 24 s

Example 1 Timestepper Evaluation/Iteration 7
N = 50 Database interpolation/Iteration 493

CPU Time/Iteration 3.5 s
CPU Time required/Iteration without interpolation 24 s

Example 2 Timestepper Evaluation/Iteration 25
Database interpolation/Iteration 1475
CPU Time/Iteration 5.93 s
CPU Time required/Iteration without interpolation 304 s

CPU times are for a Pentium IV 3.02 GHz processor

expressions to compute the ellipsoid of attraction are derived. The proposed
approach was applied towards the solution of representative dynamic opti-
mization problems for a bistable reacting system describing catalytic oxidation
of CO and a homogeneous chemically reacting system describing dimerization
of a monomer. In both cases, tabulation resulted in significant reduction in
the solution time of the optimization problem.
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Summary. Efficient optimisation algorithms based on model reduction methods
are essential for the effective design of large-scale macroscopic, microscopic and
multiscale systems. A model reduction based optimization scheme for input/output
dynamic systems is presented. It is based on a multiple shooting discretization of the
dynamic constraints. The reduced optimization framework is developed by combin-
ing an Newton-Picard Method [51], which identifies the (typically) low-dimensional
slow dynamics of the (dissipative) model in each time subinterval of the multiple
shooting discretization, with reduced Hessian techniques for a second reduction to
the low-dimensional subspace of the control parameters. Optimal solutions are then
computed in an efficient way using only low-dimensional numerical approximations
of gradients and Hessians. We demonstrate the capabilities of this framework by
performing dynamic optimization using an explicit tubular reactor transient model
and by estimating kinetic parameters of a biochemical system whose dynamics are
given by a microscopic Monte Carlo simulator.

1 Introduction

Multi-scale models that effectively couple a range of time and length scales
are currently paid increasing attention, since they can significantly enhance
the understanding of complex processes, through increased insight on the in-
tricate inter-relationships between different system components e.g. [1, 2] and
can ultimately lead to products of high quality under stringent specifications.
Although the multi-scale concept is not new (e.g. boundary layer theory in
transport phenomena [3]), the increasing computational power available nowa-
days (faster processors and larger memory capacity) along with the use of par-
allel techniques [4, 5, 6] has made possible the construction of complex multi-
scale algorithms for a variety of applications (e.g. [7, 8, 9, 10, 11, 12, 13, 14]).
Multi-scale models can link the the molecular/mesoscale with the macroscale
for example kinetic Monte Carlo (kMC) with computational fluid dynamics
(CFD) codes e.g. [15, 16], or different molecular scales (DFT/quantum me-
chanics/molecular dynamics with kMC e.g [17]) or even macroscopic fine and
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coarse scales (e.g. reservoir models [4], multiscale partial differential equation
(PDE) models [18] etc).

Models of macroscopic systems (dynamic or steady state) are typically
based on systems of non-linear partial differential equations (PDEs) which
require numerical solution and after spatial discretization to computational
nodes lead to large scale systems. Microscopic models on the other hand are
based on the evolution of molecular states in time. Discrete microscopic models
(molecular dynamics, Monte Carlo) involve a large number of molecules in
order to cover only very small volumes or surfaces ( often in the order of
nm) at very small timesteps. Such models are therefore very computationally
expensive. Furthermore, if the dynamic transition to each molecular state
is only given by a number of evolution rules (e.g. transition probabilities,
intermolecular forces etc. which can be obtained from ab initio calculations
and quantum mechanics) the governing system equations will not be available
in closed form.

Efficient process design and product quality control require system optimi-
sation/ open-loop optimal control. While modern powerful computers make
the simulations of complex multi-scale models a feasible yet tedious com-
putational task, optimisation requires a large number of function evaluations,
making it extremely computationally costly. Hence, coarse-graining and model
reduction techniques seem to be the only way to make optimisation tasks ef-
ficient for multi-scale models. A number of approaches have been proposed
in the literature that can lead to efficient multiscale models amenable to op-
timisation at different levels/scales. A brief overview of recent optimisation
efforts for multiscale systems is given below. Adjoint analysis has been used as
an efficient optimisation method for large-scale computational fluid dynamic
systems [19, 20] (and references within) and also to compute reduced sensi-
tivity equations from large-scale fixed-point procedures [21]. In [18] adjoint
analysis is expanded to the optimisation of multi-scale dynamic PDE-based
systems using a number of regularisation techniques [22, 23] in order to tune
the optimisation algorithm and to target the objective function towards the
time and length scales of interest. The gradient is also appropriately precon-
ditioned by filtering the adjoint field, from which sensitivity information is
extracted, through the use of different brackets according to the scales that
need to be emphasized (or filtered-out). The resulting method results in a
significant speed-up of the optimisation procedure.

A multiscale analytical sensitivity approach (MASA) was proposed in
[24] based on homogenization theory. The sensitivity problem is constructed
through direct differentiation and asymptotic analysis is performed for each
scale. The sensitivities thus obtained for inelastic periodic composites models
are in general more accurate than the ones obtained by brute-force central
finite differences since they are significantly influenced by the size of the nu-
merical perturbation used. Large computational resources are still required
for the optimisation of large-scale systems.
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A multiscale optimisation approach was developed in [25] for the design
of bioremediation processes. The method is based on the application of Se-
quential Quadratic Programming (SQP) on multiscale PDE-based simulators
operating at 4 different mesh levels. Fine-level derivatives are efficiently cal-
culated at the coarser level and interpolated back to the fine level and this
procedure was termed v-cycling. The problem is first solved at the coarser
levels and the (interpolated) solution is used as an initial guess for the finer
levels, while derivatives are calculated either by direct numerical differentia-
tion or by v-cycling. The method achieves significant computational speed-up
for the optimisation of bioremediation systems. The development of dynamic
optimisation algorithms for multiscale PDE-based models is addressed in [26],
through Galerkin-based multiscale discreatization in wavelet coordinates. It-
erative solvers with simple Jacobi preconditioning are used for the arising
large-scale linear problems and a nested iteration scheme is constructed to
handle the different levels. For each level, a tailored iterative scheme is de-
rived based on the structure of the modelling equations.

