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Motivation

In the seventies and eighties of the last century considerable progress has been achieved
in the treatment of stability and bifurcation of solutions of non-linear low-dimensional
dynamical and statical systems. This progress was connected with names like
V.I.Arnol’d, J.Moser, R.Thom, S.Smale, M.Golubitsky, and many others.

For eample Takens-Bogdanov bifurcation at a nilpotent double zero eigenvalue results
in the following Normal Form

ẋ1 = x2

ẋ2 = Ax3
1 +Bx2

1x2

which is equivalent to the second order equation

ẍ−Ax3 −Bx2ẋ− ax− bẋ = 0

where two unfolding terms with the parameter values a, b have been introduced.



The following diagramm is obtained for A < 0 and B < 0.
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One might wonder what this progress in Applied Mathematics might have to do with
practical problems encountered, for example, in stability investigations in Mechanics or
Engineering. In Engineering both statical and dynamical problems are typically modelled
by systems with a large or even infinite number of degrees of freedom whereas, for
example, in the books by Arnol’d, Guckenheimer and Holmes, Golubitsky and Schaeffer
or Iooss and Joseph only very low dimensional systems are analysed.

The connection between low dimensional dynamical systems and infinte or large finite
dimensional systems, if there is any at all, may be given by the concept of
dimension-reduction.



Is there a theory of dimension reduction?

There is no general theory of dimension reduction.

But it is well known that under certain conditions dimension reduction is possible. Then
the next questions arise:

1. Under which conditions is dimension reduction possible?

2. To what extend does the reduced system still keep the essential features and
properties of the full system?



What is dimension reduction?

There are various different forms of dimension reduction in Mechanics.

All of them is common that in one way or the other the quantities, introduced or
obtained for the description of the system, may be strongly reduced in their number,
because it turns out that some of them are not essential for the (asymptotic) behavior
of the considered problem.

This fact is well known either:

• form engineering experience (experiments) or

• from numerical simulation or

• from rigorous mathematical proof.



We consider the fundamental problem of stability theory: The loss of stability of an
equilibrium position of a high dimensional or infinite dimensional system under
quasistatic variation of a system parameter.

Typical example: Loss of stability of the downhanging position of a fluid conveying tube.



Mathematically the problem can be posed as follows:

Consider an infinite dimensional system given by a partial differential equation with
boundary conditions

G

(
∂

∂t
,∇,v(x, t), λ

)
= 0 ,

including a parameter λ.

We want to derive the finite dimensional system

dq

dt
= f(q, λ) q ∈ Rm .

Its solution should allow to approximate the field v(x, t) in some appropriate norm.

Two basic questions: (1) What are the qi(t)?
(2)How to find the finite dimensional system?



We rewrite the field equation in the form

u̇ = A(λ)u + g(u, λ),

• A = Gv(ve) is the linearization of the operator G at the equilibrium position ve,

• g is a smooth nonlinear operator

• u = v − ve is the deviation from ve.

Both operators A and g still depend on the spatial variable x. In addition, we assume
that g(0, λ) = 0 and gu(0, λ) = 0.

The first step in treating the stability problem of the tube is looking at the linearized
problem and calculating the eigenvalues and the corresponding eigenfunctions
(eigenvectors).



For quasistatically increasing the flow rate ρ we depict the movement of the eigenvalues
σ in the complex plane.
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It can be seen that at ρ = ρc a pair of complex conjugate eigenvalues crosses the
imaginary axis whereas all other eigenvalues have a negative realpart.



The loss of stability can be described in terms of the temporal evolution of the
amplitudes of certain (active) modes that are mildly unstable or only slightly damped in
linear theory (Coullet and Spiegel 1983).

If the number of the active modes is finite, their amplitudes are governed by a set of
ordinary differential equations: the amplitude equations of the critical modes.

The qi(t) are the amplitudes of the active modes and the m ordinary differential
equations are the amplitude equations describing their time evolution.

These amplitude equations govern, at least locally, the behavior of the full system since
the other (infinitely many) modes are damped and don’t appear in the description.

Hence the following task must be solved:

1. Search for preferred patterns (coherent structures)

2. Find a simple model which describes the dynamics or the interaction of the coherent
structures



How to find the active modes and to calculate the amplitude
equations?

There are no general answers how to identify the active modes.

