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ETH Zürich, Department of Materials, Institute of Polymers, ETH-Zentrum, CH-8092 Zürich, Switzerland
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There exists a unique extension of the classical Boltzmann entropy functional to a one-parametric family of
additive trace-form entropy functionals. We find the analytical solution to the corresponding deformation of the
classical ensembles, and present an example of the deformation of the uncorrelated state caused by finiteness
of the number of particles.
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I. INTRODUCTION

The growing interest in nonclassical entropies in recent
years �1,2� is motivated by the fact that they can be used to
describe observable statistical effects such as the following.

�i� Nonclassical tails of distribution functions which can
deviate significantly from the Gaussian distribution. In par-
ticular, this asymptotics can be power law �‘‘long tails’’� or,
instead, distribution functions can decay in a more rapid
fashion �‘‘short tails’’�, in particular, they can become equal
to zero at finite distance �‘‘cut tails’’�.

�ii� Strong correlations between subsystems in equilib-
rium and quasiequilibrium states.

The entropy-based description of these effects in the spirit
of the Gibbs ensembles is advantageous both in static and
dynamic problems. For the latter �dynamic� aspect, we refer
here to a vast literature on theories of nonequilibrium statis-
tical thermodynamics �see, e.g., Ref. �3��, as well as entropy-
based kinetic modeling �4�.

Usually, when one attempts to introduce nonclassical en-
tropies, there is a price to be paid. Nonclassical entropies at
use in most of the contemporary studies violate at least one
of the following important and familiar properties of the
BGS entropy: �i� Additivity—the entropy of the system
which is composed of independent subsystems equals the
sum of the entropies of the subsystems, �ii� trace form—the
entropy is a sum over the states �see below�. For example,
the Tsallis entropy �1� is not additive, the Rényi entropy �5�
is not of the trace form. A useful discussion of various prop-
erties of the entropy can be found in Ref. �6�.

Recently �7�, it was indicated that there exists a one-
parametric family of concave entropy functions which satisfy
both the conditions �additivity and trace form� simulta-
neously. This family is essentially the linear convex combi-
nation between the Boltzmann entropy and the so-called
Burg entropy �cf. Ref. �7��. While the existence of such a
family of additive entropies was eventually mentioned some

time ago �8�, the result of the paper �7� indicates that it can
be most pertinent to a unified study of systems out of the
strict thermodynamic limit.

The finding of the present paper is that the solution to the
maximization problem pertinent to this class of entropies is
actually tractable analytically almost as efficiently as the
classical Gauss distribution.

The structure of the paper is as follows. In Sec. II, we
describe the one-parametric family of additive entropies �7�
for the sake of completeness. In Sec. III, we demonstrate that
the maximum entropy problem for the family of entropies �7�
reduces to studying of one function of one variable. This
result enables the analytical formulas for the deformation of
the classical ensembles around the thermodynamic �BGS�
limit in Sec. IV. An example of such a deformation of the
classical uncorrelated ensemble of the configurational
N-body distribution function is discussed in Sec. V. Conclud-
ing remarks are given in Sec. VI.

II. ADDITIVE TRACE-FORM ENTROPIES

For the sake of presentation, we consider a finite set of
states characterized by the probabilities pi �finiteness and
discreteness are by no means the crucial restrictions, and are
employed only in order to avoid the convergence questions�.
We consider systems which allow for a positive equilibrium,
pi*�0 �for infinite systems, it is often advantageous to use
unnormalized p*). Then, any convex function of one vari-
able, h(x), defines the trace-form convex function of the
probability distribution Hh(p):

Hh�p ���
i

pi*h�pi /pi*�. �1�

�We consider below the convex Hh functions rather than the
concave entropy functions Sh��Hh . The variety of the
convex functions �1� was viewed in Refs. �7,8� as a set of
Lyapunov functions of the master equation with p* the equi-
librium, but this is not essential to our present discussion.�

Among the set of the trace-form functions �1�, there exists
a one-parametric subset of the additive functions, H� , 0
���1:
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H���
i

pi*h��pi /pi*�,

h��x ���1���x ln x�� ln x . �2�

In particular,

H0��
i

pi ln�pi /pi*�, �3�

H1���
i

pi* ln�pi /pi*�. �4�

The function H0 is the BGS entropy �also, in the form pre-
sented, sometimes referred to as the Kullback-Leibler en-
tropy for the reference equilibrium explicitly indicated�. The
function H1 is the Burg entropy for p* as the equipartition,
in the present form first given in Ref. �8�, to the best of our
knowledge. Additivity of functions H� �2� is readily checked
�7,8�: If p�pi j�qir j , and also if p*�pi j*�qi*r j* , then

H��p ��H��q ��H��r �. �5�

In order to avoid a possible confusion caused by a variety
of ways, the notion of additivity of the entropy is used in
current literature �see, e.g., Ref. �9��, and we note that the
additivity of family �2� is understood in the traditional sense,
that is, the usual statistical independence �factorization of the
distribution� implies Eq. �5�. Though we do not prove it here
rigorously, the argument why family �2� represents all of the
additive functions of the trace form �1� �up to a constant
factor and adding a constant� is readily available: Treatment
of the additivity condition, Hh(qr)�Hh(q)�Hh(r) as a
functional equation in order to determine the function h re-
sults in averaging of the vector function ln qirj ; this can be
done either with the joint probability qr �which leads to the
BGS case� or with the equilibrium joint probability q*r*
which leads to the Burg case. The rest follows by convexity
of their combination. Note that the second possibility �aver-
aging with q*r*) is not mentioned in many sources �for
example, the classical review by Wehrl �6�� because Burg’s
entropy is not continuous if some of the probabilities tend to
zero. This is, however, one of the possibilities to account for
finiteness �see below�.

III. THE MAXIMUM ENTROPY PROBLEM

Since a factor in front of H� is irrelevant, it proves con-
venient to use a different parametrization of family �2�, H� ,
���/(1��), �	0:

H���
i

�pi ln�pi /pi*���pi* ln�pi /pi*�� . �6�

Parametric representation �6� will be used below. The limit-
ing case �→
 corresponds to the pure Burg entropy �4�, and
it should be considered separately.

The major input into all the applications of the entropy
functionals in statistical physics is the description of the

quasiequilibria. Quasiequilibrium is the probability distribu-
tion which brings to maximum the entropy S(p) at fixed
values of the slow variables �their choice depends on the
physics of a given problem�, M�m(p):

S�p �→max, m�p ��M . �7�

In order to address the construction of the quasiequilibrium
in a general setting, we assume the macroscopic variables
M�m(p), where M s�� imsipi , and consider problem �7�
with S��H� . The method of Lagrange multipliers implies

�H�

�pi
��0��

s
�smsi , �8�

where Lagrange multiplier �0 corresponds to normalization,
and �s to the rest of the constraints. Let us denote �
 i the
right hand side of Eq. �8�. With this, Eq. �8� may be written,

ln�pi /pi*����pi*/pi���
 i . �9�

Solution to an equation

ln q��q�1��
 �10�

may be written as follows:

q�e�
e lm(�e
), �11�

where we have introduced notation lma �modified logarithm�
for the function which is the solution to the transcendent
equation,

xex�a .

The function lm satisfies the following identities:

lm a�ln a�ln lm a , �12�

lm a�ln a�ln�ln a�ln� ln a�ln�••• ��•••�. �13�

Identity �13� is the recurrent application of identity �12�. A
different representation of solution �11� reads

q�
�

lm��e
�
. �14�

From representation �11�, the asymptotics at �→0, and fixed

 , is obvious: q→e�
, and which corresponds to the usual
Boltzmann distribution. On the other hand, representation
�14� reveals the asymptotics at 
→
:

q�
�

ln ��

. �15�

For a symmetric distribution on the axis, and for 
��0
��2x2, the first of the limits just mentioned gives the Gauss-
ian distribution, while the second limit gives the Cauchy dis-
tribution. The corresponding distribution function for the
limiting case H
 is simply the Cauchy distribution on the
axis. We note it in passing that among nonsymmetric Cauchy
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distributions of the form p�(�0��1x��2x2)�1, there are
distinguished cases with a twice degenerated zero in the de-
nominator: p���(x�a)��2. When one attempts to normal-
ize this distribution by choosing a convergent sequence of
functions, one gets a Dirac � function �(x�a) which can be
interpreted as a microcanonical ensemble.

