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Abstract 

Motivation: In several recent papers new algorithms were proposed for detecting coding regions 
without requiring learning dataset of already known genes. In this paper we studied cluster structure 
of several genomes in the space of codon usage. This allowed to interpret some of the results 
obtained in other studies and propose a simpler method, which is, nevertheless, fully functional. 
Results: Several complete genomic sequences were analyzed, using visualization of tables of triplet 
counts in a sliding window. The distribution of 64-dimensional vectors of triplet frequencies 
displays a well-detectable cluster structure. The structure was found to consist of seven clusters, 
corresponding to protein-coding information in three possible phases in one of the two 
complementary strands and in the non-coding regions. Awareness of the existence of this structure 
allows development of methods for the segmentation of sequences into regions with the same 
coding phase and non-coding regions. This method may be completely unsupervised or use some 
external information. Since the method does not need extraction of ORFs, it can be applied even for 
unassembled genomes. Accuracy calculated on the base-pair level (both sensitivity and specificity) 
exceeds 90%. This is not worse as compared to such methods as HMM, however, has the advantage 
to be much simpler and clear. 

Availability: The software and datasets are available at http://www.ihes.fr/~zinovyev/bullet 

Contact: zinovyev@ihes.fr 

Supplementary information: http://www.ihes.fr/~zinovyev/bullet 

 
Introduction 
With few exceptions, almost all commonly used gene-finding programs employ a 
learning dataset for tuning the parameters of the learning rule.  In several recent 
papers new algorithms were proposed for detecting coding regions without requiring 
learning dataset of already known genes. In Bernaola (2000) the authors proposed a 
method developed for unsupervised segmentation of whole DNA texts, which 
corresponds to the segmentation for coding and non-coding regions. In Audic and 
Claverie (1998) the authors proposed to use clustering procedure that uses all 
available annotated genomic data for its calibration and is not based on direct 
pairwise comparisons. The iterative procedure uses genomic sequences to adjust 
parameters (that were initialized by randomly partitioning a number of small 
subsequences) of probabilistic sequence models. The algorithm converges fast and 
gives accuracy up to 90%. In Baldi (2000) it was explained that this algorithm is 
essentially a form of the expectation maximization algorithm applied to the 
corresponding probabilistic mixture model. 
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In this paper we introduce a similar but much simpler method, which does not refer to 
the probabilistic methods of sequence analysis. Instead, we use a method of data 
visualization to explore the space of frequencies of triplet counts in a sliding window 
and to demonstrate the structure of a dataset used for learning.   We show that in the 
case of high concentration of coding bases (microbial genomes, yeast genomes), 
traditional use of a learning dataset (a set of examples of already known coding and 
non-coding regions) may be replaced by an unsupervised procedure.  Then we 
propose a simple clustering method for detecting coding regions in the whole 
genomes and test it’s performance that turns out to be essentially the same as of the 
methods mentioned above, as well as of new traditional microbial gene-finders (like 
GLIMMER [Salzberg et al., 1998, Delcher et al., 1999]). 
Let us denote codon frequency distribution by fijk , where i,j,k∈{A,C,G,T}, i.e., for 
example, fACG is equal to the frequency of the ACG codon  in a given coding region.  
One can introduce such natural operations over the frequency distribution as phase 
shifts P(1) , P(2) and complementary reversion CR:   
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where î  is complementary to i, i.e., TA =ˆ , Ĉ = G,  etc. 
The phase-shift operator P(n) calculates the new triplet distribution, but now counted 
with a frame-shift on n positions, in the hypothesis that no correlations exist in codon 
order.  Complementary reversion constructs the distribution of codons from a coding 
region in the complementary strand, but counted in the forward strand (“shadow” 
codon usage).  

Let us introduce the distance between two distributions as ∑ −=−
ijk

ijkijkijkijk gfgf . 

It is then natural to expect that the problem of gene recognition may be solved if one 
of the numbers, ijkijk fPf )1(− , ijkijk fPf )2(−  is large enough.  It follows from that 
remark that after a large number of insertion and deletion operations of one base-pair 
at a time, we would have  

0)1( ≈− ijkijk fPf , 0)2( ≈− ijkijk fPf . 