However, if we restrict to the szenario of loss of stability of an equilibrium for a
quasistatic variation of a parameter λ, some (mathematically sound) answers can be
given (Aceves, A., Adachihara, H., Jones, C., Lerman, J. C., McLaughlin, D.W.,
Moloney, J. V., Newell, A. C., 1986).

We distinguish three cases:

(I) |λ− λc| = O(ε): values of λ are close to the transition value λc .

(II) |λ− λc| = O(1): moderate deviations of λ from λc.

(III) |λ− λc| = O(1/ε), large deviations of λ from λc.



How to find a reduced order system?

1. Local theory:

(a) Dynamics: Center manifold theory
(b) Statics: Liapunov-Schmidt method

2. Global theory:

(a) Theoretically important: Inertial manifold theory
(b) Practically important: Galerkin methods (Approximate inertial manifold theory)

3. Slow-fast dynamics in Hamiltonian systems (Nonlinear Normal Modes).

4. Linear Static Problems: Condensation



Local theory

We must still further distinguish between small and large aspect ratio systems.

The aspect ratio decides whether a strong straight forward dimension reduction to
amplitude equations can be performed.

The aspect ratio refers to the ratio of the length scale of the extension of the system to
the length scale which is characteristic for the dynamics of the problem.

Example: Benard-problem in spherical geometry (Chossat 1979)

If the fluid layer has thickness h and the radius of the sphere is a then the multiplicity
of the critical eigenvalue at loss of stability is:



• h
a = 1.0 3-fold

• h
a = 0.7 5-fold

• h
a → 0 ∞-fold.



Hence the planar Benard problem has an eigenvalue with infinite multiplicity at loss of
stability. This is easy to understand, because for two wave numbers kx and ky only one
equation is given

k2
x + k2

y = k2,

where k is determined from the neutral stability curve.

Analogous problem: Buckling of a complete spherical shell under uniform
compression

Here due to the high multiplicity of the critical eigenvalue a reduction of the infinite
dimensional problem to a finite dimensional problem is only possible if many modes are
retained.

Numerical results are presented in Hoff, Madsen, Mayers (1966) and Yamaki (1984) for
elastic buckling of an axially compressed circular cylindrical shell. Here > 50 terms must
be included to obtain a sufficiently accurate result.



Local theory: Center manifold theory

Literature: Carr 1981, Holmes 1981, Coullet & Spiegel, 1983.

The field variable u(x, t) given in the Hilbert space E is decomposed in the form

u(x, t) = uc(x, t) + us(x, t) =
m∑

i=1

qi(t)wi(x) +
∞∑

j=m+1

qj(t)wj(x), (1)

where the wi(x) are the active modes and wj(x) the passive (stable) modes, with j
typically ranging to infinity. The modes are obtained from the solution of the eigenvalue
problem related to the linear system

u̇ = A(λc)u. (2)

We assume that the spectrum of A(λ) is discrete and that for λ = λc a finite number
(m) of eigenvalues crosses the imaginary axis at the same time. All other eigenvalues
have a negative real part.



We rewrite the field equation in the form

u̇c = PAuc + Pg(uc + us),
u̇s = QAus +Qg(uc + us),

(3)

by decomposing the Hilbert space E = Ec ⊕Es, where Ec is finite (m)-dimensional
and Es is closed.

P is the projection onto Ec along Es, giving uc = Pu ∈ Ec and us = Qu ∈ Es where
Q = I − P .

If us = h(uc) is a smooth invariant manifold we call h a center manifold if
h(0) = h′(0) = 0.

Note that if in (3) Pg = Qg = 0, all solutions tend exponentially fast to solutions of
u̇c = PAuc. The linear m-dimensional equation on the (flat) center manifold
determines the asymptotic behavior of the entire linear infinite-dimensional system.

The center manifold theorem enables us to extend this argument to the nonlinear case
when Pg and Qg are not equal to zero.



Linear eigen-spaces Eu, Ec, Es and invariant manifolds Mu, M c, Ms of the nonlinear
system



Center Manifold Theorem 1. 1. There exists a center manifold us = h(uc) for
system (3) if |uc| is sufficiently small. The behavior of (3) on the center manifold is
governed by the equation

u̇c = PAuc + Pg(uc + h(uc)). (4)

2. The zero solution of (3) has exactly the same stability properties as the zero solution
of (4).

3. The center manifold can be calculated from

h′(uc)(PAuc + Pg(uc,h(uc)) = QAh(uc) +Qg(uc,h(uc)) .

