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Duality in nonextensive statistical mechanics
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We revisit recent derivations of kinetic equations based on Tsallis’ entropy concept. The method of kinetic
functions is introduced as a standard tool for extensions of classical kinetic equations in the framework of
Tsallis’ statistical mechanics. Our analysis of the Boltzmann equation demonstrates a remarkable relation
between thermodynamics and kinetics caused by the deformation of macroscopic observables.
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I. INTRODUCTION

The past decade has witnessed increasing interest in
extensive statistical mechanics based on Tsallis’ entropy c
cept@1,2#. Whereas most of the work has been done so fa
the context of purely static consideration, more recently
tempts have been made towards time-dependent proce
out of equilibrium. In particular, in a recent paper@3#, the
authors have extended the classical Boltzmann equatio
such a way as to obtain its analog for the case of Tsa
entropy@1#.

The motivation for this paper is that, in general, addre
ing the time-dependent processes may provide a test for
tain postulated properties of static considerations. Spe
cally, we want to test consequences of definitions
macroscopic variables such as particle’s density, momen
and energy, in the way they are used in nonextensive t
modynamics. The outline and the main results of this pa
are as follows: In the next section we recall, for the sake
completeness, the basic points of the nonextensive ther
dynamics. In Sec. III, we revisit the transformation of t
Boltzmann kinetic equation. Our analysis is based on
well-developed method of kinetic functions, and results
different from those of Ref.@3# only in some points inessen
tial to our discussion. Equilibria in the kinetic picture a
zeroes of the collision integral, and they can be found in
pendently of any maximum entropy consideration. This giv
us an opportunity to test which definitions of macrosco
variables should be taken in order to describe the same e
librium states, also as the maximum entropy states. It is d
onstrated that consistency rules out the deformed constra
Instead, we find a relation between the two families of eq
libria, one of which are nonextensive thermodynamic eq
libria, the other is the equilibria of the kinetic equations. Th
relation, termed duality in the sequel, is given by the tra
form of Tsallis’ nonextensivity parameter asq8522q. Some
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further implications of the duality are discussed.

II. THERMODYNAMICS

Let G be variables of a detailed description~phase vari-
ables!, f (G) distribution functions over the phase space, a
m(G) microscopic observables~energy, momentum, etc.!.
Nonextensive thermodynamics@1,2# is based on two points

~i! A set of concave functionals,Sq , q.0,

Sq5k~12q!21E @ f ~G!2 f q~G!#dG, ~1!

where integration over the phase space is replaced by s
mation in the discrete case. In the sequel, we use con
functionalsHq52k21Sq , in order to save notation,

Hq5~12q!21E @ f q~G!2 f ~G!#dG. ~2!

The one-parametric family of functionals~2! can be consid-
ered as a continuous deformation of the classical Boltzma
Gibbs-Shannon functionalH15*F(G)ln F(G)dG, since
limq→1 Hq5H1. @This deformation is continuous, and diffe
entiable but not continuously differentiable, the second
rivative of the functionHq(x) with respect toq at q51 is
divergent.#

~ii ! Maximum entropy states, corresponding to the obse
ablesm, are found as a solution to the problem,

Sq→max, E f dG5M0 , E mf qdG5M. ~3!

The introduction of the nonlinear inf,q dependent constraint
instead of the usual linear functionals,M5*mf dG is based
on the following observation: Let$l0 ,l% be Lagrange mul-
tipliers associated with constraints in the variational probl
~3!,

dSq1l0E d f dG1l•E mf q21d f dG50. ~4!
d-
©2002 The American Physical Society28-1
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Let f (1)(M0 ,M) be the solution to the problem~3!, and let
Z5* f (1)(1,M)dG be the partition function. Then, for eachq,
there exists a function

lnq~x!5
x12q21

12q
, ~5!

such that

] lnq Z

]l
5M. ~6!

This relation can be checked by inspection, and it provide
deformation of Gibbs’ fundamental relation defining the fr
energy~or, in a broader sense, Jaynesian structure of ther
dynamics!. It is pertinent to mention here that this is a suf
cient but not necessary deformation with a similar prope
Indeed, also the use of the undeformed constraints,

Sq→max, E f dG5M0 , E mf dG5M, ~7!

satisfies the relation

]Gq

]l
5M. ~8!

HereGq is the Legendre transform of the function

Sq
(2)~M0 ,M!5Sq„f

(2)~M0 ,M!….

The existence of the functionGq is guaranteed because th
transformf→dSq /d f is one into one. However, the impo
tant difference from the case~6! is that the explicit form of
functionsGq is not known for a genericq and genericm.