Thus, the quasiequilibrium distribution has the form

p�p*e�
e lm(�e
)�
�p*

lm��e
�
. �16�

�We have omitted indices of states in p, p*, and 
 .� Ana-
lytical formula �16� is the main result of this paper. Several
remarks are in order.

�i� We have worked out the deformation of the quasiequi-
librium ensembles using the dual variable 
 while the de-
pendence 
(M ) has been kept implicit. In general, mani-
folds of quasiequilibrium states are well defined in terms of
dual variables �Lagrange multipliers�. What is not always
well defined for the distributions with long tails is the mo-
ment chart of these manifolds �Lagrange multipliers cannot
be expressed in terms of moments if the latter do not exist�.
For example, the manifold of Cauchy distributions men-
tioned above is parametrized by Lagrange multipliers,
whereas the parametrization in terms of the second moment
does not exist. In these cases, a regularization is required,
which assumes taking into account finiteness of the physical
phase space �cf. Ref. �3��. Other possibilities to parametrize
quasiequilibrium manifolds were worked out in applications
to the Tsallis entropy where one uses nonlinear functionals of
the distribution function �so-called escort probabilities, Refs.
�2,10��. The use of these nonlinear parametrizations, how-
ever, leads to inconsistencies when dynamic problems are
addressed �cf. Ref. �11��.

�ii� Let us indicate a remarkable formal extension of result
�16� to ��0 �or, alternatively, to ��0 in representation �2��
when the entropy function �6� loses convexity. Function lma
is defined, and is continuous, for a	�e�1 (lma	�1). At
a→�e�1, we have the limit dlma/da→
 . If we formally
extend lma��
 for a��e�1, then Eq. �16� is a distribu-
tion with a compact support �‘‘cut tail’’�. With this, there will
be defined a nonzero ratio p/p*:

inf�p/p*�p�0�	����0, �17�

that is, either p	���p* or p�0. This is similar to a Max-
well construction of a stretched spinodal �the cut at the in-
flection point�, and not to the global maximum of the en-
tropy. Whereas such constructions are always necessary
when working with nonconvex thermodynamic potentials,
we will not further discuss the case ��0 in this paper.

IV. ENSEMBLES NEAR THE BGS LIMIT

Using Eq. �16�, it is possible to study perturbatively de-
formations of quasiequilibrium ensembles near the thermo-
dynamic limit. For the classical BGS entropy (��0), the
quasiequilibrium distribution has the form

p�p*e�
. �18�

To first order in � , we get

p�p*�e�
����o���. �19�

The first-order deformation amounts to just a homogeneous
shift of all quasiequilibrium populations �see also example
below�.

In order to compute the quasiequilibrium to second order
in � , we must use the expansion of lma to third order,

lm a�a�a2��3/2�a3�o�a3�.

Then

p�p*� e�
���
1

2
�2e
��o��2�. �20�

Further corrections can also be easily computed using
higher-order terms in the expansion of the lm. We now shall
consider a specific example of formula �20�.

V. CORRELATIONS CAUSED BY FINITENESS

In order to illustrate the effect of second-order deviations
from the BGS case, we apply Eq. �20� to the classical qua-
siequilibrium defined by the one-particle configurational dis-
tribution function f 1(r), where r is position variable. Assum-
ing the equipartition for the reference equilibrium, p*
�1/VN, where V is the volume of the system and N is the
number of particles, we get e�
�e�0� i�1

N �(ri), where the
Lagrange multiplier �0 is responsible for normalization.
Then the N-body quasiequilibrium distribution function to
second order in � reads

VNp�e�0�
i�1

N

��ri����
�2

2e�0�
i�1

N

��ri�

�o��2�.