Let us introduce a measure of how far fijk is from the shifted distributions:  
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Real distributions in the first and second phases (where correlations are taken into 
account) will be denoted as )1(

ijkf , )2(
ijkf , )1(

îjkf , )2(
îjkf .  Let us introduce the term “codon 

correlation contribution measure” as the average distance between real and 
calculated distributions ( ))2()2()1()1(

2
1
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Methods 
We have constructed datasets of triplet frequencies for several real genomes and for 
several model genetic sequences, as follows:  
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1)  Only the forward strands of genomes are used for triplet counting; 
2)  Every p positions in the sequence, we open a window (x-W/2,x+W/2,) of size 

W and centered at position x; 
3)  Every window, starting from the first base-pair, is divided into W/3 non-

overlapping triplets, and the frequencies of all triplets fijk are calculated; 
4)  The dataset consists of N = [L/p] points, where L is the entire length of the 

sequence.  Every data point Xi={xis} corresponds to one window and has 64 
coordinates, corresponding to the frequencies of all possible triplets s = 1,…,64.   
A standard centering and normalization on a unit dispersion procedure is then 
applied, i.e.,  

s

sis
is

mxx
σ
−=~ ,  where isx~  is the value of the sth coordinate of the ith point 

after normalization, and sm  is the mean value of the sth coordinate, and sσ is the 
standard deviation of the sth coordinate.   
Then we applied the principal components algorithm in order to visualize a 64-
dimension dataset on a 3-dimensional linear manifold spanned by the first three 
principal vectors of the distribution.  It is known that projection onto this manifold is 
only as informative as the higher value of ν(3) = D(3)/D, where D is the dispersion of 
the dataset, calculated in 64-dimensional data-space and D(3) is the analogous quantity 
calculated after projecting the vectors in 3-dimensional space. In practice, even if the 
value of v(3) is not high enough (say, it equals 0.1-0.3), we may still try to visualize 
the dataset, in the hope of being able to pick up qualitative “signals” of the presence 
of hidden patterns in the data distribution, as well as to visually represent the dataset.   
 
Results 
Figure 1 presents several distributions calculated for real genetic texts.  It is clear that 
the distribution consists of seven clusters.  In some cases these clusters are situated 
quite symmetrically, in others they are not.  In addition to the distribution itself, we 
introduced two triangles, formed by the points fijk, (1)

ijkP f , (2)
ijkP f  and ijkf̂ , ijkfP ˆ)1( , ijkfP ˆ)2( , 

into the figures.  The large spheres correspond to the points fijk and ijkf̂ , where fijk was 
calculated from the genome’s known annotation.  Data-points have different shapes 
and colors, according to whether they are coding or non-coding in one of the two 
strands.  An explanation of the structure is rather clear: Coding information from 
windows in the forward strand has one of three possible phase shifts.  Since this 
phase shift is not known in advance, approximately one-third of the windows fall into 
the vicinity of the point that corresponds to the fijk (0-shift), one-third are close to the 

)1(
ijkf (1-shift), and the last third are close to the )2(

ijkf  (2-shift).  This is also true for the 
complementary strand, but with the centers corresponding to complementary 
distributions.   
One can see from the pictures that the centers of phase-shifted distributions are close 
enough to the calculated points, showing an absence of significant correlations in the 
order of codons.  Indeed, the calculated values of CC are not high (see Table 1, CC 
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column.)  This means that in real texts correlation between subsequent codons is 
much less then the inter-phase difference. 
Clusterization 
Using visual representation of data-point distribution, it is possible to propose a rather 
natural way of segmenting sequences into regions that are homogeneous with respect 
to coding phase.  One would expect that regions with the same coding phase 
correspond to protein-coding regions.  This procedure was accomplished using the 
well-known K-means clustering algorithm.  After clustering the distribution into 
seven clusters (the clustering was accomplished in the 64-dimensional space), triplet 
distribution may be calculated in the (x-W/2,x+W/2) window for every base-pair in 
position x, and after appropriate normalization, the closest cluster in the data space 
may be found.  If it is the central cluster, that point is likely to be non-coding; 
otherwise the presence of coding information should be suspected in one of three 
possible phases.   
To evaluate the ability of this procedure to differentiate between “coding” and “non-
coding” base-pairs, we used base-level sensitivity and specificity of exon recognition, 
the measures which are commonly used in this case:  

