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Family of additive entropy functions out of thermodynamic limit
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We derive a one-parametric family of entropy functions that respect the additivity condition, and which
describe effects of finiteness of statistical systems, in particular, distribution functions with long tails. This
one-parametric family is different from the Tsallis entropies, and is a convex combination of the Boltzmann-
Gibbs-Shannon entropy and the entropy function proposed by Burg. An example of how longer tails are
described within the present approach is worked out for the canonical ensemble. We also discuss a possible
origin of a hidden statistical dependence, and give explicit recipes on how to construct corresponding gener-
alizations of the master equation.
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I. INTRODUCTION

The past several years have witnessed a burst of inte
in nonextensive statistical mechanics, a topic that finds
creasingly more applications due to the concept of the Ts
entropy@1,2#. In this approach, one postulates the followi
one-parametric family of concave functions:

Sq5

12(
i

pi
q

12q
, ~1!

whereq.0. The family of Tsallis’ entropies~1! extends the
traditional Boltzmann-Gibbs-Shannon entropy,S1,

S15 lim
q→1

Sq52(
i

pi ln pi . ~2!

One of the important results associated with the Tsallis
tropy ~1! is the fact that it provides an easy access—throu
the method of entropy maximization—to a rich set of dist
bution functions, different from the traditional Gaussian d
tribution function. With this, one can address long~nonexpo-
nential! tails of probability distributions. The characterist
feature of Tsallis’ entropy is its nonextensivity forqÞ1. If
the system is composed of two statistically independent s
systems then Tsallis’ entropy of this system is not equa
the sum of Tsallis’ entropies of the subsystems. Since Tsa
entropy is postulated rather than derived, this point rema
open to discussion@3,4#.

The goal of this paper is to present an argument on h
long tails can be described in a usual, extensive~more pre-
cisely, almost extensive! statistical mechanics, and to give
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theoretical derivation of a different, and in a certain sen
unique, one-parametric family of entropy functions that c
model effects of finiteness.

We first remark that real-world systems, to which statis
cal mechanics is applied, are finite and, though they con
of a large number of subsystems, the natural logarithm
this number is not that big after all, it is not larger than 1
and is often less than 20~since we address questions relat
to entropies, one should estimate the magnitude of the lo
rithm, in the first place!. Extensivity in the true sense of thi
notion, theorems of equivalence of the microcanonic and
canonic ensembles@5# and the like, are valid only in the
thermodynamic limit where the system can be partition
into an arbitrary large number of noninteracting and stati
cally independent subsystems. Namely, it is the numbern of
such independent and noninteracting subsystems, which
similar in all their observable properties to the larger syste
that plays the role of the parameter whose value tells us h
close the system is to the thermodynamic limit.

One realizes thatn is finite when it is needed to cut off th
tails of the distribution functions with divergent averag
~with this, one restores the argument about the incomp
extensivity!. This is a well known fact, for example, in th
case of the classical Boltzmann equation. The maximum
tropy solution to the Boltzmann entropy does not exist~is not
normalizable! if the observables are the density, the avera
momentum, the stress tensor, and the heat flux@6–10#. Regu-
larization by the argument that the magnitude of the mic
scopic velocity is restricted to the value dictated by finiten
of the total energy@7# is an example of the incomplete ex
tensivity argument.

Thus, when the system is not strictly in the thermod
namic limit, details of the interactions should gradually b
come more and more important and prospects of auniversal
description using a maximization of aninteraction-
independententropy functional become less evident. Nev
theless, the very possibility of a sufficiently accurate univ
sal description in the sense just mentioned cannot be r
out a priori. For that reason, a search for nonclassical en
pies for a possible description of nonextensive syste
seems to be motivated.
©2003 The American Physical Society04-1
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The structure of this paper is as follows. In Sec. II, w
review, for the sake of completeness, the theory of Lyapu
functions of the master equation. In Sec. III we derive
family of the ~almost! additive entropies from the conditio
of additivity for statistically independent systems. In Sec.
we demonstrate with a simple example how long tails
related to the effects of finiteness in the present approac

Sections III and IV are the central point of our presen
tion. In Sec. V we discuss a different scenario, how an
parent statistical dependence may occur when the descrip
of the system is incomplete. We also develop a natural g
eralization of the master equation for the situations with
incomplete description in Sec. VI. Finally, results are d
cussed briefly in Sec. VII.