The developments described above were focused in essence on multi-level
PDE-based systems. The following optimisation procedures were developed
for systems coupling microscopic/molecular with macroscopic scales.

A combination of funnelling algorithms for large-scale geometries and ter-
rain methods [28] for rough/noisey small-scale geometries was proposed in
[27] in order to efficiently obtain global optima of multi-scale systems. Fun-
nelling algorithms take advantage of the topological similarities between dif-
ferent large-scale systems and represent the topology of the system (e.g. an
energy surface) by simple exponential functions that have the same global
minima with the original system. The terrain methods are based on the idea
that local stationary points are connected along valleys and ridges. After lo-
cating one stationary point one can move to another following the eigendi-
rections of the connecting topology using predictor-corrector methods. Since
the terrain methods can deal with rugged (and potentially noisey) systems
the combined approach is promising for the optimisation of coupled macro-
scopic/microscopic multiscale systems.

An atomic scale finite element method equivalent is developed in [29] in
order to model atomic-scale systems, which uses atoms instead of computa-
tional nodes. The interactions between neighbouring atoms are represented
by appropriate stiffness matrices. The structure of the AFEM elements de-
pends on the atomic configuration of the system and is different for different
systems. It has been found to be faster than the conjugate gradient method
and can be directly combined with conventional finite elements, modelling
macroscopic continuum systems to create efficient multi-scale models. AFEM
is using both first and second order derivatives of the system’s energy and is
therefore appropriate for handling multi-scale optimisation problems.

In [30] reduced multi-scale models are constructed from coupled PDE-
based macroscopic system reduced through the Karhunen-Loeve expansion
[31] and a kinetic Monte Carlo-based microscopic system where in situ adap-
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tive tabulation has been used where stationary states of the microscopic sim-
ulation are tabulated on the fly and system information is extracted through
interpolations. The method has been used effectively for the optimisation of
a multi-scale chemical vapour deposition reactor.

In [32] the problem of estimating kinetic parameters of molecular kMC-
based models through optimization has been addressed. The important kinetic
parameters have been estimated through sensitivity analysis, scaled to dis-
criminate response changes from inherent noise. A response surface technique
was used for the optimisation procedure. The reaction rates have been para-
metrized as polynomials of the sensitive kinetic parameters and response sur-
face are computed through a number of factorial numerical experiments. The
computational expense in this method lies in the construction of the response
surfaces. Kinetic parameters are then computed by minimising the error be-
tween the systems response and experimental observation using stochastic
optimisation, namely simulated annealing [34]. Also, a sensitivity algorithm
including a stochastic term for the computation of the system’s sensitivities
has been coupled to the above algorithm in order to increase the accuracy of
kinetic parameter estimation [9].

All the methods described above either assume that the system’s model
is intimately known and all equations are available in closed form or that
simplified reduced models based on a few simple equations can be extracted
from all the levels of the multi-scale ones. “Equation-free” methods (see e.g.
[35] and references within) act upon black-box timesteppers and enable them
to perform system-level tasks, such as computation of unstable steady states,
stability/bifurcation analysis and control e.g. [36, 37]. Microscopic simulators
can be effectively handled through restriction (obtaining coarse states from
the microscopic/molecular ones, through averaging, filtering, smoothing) and
lifting procedures (obtaining molecular states from the coarse ones with the
aid of appropriate distribution functions. These methods have been used to
efficiently address a large number of microscopic/molecular and multi-scale
systems.

In this work we present an optimisation methodology based on model
reduction that can be employed for the efficient dynamic optimisation of in-
put/output large-scale macroscopic and microscopic simulators. This optimi-
sation approach belongs to the family of equation-free methods and is an
extension of our recent work on steady state optimisation for input/output
large-scale simulators [38].

2 Reduced Dynamic Optimisation for Input/Output
Simulators

Consider the following dynamic optimization problem:
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min
u(t),z

∫ tf

t0

Φ (t, u (t) , z) dt (1a)

s.t.
∂u

∂t
= F (t, u (t) , z) (1b)

u (t0) = u0 (1c)

where u ∈ Rn are the state variables, t is time, F ∈ Rn+dof → Rn are
the dynamic model equations, and z ∈ Rdof are the control parameters which
are coefficients of a certain parametrization of a continuous control profile
function c (t) to be adjusted by the optimization procedure. Given a set of
initial conditions u0 and values of the coefficients z, the control profile c (t)
can be evaluated at any point of the time horizon and the state vector u = u (t)
is uniquely determined by the solution of the differential system.