FNTP
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+
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+

=  

where TP is the number of true-positives, i.e., coding bases predicted to be coding;  
TN is the number of true-negatives, i.e., non-coding bases predicted to be non-
coding; FP is the number of false-positives, i.e., non-coding bases predicted to be 
coding, and FN is the number of false-negatives, i.e., coding bases predicted to be 
non-coding.   
We must underline that the procedure is fully automated and does not require any 
human intervention. Visualization of datasets can be useful to evaluate how reliable 
prediction will be (compactness of the clusters, for example) and to compare 
prediction with known information. 
The results are shown in the Sn1 and Sp1 columns of Table 1.  These values are quite 
high.  The only parameter – window size – may be visually evaluated by comparing 
pictures of data constructed with various values of W (see full version of the paper on 
the accompanying web-page.)  In fact, the dependence of effectiveness on window-
size is not strong over a rather long interval of W. 
Using known data 
In the previous section the learning process used no information other than the 
sequence itself; it was completely “unsupervised”.  Of course, one could try to make 
use of some previous knowledge, as discussed in the next paragraph. 
Studying a set of training examples (for example, following the strategy of 
GLIMMER, using long ORFs as a training set), it is possible to explicitly calculate 
the centers of all seven clusters.  We have done this, using annotation of the analyzed 
genomes. First, half of the genes were used to calculate the centers, and the rest for 
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accuracy testing. Using these seven vectors as centroids, we calculated new values 
for the sensitivity and specificity of gene recognition.  They are shown in the Sn2 and 
Sp2 columns of Table 1. 
Comparing with GLIMMER gene-finder 
To compare the results obtained by our algorithm with some well-established gene-
finding program, we introduced new simple rules for deciding if a given ORF is 
coding or non-coding. For every ORF, we calculate 64-dimensional vector of it’s 
codon frequencies and find the closest centroid in the codon frequencies space (the 
positions of the centroids are calculated as it was described earlier). If the closest 
centroid is the one, which corresponds to the correct coding phase (let us denote it by 
P0), then this ORF is suspected to be coding. Then from all such ORFs in P0 phase 
we filter out all ORFs that are too distant from the P0-centroid (the threshold is 
determined by an additional parameter), and all ORFs which are inside other ORFs in 
the P0 phase (it means that we take the longest ORF in the P0 phase). 
To test this procedure, we analyzed output of GLIMMER gene-finder (using default 
settings), using the list of ORFs, produced by GLIMMER. Thus, we compare only 
effectiveness of measures used, and not the details of ORF list extraction procedures.  
In the table 2 we show the results of this comparison, using existing annotations of 
the genomes in GenBank.  One must understand that the annotations are far from 
being perfect and some part of the ORFs that we denoted as false positives in the 
GLIMMER prediction can be unknown putative genes (as it is claimed by the authors 
of GLIMMER).  Nevertheless, we find significantly lower false-positive rate of our 
method comparing to the GLIMMER prediction. Analyzing this, in some genomes 
we found that a cluster structure exists in the distribution of false-positive 
GLIMMER predictions. On fig.2 visualization of GLIMMER predictions on the 
principal components plane is shown for Escherichia coli and Caulobacter 
crescentus for which GLIMMER produces many predictions of “additional genes”. 
For example, our analysis shows that 62% of false-positives predictions for 
Escherichia coli and 80% of false positives for Caulobacter crescentus in the 64-
dimensional triplet frequencies space are closer to the centroid, which corresponds to 
the CRfijk distribution (C0-centroid), while only 2% of true-positive predictions for 
Caulobacter crescentus are close to the C0-centroid. It seems that such discrepancy 
cannot be explained simply by the “presence of unknown genes” but it is due to some 
“overfitting” effect of this HMM-based predictor, which often takes “shadow” genes 
as positive predictions. 
As one can see from table 2, the sensitivity of our method is lower in all cases, 
comparing to the GLIMMER gene-finder. Using annotation of E.Coli, we found that 
from 228 genes predicted by GLIMMER, and not predicted by our method, 121 are 
annotated as predicted only by computational methods, 11 ribosomal genes and 12 
transposases. From 24 genes predicted by our method and not predicted by 
GLIMMER, 17 are annotated as predicted only by computational methods and 3 as 
ribosomal genes. It is not surprising; since it is known that ribosomal genes, some 
other highly expressed genes as well as horizontally transferred genes (the percentage 
of which is estimated as 10% from the overall number, [Medigue, 1991]) can have 
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different (with respect to the average) codon usage, for example, strongly 
translationally biased codon usage in the case of ribosomes. It is known also, that 
preliminary clusterization of genes can enhance existing gene-finding procedures 
[Mathe et al., 1999,2000]. 
Window-size dependence 
Figure 3 presents our study of window-size dependence of the algorithm 
effectiveness for two genomes. One can see that the minimal window length, which 
can be used for the algorithm, is about 100 bp. This value is often characterized as a 
barrier for all gene-prediction methods based on the analysis of compositional 
differences. Then, the sensitivity of the algorithm drops monotonically, and, after 
window size of 400-500 bp, becomes poor.  
 