II. LYAPUNOV FUNCTIONS OF MASTER EQUATION

We begin our discussion with a brief summary of t
theory of Markov chains. Our presentation essentially f
lows Ref. @11#. Let us consider a finite set of state
E1 , . . . ,EN , and let us assume that the system can occ
only these states. The probability distribution at timet>0 is
given by theN-component vectorp with componentspi(t),
wherepi>0, and( i 51

N pi51. Equation forp,

ṗi5 (
k51

N

qikpk , ~3!

describes the time evolution of a Markov chain if and only
the matrix elementsqik satisfyqik>0 for iÞk, and for every
k,
ar
-
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e
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i 51

N

qik50. ~4!

The graph of transitions is put in correspondence to e
Markov chain by drawing the oriented link from the nodeEi

to the nodeEk if qki.0. The important subclass of Marko
chains is characterized by directional connectivity. The gra
of transitions is called directionally connected if there is
path built of oriented links from each node to any other no
Then the following ergodic theorem is valid. Let the tran
tions graph of the Markov chain be directionally connecte
Then there exists a positive stationary statepeq, pi

eq.0, and
for any initial conditionp(0), the solution p(t) to Eq. ~3!
tends topeq at t→`.

In the sequel we consider only a Markov chain whi
satisfies the ergodic theorem. Let us assume that the sta
ary statepeq is known, and leth(x) be a convex twice dif-
ferentiable function of one variablexP@0,̀ #. Any function
h with these properties defines a convex Lyapunov funct
Hh of the Markov chain~3! by the following rule:

Hh~p!5(
i 51

N

pi
eqh~pi /pi

eq!. ~5!

The time derivative of the functionHh ~5! due to Eq.~3! is
nonpositive,
tate. The

apunov
Ḣh5 (
i , j ,iÞ j

qi j pj
eq$h~pi /pi

eq!2h~pj /pj
eq!1h8~pi /pi

eq!@~pj /pj
eq!2~pi /pi

eq!#%<0, ~6!

where the prime denotes derivative with respect to argument. The equality sign is reached only in the stationary s
stationary statepeq is called the state of detail balance, if it satisfies

qikpk
eq5qkipi

eq. ~7!

Markov chains with detail balance are colloquially termed master equations. In this case, the time derivative of the Ly
function becomes especially simple,

Ḣh52
1

2 (
i , j ,iÞ j

qi j pj
eq@h8~pi /pi

eq!2h8~pj /pj
eq!#@~pi /pi

eq!2~pj /pj
eq!#<0. ~8!
ld

ally
ary
The physical significance of the detail balance for the M
kov chain~master equation! is a well known textbook mate
rial.

Since a convex linear combination of convex functions
again a convex function, the obvious construction that
ables one to construct other Lyapunov functions from giv
representatives of the family~5! is this: If h1 , . . . ,hk are
convex functions, and ifa1 , . . . ,ak are non-negative and
satisfy(m51

k am51, then
-

s
-

n

Ha1h1 , . . . ,akhk
5 (

m51

k

(
i 51

N

pi
eqamhm~pi /pi

eq!, ~9!

is also the Lyapunov function of the Markov chain. It shou
be stressed that the set~9! does not extend the family~5!
already specified.

Concluding this summary, we stress that under physic
significant restrictions on the existence of the station
4-2
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FAMILY OF ADDITIVE ENTROPY FUNCTIONS OUT OF . . . PHYSICAL REVIEW E 67, 016104 ~2003!
state, any Markov chain has a large class of Lyapunov fu
tions of the form~5!, each constructed using a convex fun
tion h of one variable. The additivity requirement makes
possible to drastically restrict the class of physically relev
Lyapunov functions of Markov chains~see the following
section!.