A variety of solution methods have been developed for this problem. A
compilation of these methods can be found in e.g. [43, 44, 45]. In this work,
we focus on NLP methods, based on some (total or partial) discretization
of the infinitesimal dynamic constraints. Orthogonal collocation is a com-
mon method to handle this (possible) highly nonlinear transient system. It
discretizes the differential equations over the time reporting horizon [t0, tf ],
computing solutions of the dynamic system at each discrete time and the con-
trol parameters being estimated by the optimization algorithm [46, 47]. Col-
location is very convenient for the implementation of multi-level approaches
discussed in the previous section. Also, the estimation of the first and second
order information can be obtained at little cost [42]. However, the direct use of
input/output dynamic simulators is not possible. Input/output optimisation
methods are useful when process models are only available in “black-box”
form. Consequently, all sensitivity information not explicitly available, and is
often, too expensive to approximate by numerical perturbations of the solver.
This is the case when commercial or scientific software is used to simulate
dynamic processes. and also, as discussed in the previous section, the case of
multiscale/microscopic models not being available in closed form Stochastic
optimisation methods can be readily used with such black-box codes (e.g. [33]),
but for distributed processes with many state variables, function evaluations
become prohibitively expensive. If a gradient-based approach is preferred, a
“black-box” a shooting scheme should be adopted to solve the optimal con-
trol problem. There are two shooting methods. Single shooting which suffers
from lack of robustness and is prone to numerical instabilities [40] and mul-
tiple shooting [55] which is a stable method. In multiple shooting, the time
horizon [t0, tf ] is divided into (possible many) subintervals and the solution
of the differential system is computed over each subinterval. Continuity of
the dynamic profiles is forced by linking the initial conditions of each subin-
terval with the final values of the previous subinterval, generating continuity
constraints (multiple shooting equations).

Depending on the number of the time subintervals chosen, the optimiza-
tion formulation leads to a very large-scale problem. Extra function evalu-
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ations are needed to compute the sensitivities required by the optimization
method. The most expensive part of this scheme is, precisely, the computa-
tion of the derivatives, which can take up to 95% of the computational time
[42]. Specialized software [53] and automatic differentiation [49] can be used
to compute these sensitivities more efficiently. To reduce the complexity of
the large-scale optimization problem, reduced Hessian methods can be em-
ployed in the case of relatively few degrees of freedom. In [50], a multiple
shooting procedure combined with orthogonal collocation is developed using
a partially reduced SQP strategy, in which the full space is projected onto the
reduced subspace of differential and control variables; it looks to be efficient
specially when handling inequality constraints but the method appears to re-
quire important modifications to the existing optimization solvers. Here, we
present a computationally-efficient method for optimizing dynamic models in
a “black-box” fashion extending ideas presented in [38], where we dealt with
steady state optimization. We perform a reduced multiple shooting procedure
[51], in which we compute reduced block Jacobians corresponding to the (few)
dominant eigenmodes of each subinterval and solve the corresponding conti-
nuity constraints. Then, using reduced Hessian methods [54, 52] we perform
a second projection onto the small subspace of the (also few) control parame-
ters, leading to a number of small unconstrained quadratic subproblems that
are solved at each major iteration without the construction of unnecessary
high-dimensional Jacobians and Hessians.

The remaining sections are organised as follows: First, we show how the
dynamic problem (1) can be converted to a NLP problem using the multiple
shooting discretization in the dynamic constraints. This, leads to a large-scale
optimization problem. Then, we develop our reduced multiple shooting algo-
rithm which computes only low order derivative matrices. Finally, two numer-
ical examples are provided to demonstrate the capabilities of this framework
to handle large distributed and microscopic dynamic systems.

3 Multiple Shooting Approach for Dynamic
Optimization

Let us consider the problem given by (1). In multiple shooting, the time
reporting horizon [t0, tf ] is partitioned in N subintervals

[ti, ti+1] for i = 0, . . . , N − 1

where tN = tf . The differential equations (1b) are solved over each subinterval.
The i-th initial condition at ti of each subinterval is given by intermediate
variables ui, and solution of each subinterval at ti+1 is given by

ui+1 = G (ti, ui, ti+1, z) (2)

where G (ti, ui, ti+1, z) is a non-expansive map for ui+1. In order to achieve a
continuous dynamic trajectory along the time horizon, continuity constraints
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are imposed:

ri+1 (ti, ui, ti+1, ut+1, z) = ui+1 −G (ti, ui, ti+1,z) = 0. (3)

Then, in multiple shooting, the following nonlinear system has to be solved:

r1 (t0, u0, t1, u1, z) = u1 −G (t0, u0, t1, z)
r2 (t1, u1, t2, u2,z) = u2 −G (t1, u1, t2, z)

...
rN−1 (tN−2, uN−2, tN−1, uN−1,z) = uN−1 −G (tN−2, uN−2, tN−1, z)

rN (tN−1, uN−1, tN , uN,z) = uN −G (tN−1, uN−1, tN , z)

(4)

for the unknown (state) variables ui, i = 1, . . . , N since u0, the initial condi-
tions are given. To solve (4), Newton’s method is applied, leading to linearized
system (with Δu0 = 0): [

Ju Jz
] [Δu
Δz

]
= −r (5)

where Ju, is the Jacobian of the continuity equations (3) with respect to the
state variables ui, Jz is the Jacobian with respect to the control variables,
Δu = (Δu1, . . . , ΔuN ), and Δz = (Δz1, . . . , Δzdof). The matrices Juand Ju
have the following structure

Ju =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 · · · 0
−∂G(t1,u1,t2,z)

∂u1
I 0 · · · 0

...
...

. . . · · ·
...

... 0 −∂G(tN−2,uN−2,tN−1,z)
∂uN−2

I 0

0 · · · 0 −∂G(tN−1,uN−1,tN ,z)
∂uN−1

I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6)

and

Jz =

⎡⎢⎣
∂G(t0,u0,t1,z)

∂z
...