We discussed here only the formal aspect of the maxim
entropy problem for a generic phase spaceG, and for a ge-
neric set of observablesm, without touching upon the ques
tion of existence of solutions to either problems~3! or ~7!.
We shall come back to this point later on. Finally, where
most of the standard sources on maximum entropy state
almost exclusively devoted to the Boltzmann-Gibbs-Shan
functional, this question has been studied in detail for a
neric concave functionS in the context of the master equa
tion in Ref. @4#.

III. KINETICS

A. Deformation of collision integral

Same as in Ref.@3#, we focus our attention on the defo
mation of the Boltzmann collision integral. To this end, w
use the following well known structure of the collision int
gral @5,4,6,7#: Let f (v,x,t) be the one-particle distribution
function, andH a strictly convex functional~associated con
cave functional, the entropy, isS52kH). Let us denotem
5dH/d f the Volterra functional derivative ofH. Then the
following operator,f→Q( f ), is defined as
03612
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Q5E w~v8,v18uv,v1!~em181m82em11m!dv18dv8dv1 .

~9!

Here we denotem18 , m8, m1, andm, the functional deriva-
tives ofH evaluated atf (v18 ,x,t), f (v8,x,t), f (v1 ,x,t), and
f (v,x,t), respectively. The generalized functionw gives the
probability of scattering of the pair (v18 ,v8) into (v1 ,v), and
it has the form

w5v~v8,v18uv,v1!d~v81v182v2v1!

3d~v821v18
22v22v1

2!. ~10!

The form of the functionv in this expression is known in the
literature for various particle’s interactions@9,10#. While a
specific form ofv is unimportant to our discussion, we re
mind that it is derived from a purely mechanical consid
ation on the basis of Newton’s equations of motion of tw
particles. This results in the well known symmetry of fun
tion v ~detail balance!,

v~v8,v18uv,v1!5v~v,v1uv8,v18!. ~11!

Various generalizations of the structure~9! can be found in
the literature@4–7#. We recall the two formal features of th
collision integral~9! valid for anyH:

~i! The entropy production inequality for the entropy pr
ductions5*(dS/d f )Q( f )dv,

s52
k

4E w~em181m82em11m!

3~m1m12m82m18!dv18dv8dv1dv>0. ~12!

~ii ! Zero points of collision integral,Q50, and zero
points of entropy production,s50, satisfy

meq5Lin$1,v,v2%, ~13!

where Lin denotes linear envelope.
Using any of the functionalsHq ~2!, and computing de-

rivatives,

mq5dHq /d f 5~12q!21@12q fq21#, ~14!

together with Eq.~9!, we obtain the desired family of colli-
sion integrals,Qq( f ), and which provides a deformation o
the Boltzmann collision integral. The latter is obtained in t
limit of q→1.

Whereas all the general properties of the operator~9! are
valid in the particular caseHq , we will write out explicitly
Eqs. ~13!,~14! in terms of the equilibrium distribution func
tion rather than the derivative ofHq in the equilibrium,

f q
eq5~a01a1•v1a2v2!1/~q21!, ~15!

wherea0 , a1, anda2 are arbitrary parameters.
8-2
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B. Variational specification of equilibria

The analysis of the previous subsection is the result o
specification of the standard scheme~9! to Hq , and is only
slightly different from Ref.@3#. This difference is due to the
fact that Eq.~9! is based on the derivative of theH function
whereas the authors@3# used a related quantity,f q21 lnq f,
and which is specific to the case~2!. However, the most
important feature of both the deformation is thatthey make
no attempt to alter the scattering probabilities w, Eq. ~10!.
Before going any further, we need a short reflection of
classical Boltzmann case.

In the classical Boltzmann’s case, the~local! Maxwell dis-
tribution functions are described in three different wa
First, they are zero points of the collision integral. Seco
they are zero points of the entropy production. Third, a
final, they are maximizers of the entropy density under
linear constraints that fix the five hydrodynamic fields cor
sponding to the five collision invariants. In the classical ca
the three sets of distribution functions, each set specified
one of the conditions just mentioned, are equivalent. Fina
it is only the third specification that equips theset of the
local Maxwell distributions by a specific~thermodynamic!
coordinate system~the density, the average velocity, and t
temperature, the latter is in agreement with the fundame
thermodynamic relation!.

This reminder is pertinent to our discussion because
two of the specifications~zeroes of the collision integral, an
zeroes of the entropy production! are already fixed for the
deformed Maxwell states~15! by adopting the form of the
kinetic function, Eq.~9! and Eq.~10!. Thus, we are led to the
question, as to which is the third, variational specification
the set~15!? A priori, we have the two possibilities:

~i! Using the deformed constraints@problem~3!#,

Hq→min, E $1,v,v2% f qdv5$M0 ,M1 ,M2%. ~16!