Implementation 
All datasets were prepared from sequences in the GenBank flat-file format.  The 
programs used for data analysis, including simple implementation of the K-means 
clusterization algorithm, were written in Java and are available with instructions at 
the accompanying web page: http://www.ihes.fr/~zinovyev/bullet/.  These programs 
actively use the BioJava programming package. Technically, the data visualization 
and all illustrations were produced using the ViDaExpert data visualization tool under 
Windows, and are available at the supplementary web-page. 
 
Discussion 
In prokaryotes (for example, Helicobacter pylori) the model has approximately the 
same performance as GLIMMER gene-finder (Salzberg, et al., 1998, Delcher et al., 
1999), having slightly worse sensitivity, but significantly better specificity. This 
means that the essential part of the information needed to discriminate between 
coding and non-coding regions is already contained in triplet distributions Using 
hexamer frequencies (that is common practice in modern gene-finders) can be more 
sensitive, but also can lead to some undesirable effects. One needs more sequence 
information to evaluate hexamers frequencies, and, as a result, this fact can lead to 
the “overfitting” effects, leading to worse specificity. We demonstrated this fact, 
using visual analysis of positive predictions of GLIMMER gene-finder. 
It is clear from the constructed representations of datasets that the spatial structure of 
triplet distributions is almost completely determined by two factors: 1) the frequency 
distribution of the 64 codons in the coding phase; 2) the dispersion of codon 
frequency distribution.  From the figures, it is evident that the distribution structure 
renders linear discrimination analysis (sometimes applied in this situation) absolutely 
inapplicable.  Applying linear methods in this case would lead to the incorrect  
conclusion that the dataset is not well-separable and that this measure is less effective 
than others with respect to linear discrimination function.  For example, in the case of 
Helicobacter pylori, linear discrimination yields a specificity of ≈0.83 (which means 
many false positives), while the method we proposed yields ≈0.97.  This fact stresses 
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that understanding the spatial structure of a learning dataset is absolutely necessary 
for the reasonable application of pattern recognition methods.   
Frequency normalization plays a key role in cluster structure formation.  It indicates 
the important role in distinguishing coding and non-coding regions played by triplets 
which may not have high frequency values but that considerably change their 
frequency after a coding phase-shift (codons that are “prohibited,” due to bias.)   
From the general point of view, distribution of non-overlapping triplets that is 
efficient for gene recognition corresponds to a high value of mutual information in 
three consecutive letters, i.e.,  

∑=
ijk kji

ijk
ijk ppp
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fM 3212log , 

where k
ip  is the average frequency of letter { , , , }i A C G T∈  at the kth place in triplet. 