∂G(tN−1,uN−1,tN ,z)
∂z

⎤⎥⎦ . (7)

Each Jacobian block ∂G(ti,ui,ti+1,z)
∂ui

is a n×n matrix, and its computation
requires the solution of n initial value problems per subinterval. In the same
way, the block ∂G(ti,ui,ti+1,z)

∂z is a n× dof matrix and requires the solution of
dof initial value problems per subinterval. Clearly, the numerical computa-
tion of Ju is far too expensive if the dynamic system is large. The estimation
of these sensitivities is the most consuming part of the algorithm. Specialized
software for sensitivity estimation of dynamic systems [53], and automatic dif-
ferentiation (AD) of numerical integrators [49] can be employed to compute
efficiently and fast these derivatives. In [57], other strategies are discussed
to compute the sensitivities in the context of shooting techniques. In a forth-
coming publication ([58]) we discuss how the optimization approach presented
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here can be combined with automatic differentiation methods. However the
use of AD is not always possible for black-box integrators.

In the same fashion, the objective function can be discretized in N time
subintervals such that

∫ tf

t0

Φ (t, u (t) , z) dt =
N−1∑
i=0

Φ (ti, ui, ti+1, ui+1, z) = Φ (t0, u0, t1, u1, z) + · · ·

+ Φ (tN−1, uN−1, tN , uN , z) .

The infinitesimal optimization problem (1) can be now formulated as a
finite dimensional large-scale constrained optimization problem of dimension
N(n) + dof :

min
u1,...,uN ,z

N−1∑
i=0

Φ (ti, ui, ti+1, ui+1, z) (8a)

s.t. ri+1 (ti, ui, ui+1,ti+1, z) = 0 ∀i = 0, ..., N − 1 (8b)
u (t0) = u0 (8c)

The above large-scale nonlinear optimization problem can be solved using
any standard optimization solver such as SQP [56]. SQP requires the com-
putation of the large-scale sparse Jacobians stated previously. For systems of
moderate size this can work very well. However, as the dimension N or n is in-
creased the computational cost becomes prohibitively. In [62], this problem is
tackled by reducing the number of sensitivity solutions needed to compute the
derivatives capitalizing on the sparsity of the Jacobian of the continuity equa-
tions. Furthermore, the computation of the derivatives is carried out using
specialized sensitivity software [53]. However, this reduction may compromise
the stability properties of multiple shooting.

Since the most expensive part of the algorithm is the numerical computa-
tion of ∂G(ti,ui,ti+1,z)

∂ui
, there is a strong motivation to develop an algorithm in

which the explicit construction and storage of each block is avoided, without
losing stability from the multiple shooting discretization and consequently,
reducing the computational cost of solving large optimization problems.

4 The Newton-Picard-Based Dynamic Optimisation
Scheme

In this section, we discuss the computational framework which avoids the
explicit computation of the block matrix ∂G(ti,ui,ti+1,z)

∂ui
combined with re-

duced Hessian techniques to solve the large-scale optimization problem (8).
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We capitalize on the fact that the dominant (slow) dynamics of many sys-
tems is low-dimensional. In other words there is a separation of timescales
in the eigenspectrum of the system which allows partitioning of the system
into slow (possibly unstable) and fast (stable) subspaces. Then, the explicit
calculation of the block matrices can be avoided since only the action on the
low-dimensional dominant subspace is required, A Newton-Picard procedure
developed in [51] is employed in order to dynamically compute the low-order
dominant subspaces in this multiple shooting framework. It was originally
constructed to compute of periodic solutions of PDEs by performing New-
ton iterations on the computed subspace of the dominant eigendmodes and
Picard iterations on its orthogonal complement. Here we adapt this Newton-
Picard scheme in order to compute solutions of the continuity constraints then
combine with reduced Hessian techniques to solve the dynamic optimization
problem (1).

Let us recall that in multiple shooting we have the non-expansive map (2):

ui+1 = G (ti, ui, ti+1, z)

for i = 0, . . . , N − 1. For each time subinterval, we can define subspaces P
and Q of Rn, where P is an invariant subspace of Gui (ti, ui, ti+1, z), and
Q = Rn−P is the orthogonal complement of P. Then ui can be decomposed
in

ui = pi + qi (9)

with pi = Piui ∈ P and qi = Qui ∈ Q. Then we can decompose (2) to get:

pi+1 = w (pi, qi, z) = PiG (ti, pi + qi, ti+1, z) (10a)
qi+1 = g (pi, qi, z) = QiG (ti, pi + qi, ti+1, z) . (10b)

The system (10a) can be solved using Newton’s method and Picard it-
erations to solve (10b). This leads to the coupled stabilized iteration (with
Δp0 = 0):

WpΔp = −s (11a)
qi+1 = g (pi, qi, z) (11b)

where

Wp =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 0

−wp1 I 0
... 0

...
. . . . . . . . .

...
... 0 −wp2 I 0
0 · · · 0 −wpN−1 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(12)
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Δp =

⎡⎢⎢⎢⎢⎢⎣
Δp1

Δp2

...
ΔpN−1

ΔpN

⎤⎥⎥⎥⎥⎥⎦ (13)

s =

⎡⎢⎢⎢⎢⎢⎣
p1−w (p0, q0, z)
p2 − w (p1, q1, z)

...
pN−1 − w (pN−2, qN−2, z)
pN − w (pN−1, qN−1, z)

⎤⎥⎥⎥⎥⎥⎦ (14)

with wpi = Pi
∂w(pi,qi,z)

∂pi
Pi.