III. FAMILY OF ADDITIVE LYAPUNOV FUNCTIONS

In order to derive the family of additive Lyapunov func
tions, let us consider two statistically independent syste
described by probability vectorsp and q, pi>0, whereqj
>0, ( i pi51, ( j pj51. First, we will consider the case o
the equipartition at the equilibrium, in order to simplify no
tation ~a generalization to the arbitrary case is straightf
ward, see remark 5 below!. Specifically, we assume that th
equilibrium states of both the systems are equipartitions w
probability vectorspeq and qeq, wherepi

eq51/P, qi
eq51/Q,

and whereP andQ are the numbers of the states in each
the the systems.

Since the systems are independent, the joint system
characterized by the joint probability vectorp•q. The equi-
librium of the joint system is again the equipartition,p
•q)eq5peq

•qeq, that is, the equilibrium is multiplicative with
respect to joining the systems if the latter are statistica
independent. The condition of additivity for the Lyapuno
function ~5! of the joint system reads,

Hh~p•q!5Hh~p!1Hh~q!. ~10!

This functional equation has two special solutions that c
respond to the convex functions,h1(x)5x ln x, and h2(x)
52 ln x. We denoteH15Hx ln x and H25H2 ln x , respec-
tively. The functionH1 corresponds to the classical~addi-
tive! Boltzmann-Gibbs-Shannon entropy, thus, we dem
strate here the additivity ofH2 only. Indeed,

H2~p•q!52 (
$ i j %51

PQ

P21Q21ln~PQpiqj !

52 ln~PQ!2(
i 51

P

ln pi2(
j 51

Q

ln qj

52(
i 51

P

P21ln~Ppi !2(
j 51

Q

Q21ln~Qqj !

5H2~p!1H2~q!.

Neglecting the irrelevant constant and constant factors,
using Eq.~9!, we finally arrive at the one-parametric fami
of additive convex Lyapunov functions of the form~5! for
master equation withN states,

Ha5~12a!(
i 51

N

pi ln pi2a
1

N (
i 51

N

ln pi , 0<a<1.

~11!

The one-parametric family of additive Lyapunov functions
the central point of our further discussion. Several rema
are in order.
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Remark 1. In the thermodynamic limit, which in the cas
considered here corresponds formally toN→`, for any a,
we haveHa→(12a)H1. That is, the nonclassical contribu
tion due toH2 becomes significant only if the system is n
too close to the thermodynamic limit. Only the classic
Boltzmann-Gibbs-Shannon contribution survives in the th
modynamic limit.

Remark 2. It is not difficult to prove that the family~11!
exhausts all the possible additive Lyapunov functions of
form ~5! ~up to adding a constant and a multiplication with
constant factor!. Indeed, the classical treatment of the ad
tivity condition requires averaging the vector function lnp
which can be done using eitherp or peq. The latter is the
distinguished probability distribution which, same asp, is
multiplicative with respect to joining the statistically inde
pendent subsystems. Relevance of the master equation
hence of the kinetic rather than of the static picture, to o
derivation of the one-parametric family~11! is clear. This
enables to considertwo sets of probabilities, the ‘‘current’’p,
and the ‘‘final’’ peq ~the equipartition here!.

Other convex functions that are additive under joini
statistically independent systems do exist, for example,
Rényi entropy function@12#, but they are not of the form~5!
~that is, not of the so-called ‘‘trace form,’’ cf. Ref.@13#!. For
this reason, such functions fall out of our discussion.

Remark 3. FunctionH2 is not defined~and, consequently
any of the functionHa , aÞ0 is not defined! if one of the
probabilities pi equals to zero. The classical Boltzman
Gibbs-Shannon solution to the additivity equation is dist
guished by the property of continuity atpi50. This is a
blueprint of the long-tail features~see the following section!.
Work with the family of entropies~11! assumes preservin
additivity on the expense of abandoning the continuity of
entropy functions on closed intervals 0<pi<1, and its re-
placement by continuity on semiopen intervals, 0,pi<1.