This value may be zero only in the case 321
kjiijk pppf = .  In this case, we would have 

ijkijkijk ffPfP == )2()1( , i.e., phase-shift does not change the codon distribution.  High 
values of M guarantee the presence of a “three-phase triangle” in the data space, as 
well as the formation of a cluster structure.   
In this paper, using visual analysis of a spatial dataset structure and simple clustering 
technique, we have shown that a learning dataset is not necessary in order to 
accurately solve gene recognition tasks, at least in DNA segments with high 
concentrations of coding information (compact genomes).  This property of the 
method we propose seems to be very useful, since the problem of choosing a “good” 
learning dataset is not very well defined (see, for example, [Mathe, Sagot et al.]).  
The method proposed can be applied for the rough annotation of unassembled 
genomes, since it does not require preliminary extraction of ORFs. This makes it 
useful for inexpensive genome survey projects. 
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Table 1 
Summary table of results for assessing the method on the nucleotide level 

 

Sequence L W p ν(3)
% of 

coding
bases

CP CC Sn1 Sp1
 Sn2

 Sp2

 
Helicobacter pylori 
Caulobacter crescentus 
Prototheca wickerhamii  
Saccharomyces cerevisiae chromosome III
Saccharomyces cerevisiae chromosome IV

1643831
4016947

55328
316613

1531929

300
300
120
399
399

120
300

18
99

120

0.35
0.21
0.17
0.16
0.15

90
91
49
69
73

0.68
1.07
0.83
0.45
0.48

 
0.28 
0.16 
0.11 
0.10 
0.09 

0.93
0.93
0.82
0.90
0.89

0.97
0.97
0.93
0.88
0.91

 
0.93 
0.94 
0.84 
0.90 
0.92 

0.98
0.98
0.95
0.90
0.92

 
 

Table 2 
Comparing the method with GLIMMER gene-predictor 

 

CLUSTER GLIMMER 

Sequence 
Sn Sp 

 
Sn 

 
Sp 

 
Helicobacter pylori 
Haemophilus influenza 
Escherichia coli 
Bacillus subtilis 
Caulobacter crescentus 
 

0.94
0.93
0.91
0.89
0.89

0.95
0.88
0.87
0.95
0.76

 
0.96 
0.96 
0.96 
0.97 
0.94 

 

0.78
0.84
0.76
0.79
0.60
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a) b)  

 

c) d)

 
 

 
 

Fig.1. Visualization of genetic sequences in the space of triplet frequencies  
a) Caulobacter crescentus (GenBank NC_002696); 

b) Helicobacter pylori (GenBank NC_000921); 
c) Saccharomyces cerevisiae chromosome IV (GenBank NC_001136); 

d) Prototheca wickerhamii mitochondrion (GenBank NC_001613). 

 – non-coding,  – exons in forward strand, – exons in complementary strand , 
 – fijk,  – ijkfP )1( , ijkfP )2( ;  – ijkf̂ ,  – ijkfP ˆ)1( , ijkfP ˆ)2(  
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a)  b)  
 
 
 

Figure 2. Visualization of the distribution of predictions of GLIMMER gene-finder  
in 64-dimensional space of codon frequencies.  

Every point corresponds to one ORF. Red and green triangles denote the same 
structures as described at the figure 1.  

a) Escherichia coli. Projection on the 1st and 3d principal components. 
b) Caulobacter crescentus. Projection on the 1st and 2d principal components. 

 
 

 – negative predictions,  – true positive predictions,  – false positive predictions, 
 – fijk,  – ijkfP )1( , ijkfP )2( ;  – ijkf̂ ,  – ijkfP ˆ)1( , ijkfP ˆ)2(  
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Figure 3. Window-size dependence of the algorithm 
  

 