To solve the system (11), the computation of Pi and Qi is required. Let
Vi ∈ Rn×m an orthonormal basis whose columns span the low-dimension
invariant subspace P. Here, without loss of generality, we assume that the
number of dominant eigenvalues is the same in every time subinterval, hence
the dimension m is the same in each subinterval. Then, the projectors are
given by

Pi = ViV
T
i (15a)

Qi = I − ViV
T
i (15b)

with V T
i Vi = I ∈ Rm×m. Now, a set of reduced variables, vi, can be introduced

for the representation of pi ∈ P in the basis Vi

vi = V T
i pi = V Ti ui (16)

where vi ∈ Rm, pi = Vivi and ui = Vivi + qi. Using (16), the iteration (11a)
can be written as

W vΔv = −s (17)

where

W v =

⎡⎢⎢⎢⎢⎢⎢⎣

I 0 0 · · · 0
−H1 I 0 · · · 0

...
...

. . . · · ·
...

... 0 −HN−2 I 0
0 · · · 0 −HN−1 I

⎤⎥⎥⎥⎥⎥⎥⎦ (18)

Δv =

⎡⎢⎢⎢⎢⎢⎣
Δv1

Δv2

...
ΔvN−1

ΔvN

⎤⎥⎥⎥⎥⎥⎦ (19)
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s =

⎡⎢⎢⎢⎢⎢⎣
v1 − V T1 G (t0, u0, t1, z)
v2 − V T2 G (t1, u1, t2, z)

...
vN−1 − V T

N−1G (tN−2, uN−2, tN−1, z)
vN − V T

NG (tN−1, uN−1, tN , z)

⎤⎥⎥⎥⎥⎥⎦ (20)

with Hi = V T
i+1

∂G(ti,ui,ti+1,z)
∂ui

Vi+1 = V T
i+1

∂w(pi,qi,z)
∂pi

Vi+1 for i = 0, . . . , N − 1.
Notice that the system has been reduced from N (n) to N(m) where m� n.
Then, iteration (11b) can be expressed as

qi+1 = G (ti, ui,ti+1, z)− Vi+1

[
V T
i+1G (ti, ui,ti+1, z)

]
, (21)

here, we have used g (pi, qi, z) =
(
I − Vi+1V

T
i+1

)
G (ti, pi + qi, ti+1, z). To avoid

the explicit computation of the blocks ∂G(ti,ui,ti+1,z)
∂ui

, we compute directly the

product
[
∂G(ti,ui,ti+1,z)

∂ui
Vi+1

]
by numerical central differentiation[

∂G (ti, ui, ti+1, z)
∂ui

Vi+1

]
≈ 1

2ε
[G (ti, ui + εVi+1, ti+1, z)

−G (ti, ui − εVi+1, ti+1, z)] (22)

for each column of Vi+1.
The most expensive part of this Newton-Picard algorithm is the compu-

tation of the basis Vi. Subspace iterations have been proposed as a reliable
computation method [48]. In particular, we have chosen to use the algorithm
implemented in [41] which includes deflation and locking procedure, and al-
lows the direct computation of the directional derivatives

[
∂G(ti,ui,ti+1,z)

∂ui
Vi+1

]
.

When the dimension of the control parameters is smaller than the dimension of
the reduced state variables, i.e. dof � N(m), we use reduced Hessian methods
[54, 52] to reduce the computational cost required to solve the optimization
problem and we obtain (by analogy from [38]) the reduced coordinate basis

Z =
[
−W−1

v W z

I

]
(23)

where Z ∈ RN(m)×dof , W v ∈ RN(m)×N(m) and with W z ∈ RN(m)×dof . The
matrix W z can be easily obtained by

W z =

⎡⎢⎣V
T
1 · · · 0
...

. . .
...

0 · · · V T
N

⎤⎥⎦
⎡⎢⎣

∂G(t0,u0,t1,z)
∂z
...

∂G(tN−1,uN−1,tN ,z)
∂z

⎤⎥⎦ . (24)

Then, the reduced QP subproblem [38] becomes:
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min
dZ

(
Z
T∇f

)T
dZ +

1
2
dT
Z

(
Z
T
BZ
)
dZ (25a)

s.t.
[(
uL − uk

)(
zL − zk

)] ≤ ZdZ ≤
[(
uU − uk

)(
zU − zk

)] . (25b)

Here, we notice that only m Lagrange multipliers are needed per subin-
terval, (i.e. φi+1 = V T

i+1λi+1) to compute the projected Hessian. This reduced
Lagrange multipliers can be computed from

W vφ = −

⎡⎢⎣V
T
1 · · · 0
...

. . .
...

0 · · · V T
N

⎤⎥⎦Y T∇f (26)

where φ ∈ RN(m), Y T ∈ Rn×(N(n)+dof) and ∇f ∈ RN(n)+dof .
A flowchart of the reduced dynamic optimisation procedure is provided

in Fig. (1). The major benefits of this algorithm are the computation of the
coordinate basis by inverting only low-order Jacobians and the computation
of reduced Hessians with only a small number of Lagrange multipliers.

5 Numerical Examples

5.1 Dynamic Optimization of a Tubular Reactor

In order to illustrate the features of the proposed framework, first a PDE-
based system is chosen. It is a tubular reactor with pseudohomogeneous axial
dispersion, where a simple exothermic irreversible first order reaction, A→ B,
occurs [67]. The mathematical model consists of two nonlinear parabolic par-
tial differential equation given, in dimensionless form for the reactant concen-
tration x1 and temperature x2, by

∂x1

∂t
=

1
Pe1

∂2x1

∂y2
− ∂x1

∂y
+Da (1− x1) exp

(
x2

1 + x2
γ

)
(27a)

∂x2

∂t
=

1
LePe2

∂2x2

∂y2
− 1
Le

∂x2

∂y
− β

Le
x2 + CDa (1− x1) exp

(
x2

1 + x2
γ

)

+
βx2w (t)

Le
(27b)

with boundary conditions

∂x1

∂y

∣∣∣∣
y=0

= Pe1x1 (28a)

∂x2

∂y

∣∣∣∣
y=0

= Pe2x2 (28b)
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Fig. 1: The reduced optimisation algorithm. The continuity constraints (multiple
shooting equations) are solved in the Newton-Picard framework. Low-dimensional
Jacobians are then used to compute the null-space basis for optimization.