Remark 4. To the best of our knowledge, the entrop
function

S252H25(
i 51

N

ln pi ~12!

was first considered by Burg in the context of applications
information theory to geophysical problems@14,15#. Re-
cently, the Burg entropy~12! was used to construct example
of the entropic lattice Boltzmann method@16# in Ref. @17#.
However, we failed to find a reference to the one-parame
family ~11! prior to Ref.@11#. Whereas in Ref.@11# the one-
parametric family~11! was mentioned as just the solution
the additivity condition, its relevance to describing effects
finiteness in statistical systems was not duly discussed.

Remark 5. If the equilibrium peq of the Markov chain
differs from the equipartition but remains multiplicative u
der joining statistically independent subsystems, the o
parametric family~11! generalizes to the following:

Ha5~12a!(
i 51

N

pi lnS pi

pi
eqD 2a(

i 51

N

pi
eqlnS pi

pi
eqD . ~13!
4-3
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IV. LONGER TAILS: AN EXAMPLE

In this section we want to explicitly work out an examp
in order to demonstrate that the entropies of the family~11!
indeed describe the long tails foraÞ1. In the context of
discrete system of states, the long tail has to be understoo
a broadening of the distribution functions.

Since we are going to study the case of smalla in this
section, the factor 1/N in front of the second term in Eq.~11!
will be omitted in order to simplify notation, and we consid
the one-parametric set of entropy functions,

Ha5~12a!(
i 51

N

pi ln pi2a(
i 51

N

ln pi , 0<a<1. ~14!

We shall consider first the microcanonic ensemble, that
the minimizer ofHa under the constraint of fixed normaliza
tion, ( i 51

N pi51. It is straightforward to see that, for an
admissible value of the parametera, the microcanonic state
is the equipartition, as expected.

In order to address the canonic ensemble, we introd
energies of the statesEi>0, and find the minimum ofHa
~14! under the constraints,

(
i 51

N

pi51, ~15!

(
i 51

N

Eipi5U. ~16!

Denoting the solutionp(a), we find, foraÞ1,

pi
(a)expH 2

a

~12a!pi*
J 5exp$l2bEi%, ~17!

wherel andb are Lagrange multipliers corresponding to t
constraints~15!. In order to address the effect ofaÞ0, we
shall restore to a perturbation theory around the Boltzma
Gibbs-Shannon pointpi

(0) . After some algebra, we find fo
a!1, a.0,

pi
(a)5pi

(0)1aS 12Npi
(0)1~U2Ei !

V2NU

C2U2
pi

(0)D ,

~18!

where

pi
(0)5

1

Z(0)
e2b(0)Ei, Z(0)5(

j 51

N

e2b(0)Ej , ~19!

is the canonical distribution function for the Boltzman
Gibbs-Shannon entropy@Lagrange multiplierb (0) is ex-
pressed in terms of the average energyU by the constraint
~16!; we do not need here the explicit expressionb (0)(U) in
terms ofU], and

V5(
i 51

N

Ei , ~20!
01610
as
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ce
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C5(
i 51

N

Ei
2pi

(0) . ~21!

HereV is the total energy of the states, and the denomina
entering into Eq.~18!, C2U2, is the correlation of the en
ergy levelsEi in the canonical state~19!. We further denote,

B5
V2NU

C2U2
. ~22!

It can be argued thatB.0. The total energy of the states,V,
is not less~and in most of the relevant cases, much larg!
than the average energyU times the number of states
whereas the correlatorC2U2 is always positive.

Function~18! is the first-order perturbation result, and it
not a positive definite quantity. Yet, it is sufficient to ou
purpose here, since the question we want to address i
follows: what is the sign of the derivatives,dpi

(a)/daua50?
The canonical distribution~19! decays whenEi exceeds the
average energyU, so, by switching on the Burg componen
do we see the ‘‘raising’’ of the populations of this ‘‘high
energy tail’’? In order to answer this question, we obtain
Eq. ~17!,

dpi
(a)

da
U

a50

5Aipi
(0) , ~23!

where the factorAi is

Ai5Z(0)eb(0)Ei2N2B~Ei2U !. ~24!

Factor Ai amplifies populations of the states that are le
populated in the standard canonical ensemble~19! if Ei sat-
isfies the inequality,Ei.e, wheree is the solution to the
equation,

~1/Z(0)!e2b(0)e@N1B~e2U !#51. ~25!