~ii ! Using the undeformed constraints@problem~7!#,

Hq→min, E $1,v,v2% f dv5$M0 ,M1 ,M2%. ~17!

Solving formally both the problems by the method
Lagrange multipliers, we get

f q
eq85~a081a18•v1a28!1/~12q!, ~18!

f q
eq5~a01a1•v1a2!1/~q21!, ~19!

for the problems~17! and~16!, respectively. Obviously, if the
deformation parameterq is fixed, andqÞ1, it is the set~19!
that stays in agreement with the two other specifications,
~15!. Thus, in the kinetic picture, consistency atqÞ1 ulti-
matively requires the choice of the undeformed constra
for the variational specification. Several comments are
order.

~i! For infinite-dimensional systems such as the conti
ous Boltzmann equation, the moments of the local equilib
may not exist for someqÞ1. This fact is also well known in
03612
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the case of the classical Boltzmann equation: for exam
the maximum entropy solution for the Boltzmann entro
does not exist if the observables are the density, the ave
momentum, the stress tensor, and the heat flux@11#. In such
cases a regularization of divergent integrals is required
particular, a regularisation by the argument that the mag
tude of the microscopic velocity is restricted to the val
dictated by finiteness of thetotal energy@11# seems relevan
to our case. Another opportunity is to restore to a discreti
tion in the velocity space~see, e.g., Ref.@12#!.

~ii ! If one insists on using deformed constraints for de
vations of kinetic equations, then not only the collision int
gral but also the free flight operator must be deformed. S
derivations has to be based on the deformed Liouville eq
tion. Let us recall that, ifU(G) is the particles’ Hamiltonian,
the classical Liouville equation conserves the energy,E
5*U f dG, any of the functionalsSq ~1!, but not the func-
tionals Eq5*U f qdG. Therefore, the deformed Liouville
equation has to read

] t f 5L
dEq

d f
, ~20!

whereL is the Poissonian operator. Obviously, dynamics~20!
conserves the deformed energyEq , as well as any of the
functionalsSq . Development of the projection operator fo
malism to derive the deformed Boltzmann Eq.@13# is an
interesting option left for a future work.

IV. DUALITY

The apparent discrepancy between the outcomes of
thermodynamics with theq-deformed constraints, and of th
q-deformed kinetics is explained by the following dualit
For each value of the deformation parameterq, there are two
families of equilibrium distribution functions. The first (E
family! Fq

E described by the maximizers of the entropy fun
tion Sq underq-deformed constraints. The second family (N
family! Fq

N are stationary states of the deformed kinetics t
are maximizers of the same entropy under the undeform
constraints. We have worked out explicitly the particular ca
of the Boltzmann equation, but the observation should
valid for any deformation of kinetics based on the kine
function formalism. These families are related by the dua
transform of the deformation parameter,

q8522q, Fq8
E

5Fq
N , Fq8

N
5Fq

E . ~21!

The Boltzmann-Gibbs-Shannon case is thereby character
not just by the limiting feature atq→1 but also by self-
duality: The only solution to the set of equations,q85q,
q8522q, is q85q51. This is precisely the Boltzmann
Gibbs-Shannon limit of Tsallis’ entropy family that in ou
presentation gives the identity of theE and of theN families
of equilibria,F1

E5F1
N . This algebraic rather than the limitin

description of the Boltzmann-Gibbs-Shannon case has
been mentioned before, to the best of our knowledge. Sev
concluding remarks are in order:
8-3
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~i! Deformation@3# also leads to the same result as ou
and, in fact, the transformq8522q appears in an interme
diate computation in Ref.@3#. However, the importance o
this fact has not been mentioned by the authors.

~ii ! Duality ~21! selects the range of the deformation p
rameterq between 0 and 2. It is only in this range where bo
the E and theN families coexist. This is depicted in Fig. 1

FIG. 1. Dual families Fq
E and Fq

N . BGS is the self-dual
Boltzmann-Gibbs-Shannon limit.
l

s
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V. CONCLUSION

In this paper, we have analyzed the relation between
thermodynamic and kinetic description arising from the no
extensive statistical mechanics. We have argued that the
known formulation of kinetic models@4,5# provides a natural
setup for such extensions. We have demonstrated this fo
case of the Boltzmann collision integral. Several extensi
of classical models are readily obtained in a straightforw
way ~for example, the deformation of the chemical kineti
that parallels the formulation of the Boltzmann equatio
@7,8#!. Based on this deformation, we were able to test wh
kind of maximum entropy principle is compatible with oth
properties of local equilibria. Finally, we have demonstra
that the intrinsic duality between thermodynamic and kine
descriptions is present when the deformation param
qÞ1.
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