∂x1

∂y

∣∣∣∣
y=1

= 0 (29a)

∂x2

∂y

∣∣∣∣
y=1

= 0 (29b)

and initial conditions
x1 (0) = x2 (0) = 0 (30)
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where Da is the Damköhler number, Le the Lewis number, Pe1 and Pe2
are the Peclet numbers for mass and heat transport, β a dimensionless heat
transfer coefficient, C is the dimensionless adiabatic temperature rise, and y
the dimensionless longitudinal coordinate. The dimensionless wall tempera-
ture x2w (t), is adjusted indirectly by controlling the flowrate of three cooling
jackets. The spatial profile of the control variable is defined as:

x2w (y) =
3∑
j=1

[H (y − yj−1)−H (y)− yj]x2wj
(t) (31)

where H (·) is the Heaviside function, y0 = 0, y1 = 1/3, y2 = 2/3, y3 = 1 and
x2wj

(t), j = 1, . . . , 3 is the dimensionless temperature at each cooling zone.
The control function for each cooling zone has been approximated using the
parametrization presented in [59]. This parametrisation can generate various
types of continuous dynamic control profiles of two types of curves given by:

Type I

x2wj
(t) = x2wj

(tf )−
[
x2wj

(tf )− x2wj
(t0)
] [

1− t

tf

]A1

(32)

Type II

x2wj
(t) = x2wj

(t0)−
[
x2wj

(t0)− x2wj
(tf )
] [ t

tf

]A2

(33)

where A1and A2 are parameters that define the curvature of the profiles. By
combining these two profiles along the time horizon, many types of continu-
ous trajectories are obtained. Profiles with prominent discontinuities or very
difficult to implement in practise can be avoided. Only six parameters are re-
quired to connect the two curves and generate a continuous profile. These six
control parameters, which will be the degrees of freedom in the optimization,
are the initial and final value of the control function (x2wj

(t0) and x2wj
(tf )),

an intermediate time tint (time point in which the two curves connect) and
the corresponding control function value x2wj

(tint), and the exponential pa-
rameters A1and A2.

The problem is to find the optimal temperature profile that maximizes
the exit conversion at a final time tf = 1.5 subject to the dynamical system
(27) with boundary conditions (28,29), initial conditions (30) and parameter
values Da = 0.1, Le = 1.0, Pe1 = Pe2 = 5.0, γ = 20.0, β = 1.50 and
C = 12.0. The PDEs are first discretized in 250 spatial nodes using central
differences, resulting in a system of 500 ODEs. The dynamic system has been
solved using a 4th order Runge-Kutta method. The resulting optimization
problem has 500 state variables and 18 control parameters (6 variables per
jacket). The numerical derivatives have been obtained according to the scheme
(22) with ε = 1 × 10−6. We perform the dynamic optimization using N = 5
time subintervals with different dimensions of dominant eigenspace. With the
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dominant subspace dimensions m = 6 and m = 8 the procedure is able to
converge with almost identical optimal solutions. The values of the optimal
control parameters are reported in Tables (1) and (2), respectively. For m = 6
18 iterations are required, while 14 iterations are required for m = 8. In
[38], we also observe that less iterations are required when the subspace is
large enough to capture the slow action of the system. The same calculations
were performed using a finer discretization of the time horizon (N = 10). For
the three cases tested, the reduced optimisation procedure computes similar
optimal parameters. In Table (3), we report the case for m = 8. Again, less
iterations are required when increasing the size of the invariant subspace.

For the case with N = 10 and m = 8, the optimal control functions are
shown in Fig. (2) For comparison purposes we perform dynamic optimization
with a regular multiple shooting procedure. The results obtained show ex-
cellent good agreement with the ones obtained by reduced optimization. The
total CPU time required by the standard multiple shooting lager by many
days. Hence, a very significant computational speed-up is achieved. In [58]
the performance of our procedure with respect to operating parameters (such
as time horizon, subspace dimension, number of subintervals is extensively
discussed.

Table 1: Optimal parameters that define the control function x2wj
of each cooling

jacket computed by reduced optimization, with N = 5 and m = 6, fobj = 0.9997712

Parameter Jacket j = 1 Jacket j = 2 Jacket j = 3

x2wj
(t0) 5.0 3.78261 1.88901

x2wj
(tf ) 3.52167 3.79172 2.8607

tint 0.68721 0.276121 1.2567E-2
x2wj

(tint) 3.62251E-3 8.1087E-4 0.

A1 1. 1. 1.
A2 1. 1.000546 1.

Table 2: Optimal parameters that define the control function x2wj
of each cooling

jacket computed by reduced optimization, with N = 5 and m = 8, fobj = 0.9997892

Parameter Jacket j = 1 Jacket j = 2 Jacket j = 3

x2wj
(t0) 5.0 3.76829 1.89432

x2wj
(tf ) 3.51210 3.79352 2.83824

tint 0.69017 0.274873 1.1752E-2
x2wj

(tint) 3.5243E-3 8.1972E-4 0.