In order to make the situation even more transparent,
shall assume that the energiesEi are in a narrow band aroun
the value E.0, that is, Ei5E1d i , ( i 51

N d i50, and d i

!E. All the quantities contributing to the expression~18!
can be then evaluated in terms of expansion ind i ~notice that
the second-order perturbation ind i must be used in order to
compute the correlationC2U2). We obtain, B5bE

(0)

1o(d i
2), and, up to second order, Eq.~25! reads

b~N/221!d21b~12N!d1b2~N2121/2!(
i 51

N

d i
250.

~26!

For largeN, factor~24! is larger than zero, and hence amp
fies the populations of the energy levelsE1d i , if

d i>2/bE
(0) . ~27!

In other words, raising of the populations of the highe
energy levels is explicitly demonstrated by this example.
4-4
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do not discuss corrections for finiteN to the estimate~27!,
which are easily obtained from Eq.~26!.

Thus, we have demonstrated with an explicit example t
taking into account the Burg component in the on
parametric family~11! indeed is able to describe the broa
ening of the canonical distribution function. Appearance
the energy levels correlation in the above formula~18! re-
markably resembles recent results of applications of the T
lis entropy to the fittings of experimental data in turbulen
~see Ref.@18# and references cited therein!. Generalizations
to the quasiequilibrium situation with more constraints
straightforward. In the case of the continuous states, the
tail feature of the corresponding distribution functions b
comes even more transparent. For example, the counte
of the Gaussian distribution functionP(x) ~maximizer of the
Boltzmann-Gibbs-Shannon entropy under the constraint
ing the normalization and the variance! has the form,P(x)
;(l1bx2)21 ~the well-known Cauchy distribution!. For it,
algebraic decay at infinity precludes existence of the v
ance, and a cutoff is required.

In order to conclude, in Secs. III and IV we have demo
strated that for systems out of the thermodynamic limit th
exists the universal~that is, independent of details of inte
actions! one-parametric family of additive entropy function
that are able to describe the same long tail effects as Tsa
entropy. The one-parametric family of additive functions~11!
or ~14! is unique in the sense that any other convex funct
of the probability which satisfies simultaneously the addit
ity and the trace-form requirements is obtained from Eq.~11!
or Eq. ~14! by adding a constant or multiplication by a co
stant. In the remainder of this paper we shall discuss a
ferent issue of how the additivity of the entropy canappar-
ently be violated if the description of the system
incomplete.

V. NONADDITIVITY AND INCOMPLETE DESCRIPTION

In the recent literature, it is sometimes argued that
entropy is not additive under joining the statistically ind
pendent subsystems because,in reality, these subsystems ar
not independent. For example, ‘‘the concept ofindependent
subsystems does not make any sense, since all subsys
are interacting’’@18#. Possible physical agents such as lon
range forces that could lead to such a situation are occas
ally mentioned, though, to the best of our knowledge, it h
not yet been demonstrated for any realistic system. Mo
over, caution is needed in rejecting the ‘‘concept of indep
dent subsystems’’ because this leads to a confrontation
the traditional axiomatic~Kolmogorov’s! probability theory
that is strongly based on this concept@19# ~in the worst case,
one should abandon the concept of independent trials, w
is at the very heart of the definition of the probabilities!.

This all leads to one question. If the probability distrib
tion over pairs of statespi j factors into the product of the
distributions,pi j 5qir j , but the subsystems are depende
then where is this dependence hidden? In order to ans
this question, one should realize that such a situation o
‘‘hidden’’ dependence, in fact, has been long known in ph
ics. This is the Pauli exclusion principle. The correspond
01610
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Fermi-Dirac entropy has the well known form

S~p!52(
i

@pi ln pi1~12pi !ln~12pi !#. ~28!

This expression can be interpreted in the following wa
With the electron gas, there is associated a gas of ‘‘plac
~holes!. The state of the ensemble of this gas of holes
uniquely determined by the ensemble of the electro
pi ,hole512pi . If, for the two subsystems of the electron
pi j 5qir j , then, for the corresponding ensembles of hol
we havepi j ,hole512qir j , and the corresponding product fo
the subsystems reads,

~12qi !~12r i !512qi2r j1qir jÞpi j ,hole.