�21�

Our goal now is to compute the two-body configurational
distribution function

f 2�r ,q ��N�N�1 �� p�r ,q ,r3 , . . . ,rN�dr3•••drN ,

in quasiequilibrium �21�. We recall that the classical result
for the BGS entropy gives the uncorrelated two-body distri-
bution, f 2(r ,q)� f 1(r) f 1(q), which also corresponds to the
limit (��0) of Eq. �21�. Computation to the order �2 re-
quires expansion of Lagrange multipliers �0 and � to the
corresponding order. This computation is straightforward al-
though tedious, thus we give here only the final result: The
two-body quasiequilibrium configurational distribution func-
tion f 2 reads
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N

N�1
f 2�r ,q ���1����2� f̃ 1�r � f̃ 1�q ���n2

�
�2

2
n2BN�1�r ��1�q ��o��2�, �22�

where n�N/V is the average number density, and where we
have introduced notations,

f̃ 1�r �� f 1�r ���n , �23�

�1�r ��
f 1�r �

n
�

n

B f 1�r �
, �24�

B�
1

V�V

n

f 1�r �
dr . �25�

It is readily checked that result �22� gives f 2�(N
�1)N�1 f 1 f 1 at ��0, which is identical with the classical
uncorrelated pair distribution.

The first two terms in Eq. �22� amount again to the un-
correlated state with homogeneously shifted one-particle dis-
tributions � f̃ 1 �23� instead of f 1, which amounts to a homo-
geneous subtraction of the average density times �].

The underlined term �of the order of �2) is the contribu-
tion responsible for correlations caused by finiteness. Note
that this extra correlation also has a form of a product, but
not of the distribution functions, rather, of functions of one
variable �24�. In order to see the effect of this term more
explicitly, we assume fluctuations around the homogeneous
density in the thermodynamic limit,

f 1�r ��n�1���r �N�1/2� , �26�

where � is a function with zero average, and finite amplitude,
����0, ��2���2, where we have introduced notation for
averaging over the volume, �h��V�1�Vhdr . Note that the
amplitude of the inhomogeneity is realistic, and it scales as
N�1/2 in full accordance with the classical theory of fluctua-
tions. Assuming large �but finite� number of particles, we
find to the leading order in N,

B�1��2N�1�o�N�1�, BN�e�2
�o�1 �.

Thus, specializing to the trial one-body distribution function
�26�, the deformation to second order of the uncorrelated �in
the thermodynamic limit� two-body distribution function
reads

N

N�1
f 2�r ,q ���1����2� f̃ 1�r � f̃ 1�q ���n2

�2�2n2�2e�2
N�1��r ���q �, �27�

where we have denoted ����1� , ��2��1.
Note that the correlations induced by finiteness of the sys-

tem in the present example are highly nonlinear due to the
dependence of the function �1 on the one-body distribution
f 1. For that reason, deformation of the uncorrelated state
�22� should be significant, in particular, to the corresponding
derivations of the Vlasov mean-field kinetic equation from
N-particle dynamics. This interesting problem is left for fu-
ture work.

VI. CONCLUSION

The one-parametric family of the additive trace-form en-
tropy functions considered in this paper is a convex linear
combination of the classical Boltzmann entropy and of the
Burg entropy, whereas the maximum entropy states are non-
linear combinations of the Gaussian and Cauchy distribu-
tions �in the case of the second moment as the macroscopic
variable, and generalizations thereof for different macro-
scopic variables�. This feature �trace form and additivity si-
multaneously� distinguishes the present family of entropies
among many suggestions in the recent past. We have found
the analytic solution to the maximum entropy problem in
terms of one function of one variable, which enables to study
perturbations of classical ensembles near the thermodynamic
limit. The corresponding deformation of the uncorrelated �in
the thermodynamic limit� state is established.

The asymptotic formula �15� reveals that the tail of the
distributions in this theory is parameter independent, and is
always Cauchy-like when � is away from zero. This is dif-
ferent, in particular, from the Tsallis case which leads to
algebraic tails with the power dependence on the Tsallis pa-
rameter q. The present theory is explicitly focused on study-
ing perturbations to the thermodynamic limit, and this uni-
versality of the tails is remarkable. On the other hand, a
different general mechanism for nonclassical entropies was
also indicated in Ref. �7�, and it is related to the incomplete
description �akin the Fermi-Dirac entropy of the electron-
whole systems�. This may affect the behavior at the tail of
the distribution. In a subsequent publication �12�, we shall
study how the present entropy plus the incomplete descrip-
tion perform in fitting the recent turbulence data results of
Beck et al. �13�.
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