A1 1. 1. 1.
A2 1. 1.000476 1.
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Table 3: Optimal parameters that define the control function x2wj
of each cooling

jacket computed by the reduced optimisation, with N = 10 and m = 8, fobj =
0.99979205

Parameter Jacket j = 1 Jacket j = 2 Jacket j = 3

x2wj
(t0) 5.0 3.78621 1.89431

x2wj
(tf ) 3.55721 3.79513 2.8387

tint 0.68975 0.271234 1.1124E-2
x2wj

(tint) 3.4711E-3 7.2523E-4 0.

A1 1. 1. 1.
A2 1. 1.000782 1.
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Fig. 2: (a) Control profile for jacket 1; (b) Control profile for jacket 2; (c) Control
profile for jacket 3. This results were obtained using N = 10 and m = 8.

5.2 Parameter Identification of Chemical Reaction Kinetics

An important problem in dynamic systems is related to the accurate estima-
tion of parameters of a mathematical model for a given set of time-varying
measurements or observations of the state variables. These type of problems
(inverse problems) appear in many applications and well developed solution
techniques are available for deterministic systems (e.g.[61, 71, 72, 73]). For mi-
croscopic systems, where no closed form equations mathematical optimization
is possible through the use of stochastic methods [70, 32] with high compu-
tational cost or after the extraction of a simplified model from the molecular
data. When solving inverse problems, many mathematical issues arise and
auxiliary tools are needed. For instance, it is usual that the inverse problem
is ill-posed due to inexact measurements and/or partially observed data; then
regularization techniques (e.g. [22, 65]) are required to well-pose the problem.
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Also, in order to take advantage the special structure of the Hessian matrix
and gradients of the least squares formulation, the optimization techniques ap-
plied are commonly based in Gauss-Newton [63] or Levenberg-Marquadt [69]
methods which work acceptably for small to medium size problems. For large-
scale systems, projected Hessian methods specially adapted to the problem of
parameter identification can be readily used [68]. In this section we apply the
methodology presented above for the optimisation of microscopic simulators.
This can be done directly through the use of restricting and lifting operations
[35].

We consider, the parameter estimation of a microscopic model of a set of
biochemical reactions that synthesize inducible enzymes in bacterial cells [66]

X2

k4�
k15

X3

k1�
k2

X1
k3→ X3 +X6

X6
k5→ Y1

X6 +X7
k12→ X4

k7→ X7 + Y2

X7
k6→ X5

k8→ X9 +X7

X9
k9→ Y3

X9 +X8
k13→ X12

k14→ X8 + Y4

X12
k10→ X11

k11→ X10 +X12

(34)

where X1 is a complexing product of the regulator gene and a metabolic
product of the repressing metabolite, X2 is a complexing product of the reg-
ulator gene and a metabolic product of the inducer, X3 is a regulator gene,
X4 is a repressed functional gene, X5 is an assembly of mRNA precursors on
the functional gene, X6 is a repressor molecule, X7 is a functional gene for
mRNA synthesis, X8 are ribosomes, X9 is mRNA specific to the functional
gene, X10 enzyme produced and separated from the template, X11 is an as-
sembly of aminoacids on the template, X12 is the template for the synthesis of
the enzyme, Y1 is a decomposition product of the repressor molecule, Y2 is a
decomposition product of the repressed functional gene, Y3 is a decomposition
product of mRNA and Y4 is a decomposition product of the ribosomes. The
above mechanism (34), can be also described by the following (macroscopic)
ODE system
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dX1

dt
= k1X3 − k2X1 − k3X1 (35a)

dX2

dt
= k15X3 − k4X2 (35b)

dX3

dt
= −k1X3 + k2X1 + k3X1 − k15X3 + k4X2 (35c)

dX4

dt
= k12X7X6 − k7X4 (35d)

dX5

dt
= k6X7 − k8X5 (35e)

dX6

dt
= k3X1 − k5X6 − k12X6X7 (35f)

dX7

dt
= −k12X6X7 + k7X4 − k6X7 + k8X5 (35g)

dX8

dt
= k14X12 − k13X8X9 (35h)

dX9

dt
= k8X5 − k9X9 − k13X8X9 (35i)

dX10

dt
= k11X11 (35j)

dX11

dt
= k10X12 − k11X11 (35k)

dX12

dt
= k13X8X9 − k10X12 + k11X11 − k14X12 (35l)

where X1, . . . , X12, Y1, . . . , Y4 are concentrations of the biochemical species
and k1, . . . , k15 are the kinetic rate parameters.

The optimization problem consists of minimising the error between the
experimental observations and the model predictions in time and can be for-
mulated as

min
1
2

∫ tf

t0

(
Xobs (t)−X (t, k)

)T (
Xobs (t)−X (t, k)

)
dt (36a)

s.t. microscopic model of (34) (36b)

Here the constraints (36b) are implemented in the form of a “stochastic
simulation algorithm” [64] (Monte Carlo-based) that describe the stochastic
time evolution of the reacting system (34). Briefly, this microscopic simulator
consists of the following steps: Set a system with L particles or molecules with
Lj is the number of molecules of species j; set simulation time t = t0; calcu-
late transition probabilities Rk for the reaction k using the current molecular
distribution; sum of transition rates Rtot =

∑
k Rk; generate two random

numbers uniformly distributed ran1 and ran2; use ran2 to select reaction μ
that will occur so that

∑μ−1
k=1 rk < ran2 ·Rtot ≤

∑μ
k=1 rk; adjust the number

of molecules participating in the reaction μ according to the stoichiometry;
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set simulation time t = t − ln(ran1)
Rtot

; and repeat until a prescribed final time
t = tf has been reached.