Thus, subsystems of the electrons are dependent even fo
multiplicative pi j 5qir j . It should be stressed that, in fac
we speak of an incomplete description~both the ensembles
are uniquely related to each other!, namely, that there are
hidden components whose entropy has to be taken into
count.

A different example is the entropy of monolayers on
solid surface~see, e.g., Ref.@20#!. In the simplest case, th
entropy density, up to constant factors and constants, has
form,

S52cAZln~cAZ /cAZ
eq !2cZln~cZ /cZ

eq!, ~29!

whereA denotes molecules of the gas,Z is the vacant posi-
tion on the surface~adsorbing center!, AZ is the adsorbed
molecule,c denotes corresponding surface concentratio
SincecZ1cAZ5const~the number of places per unit area
conserved!, the entropy Eq.~29! is again of the Fermi-Dirac
form which is now obtained without any relation to quantu
effects.

Thus, the simplest known version of the apparent vio
tion of the additivity implies the existence of subsystems
‘‘locations,’’ ‘‘holes,’’ ‘‘ghosts,’’ and the like. These sub-
systems occupy the same states as the ‘‘observed’’ sys
with the probabilities,

qi512api , aP@0,1#, or

qi5~12a!1api . ~30!

~We have distinguished two possible cases, with a posi
and with a negative constraint.! There might be several suc
hidden subsystems, and thus

S5S~p!1(
j

ajSj~q( j )!, ~31!

where j is the label of the hidden subsystem, andaj.0.
Hidden subsystems can describe effects such as excl
volume in various spaces~not obligatory in the physicalR3,
as in the example with the adsorbing centers!. Other inter-
pretations are probably possible. Here we do not cons
any specific example. Rather, we want to emphasize the
markable approximation possibilities provided by the expr
4-5



r
te
s

x-
rin
e
o
te
al
.

llis
-

o
m
io
as
e
s,
et

th
in

ce
-

a
,

lic
n,
-

ci-

w-
the

n,
of
re

of

o

er

m

f

ALEXANDER N. GORBAN AND ILIYA V. KARLIN PHYSICAL REVIEW E 67, 016104 ~2003!
sion ~31! when the entropiesSa are used. Indeed, already fo
just one hidden subsystem we have four fitting parame
~two coefficients in front of the Burg component for the sy
tem and for the ghost, one coefficienta in the constraint~30!,
and 12a for the ghost!. Because approximations to the e
perimental data are obtained by the maximum entropy p
ciple under certain constraints, whereas the choice of th
coefficients is yet another optimization problem, it is n
difficult to organize a procedure of choosing the parame
~learning or fitting! in such a way as it is done in neur
networks based on the error back propagation algorithm

VI. HIDDEN SUBSYSTEMS CHANGING KINETICS

All the entropies discussed above, including either Tsa
entropy or the familySa , can be used to describe incom
pletely known or restricted equilibria, for constructing~gen-
eralized! canonical ensembles of dynamically conserved
quasiconserved quantities. If the probability evolves in ti
according to the master equation, all these entropy funct
behave equally correctly, that is, they monotonically incre
with the time ~see Sec. II!. In other words, as long as th
hidden subsystem is described by the same set of state
the observed one, no restrictions arise on the Markov kin
equation. This situation becomes different if more freedom
allowed in the choice of the entropy. Before describing
corresponding generalization of the master equation, it is
structive to consider again the standard case.

For a Markov chain consistent with the detail balan
condition ~7!, the natural conditionthat defines the equilib
rium of the transitionpi
pj can be written as follows:

]S

]pi
5

]S

]pj
. ~32!

For the entropy function of the formS52Hh , whereHh is
given by Eq.~5!, the latter equation gives,

h8~pi /pi
eq!5h8~pj /pj

eq!. ~33!