The inherent noise in the evolution profile of discrete and stochastic sys-
tems can complicate the numerical computation of sensitivities, the parameter
perturbations have to be large enough to truly identify responses from the sto-
chastic noise. In section 1 we discussed a few methodologies that have been
used in the literature to address this problem In any case, a number of paral-
lel realizations (simulations) need to be averaged in order to reduce the effect
of the noise. Here, we have used central differences according to scheme (22)
with ε = 1 × 10−3 to ensure that the perturbation captures the simulation
noise and that the derivatives are acceptably accurate. Additionally, we use
L = 1× 106 particles and average 10 realizations.

The set of “experimental” observations were generated from a single real-
ization of the microscopic simulation at 8 time instants with the exact kinetic
parameters. The initial conditions are: X3 = 1.0, X7 = 1.0 and X8 = 1.0, the
rest of the concentrations are zero. The experimental data were produced at
the time instants: t =[0.125, 0.3750, 0.5, 0.75, 1.0, 5.0, 10.0, 15.0]. The exact
parameters are: k =[5.0, 0.9, 0.1, 0.1, 0.035, 0.006, 0.1, 0.005, 0.1, 0.05, 0.2,
0.005, 0.02, 1.0]. We consider that the stochastic noise of the simulation is a
random perturbation of the “true” dynamic trajectory

We perform parameter estimation computations using the microscopic sim-
ulator with N = 5 and N = 10 and m = 2, 4, 10. The reduced optimization
method is able to compute the kinetic parameters with N = 5 and m = 4 and
10. For m = 2 there is no convergence. For N = 10 we encountered similar
behavior. A comparison of some of the k values estimated is given in Tables
(4 and 5). A graphical comparison of the computed dynamic trajectories for
some species is provided in Figs. (3, 4, 5, 6, 7, 8). The same calculations were
performed with L = 1 × 105 particles and averaging up to 50 realizations.
Only the runs with N = 10 and m = 10 converged.

The estimated trajectories have good agreement with the exact dynamic
trajectories at the beginning of the time horizon. This can be explained since
half of the observations were chosen at the beginning of the time horizon.

Table 4: Estimated kinetic parameters using the microscopic model with N = 5 and
m = 4. Note, that following [66] k15 = 1.0 and it is fixed in all calculations

first second third
k1 5.4235 k8 0.09814
k2 0.83342 k9 0.00555
k3 0.20085 k10 0.1893
k4 0.1803 k11 0.00578
k5 0.03845 k12 0.2056
k6 0.00719 k13 0.00489
k7 0.1983 k14 0.02913
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Table 5: Estimated kinetic parameters using the microscopic model with N = 10
and m = 10. Note, that following [66] k15 = 1.0 and it is fixed in all calculations

k1 4.9129 k8 0.10073
k2 0.9002 k9 0.0051
k3 0.1045 k10 0.1014
k4 0.1023 k11 0.00478
k5 0.02993 k12 0.2081
k6 0.00435 k13 0.0051
k7 0.1012 k14 0.01994
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Fig. 3: Dynamic Trajectories using the microscopic simulator for species X1 with
exact kinetic parameters (solid line), estimated with N = 5 and m = 4 (broken line)
and estimated with N = 10 and m = 10 (dashed-dotted line)

6 Conclusions

A model reduction-based computational framework has been developed to
perform dynamic optimization using input/output macroscopic and micro-
scopic simulators and can handle large multi-scale dynamic simulators. The
algorithm is based on a multiple shooting discretization and it takes advantage
of the low-dimensional dynamics that dissipative systems exhibit. It couples
Newton-Picard methods with reduced Hessian techniques. Only very low-
order block Jacobians are needed in each time subinterval. The low-order
block Jacobian resulting from the multiple shooting discretization is used for
a subsequent projection to the null-space of the system corresponding to the
control parameters. All the essential gradients and Jacobian and Hessian ma-
trices are efficiently computed numerically using only low-order projections.
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Fig. 4: Dynamic Trajectories using the microscopic simulator for species X4 with
exact kinetic parameters (solid line), estimated with N = 5 and m = 4 (broken line)
and estimated with N = 10 and m = 10 (dashed-dotted line)
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Fig. 5: Dynamic Trajectories using the microscopic simulator for species X6 with
exact kinetic parameters (solid line), estimated with N = 5 and m = 4 (broken line)
and estimated with N = 10 and m = 10 (dashed-dotted line)

We have illustrated our methodology with the optimization of a tubular re-
actor simulated by a 4th Runge Kutta integrator. Excellent agreement with
results from a conventional multiple shooting-based algorithm was obtained
withe significant computational speed-up.

Several parametric studies have been performed by varying the invariant
dominant subspace dimension (m) and number of time subintervals (N) of
the multiple shooting discretization. If the number of time subintervals is in-
creased the size of the subspace can be decreased. We also showed a parameter
estimation problem using a MC-based simulator of a biochemical system. The
results obtained from the dynamic optimization of the stochastic model were
very good when compared with the exact kinetic parameters, showing that
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Fig. 6: Dynamic Trajectories using the microscopic simulator for species X8 with
exact kinetic parameters (solid line), estimated with N = 5 and m = 4 (broken line)
and estimated with N = 10 and m = 10 (dashed-dotted line)
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Fig. 7: Dynamic Trajectories using the microscopic simulator for species X10 with
exact kinetic parameters (solid line), estimated with N = 5 and m = 4 (broken line)
and estimated with N = 10 and m = 10 (dashed-dotted line)

significant digit. the methodology has strong potential for the optimization of
multi-scale systems.
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