Furthermore, thanks to the strict monotonicity of the deriv
tive h8, this results in the usual definition of the equilibrium
pi /pi

eq5pj /pj
eq. Master equation~3! with the detail balance

condition can be written in such a way as to make it exp
itly consistent with the latter result. Introducing notatio
wi j 5qi j pj

eq, master equation~3! can be cast into the follow
ing form:
th

n

01610
rs
-

-
se
t
rs

’

r
e
ns
e

as
ic
is
e
-

-

-

ṗi5(
j 51

N

wi j @~pj /pj
eq!2~pi /pi

eq!#. ~34!

Though simple, the above derivation should be appre
ated because the natural definition of the equilibrium~32!
results in the equilibrium between pairs of states only. Ho
ever, if the entropy of the hidden subsystem is not of
form Sh52Hh , with Hh given by Eq.~5!, for example, if it
includes terms like

S a01(
i 51

N

aipi D lnS a01(
i 51

N

aipi D ,

then condition~32! results in a more complicated equatio
which, unlike Eq.~33!, mixes together all the components
the vectorp. In this case, a model kinetic equation, mo
general than the master equations can be addressed.

Let us introduce notation,m i52]S/]pi , and letC(x) be
a monotonically increasing function. We define the rate
transitionspi→pj as

wi j ~p!C~m i !, ~35!

where wi j 5wji , wi j >0 is a symmetric matrix with non-
negative matrix elements~matrix elements are allowed t
depend on the probability distributionp). Given the rates
~35!, the generalized kinetic equation takes the form

ṗi5(
j

wi j ~p!@C~m j !2C~m i !#. ~36!

Equation~36! is a generalization of the Marcelin–De Dond
kinetic formalism~see, e.g., Refs.@11,20,21,4#!.

Equation~36! is natural to use if the entropy of the syste
has the form

S5Sh1S̃, ~37!

where the partSh52Hh has standard form~5! for some
convex functionh while S̃ is the part of entropy function o
a different form. Then we putC(x)5@2h8#21(x), that is,
C is the inverse of the derivative2h8. With this, Eq.~36!
becomes
ṗi5(
j 51

N

wi j $@2h8#21@h8~pj /pj
eq!2]S̃/]pj #2@2h8#21@h8~pi /pi

eq!2]S̃/]pi #%. ~38!
can
ep-
und
This is the minimal extension of the master equation. If
hidden system can be described with the same entropyS̃
50), then Eq.~38! reduces to the master equation. By co
struction, both Eq.~36! and Eq.~38! are consistent with the
e
(
-

entropy increase in the kinetic processes, and therefore
be used in modeling the kinetic processes. Other kinetic r
resentations specializing to the Tsallis entropy can be fo
in the literature~see, e.g., Refs.@22,23#!.
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VII. DISCUSSION

Once a classical statistical system is out of the thermo
namic limit, the exclusive character of the Boltzmann-Gibb
Shannon entropy is lost, and classical ensembles are
equivalent anymore. Whereas using the microcanonical
semble for any description of finite systems may be m
appropriate, this route is very complicated from the com
tational standpoint. For that reason, seeking the entropic
scription of effects of finiteness is a relevant option.

In this paper, we have demonstrated that there exists
unique one-parametric family of entropy functions that a
consistent with the additivity of the entropy under joinin
statistically independent subsystems. This family is ess
tially the convex combination of the Boltzmann-Gibb
Shannon entropy and of the Burg entropy. This family
entropy functions appears in a natural way as the dis
guished~by the additivity requirement! subset of the family
of Lyapunov functions of the master equation. It has be
l
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n

demonstrated that the nontrivial contribution from the Bu
component results in a broadening of the high-energy tai
the canonical distribution function. The functional form
the deviation and, in particular, the appearance of the ene
correlations indicates that the maximum entropy appro
successively used recently in the context of the Tsallis
tropy may lead to similar results when the present entro
functions are used. Detailed study of this option is left for t
future work.

Finiteness of classical statistical systems is one option
calls for nonclassical entropies. A different~independent! op-
tion is the incompleteness of the description. This has b
demonstrated by analyzing the classical example of
Fermi-Dirac type of entropy, and a generalization in the fo
of ‘‘standard entropy for a multicomponent mixture plus li
ear constraints’’ has been suggested. Finally, we have
gested a modification of the master equation consistent w
the given entropy.
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