4. An approximation H : Rm → Rns of h is a smooth map with H(0) = H ′(0) = 0



and is defined by the equation

R(H) := H ′(uc)[PAuc + Pg(uc + H(uc))]

−QAH(uc)−Qg(uc + H(uc)),
(5)

If

R(H) = O(|uc|r), r > 1, as |uc| → 0,

we have |h(uc)−H(uc)| = O(|uc|r) as |uc| → 0.

Inserting us = h(uc) into (3)1 eliminates the (infinitely many) inessential variables us

to obtain (4), a system of m nonlinear ordinary differential equations for the m
amplitudes qi(t) of the active modes wi(x).

(4) describes the whole nearby (local) dynamics of the original infinite dimensional
system (2).



The us in (1) are at least of second order in uc, that is

us = O(‖uc‖2) = O(|qi|2). (6)

Relation (6) has important consequences concerning the practical calculations.

Part (3) of the theorem allows to calculate a sufficiently accurate approximation by
retaining relevant terms in a Taylor series expansion.

Example (Carr 1981): Stability of the equilibrium y0 = 0 of the system

ẏ1 = y1y2 + ay3
1 + by1y

2
2

ẏ2 = −y2 + cy2
1 + dy2

1y2.

The linear part is in diagonalized form. The eigenvalues are 0 and −1. Thus, y1 is the
critical and y2 the non-critical variable.



Setting y2 = 0 the first equation would take the form

ẏ1 = ay3
1 .

However, this is incorrect. We must calculate the center manifold of the form

y2 = H(y1) = α2y
2
1 + α3y

3
1 + α4y

4
1 + . . . .

from Point (3) of the Theorem.

Up to second order terms the CM follows to

y2 = h(y1) = cy2
1 +O(|y1|3).

yielding
ẏ1 = (a+ c)y3

1 .



a = b = d = 0: (a) c = 0, (b) c < 0, (c)c > 0
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Geometry of the tube



Equations of motion of the tube

The radius vector r(s, t) and second the rotation matrix B(s, t) ∈ SO(3) define the
orientation of the cross-section of the tube given by the vectors t1, t2, t3 with respect
to a space fixed triad e1, e2, e3.

With the notations ( )′ = ∂/∂s and ( )· = ∂/∂t we obtain the first kinematic
relationship t3 = r′ = Be3.

The second is a skew symmetric infinitesimal rotation matrix Ω̂ which follows from B to

Ω̂(s, t) = B−1B′ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 ,

Ω1 and Ω2 measure bending of the rod about the axes t1 and t2 and Ω3 measures the
twist about t3.

By Ω̂ a vector Ω = (Ω1,Ω2,Ω3)T is defined. From the linear and angular momentum
principles we obtain two more vector equations. The full set of nonlinear partial



differential equations of motion in dimensionless variables (s→ s/`) reads

r′ = Be3

B′ = BΩ̂

T ′ = T ×Ω + F × e3 −BTm0

F ′ = F ×Ω + BT (−γe3 + αeṙ + r̈ + 2
√
β%ṙ′ + %2r′′ − q0).

F is the resultant force in the cross-section and m0 and q0 are distributed loadings.

Due to the inextensibility constraint and the neglection of shear deformation there
exists no constitutive relationship involving F and only one between the moment vector
T = (T1, T2, T3)T and Ω in the form

T1 = Ω1 + α1Ω̇1 ,

T2 = Ω2 + α1Ω̇2 ,

T3 = γ3(Ω3 + α3Ω̇3),



where γ3 = GJT/EJ is a quotient between the torsional and bending stiffnesses and
the αi are material damping coefficients.

Our numerical investigations are based on numerical data taken from
(Sugiyama,Tanaka,Kishi,Kawagoe 1985).

% is the dimesionless flow rate proportional to the velocity U ,

Boundary conditions at s = 0 and s = 1

r(0) = 0 , B(0) = E , F (1) = 0 , T (1) = 0 ,

and the jump condition for F at the location ξ of the elastic support

F (ξ+)− F (ξ−) = −BT (ξ)fs,

where fs is the restoring force of the spring.

Eulerian angles to represent the rotation matrix results in singular situations at the
trivial downhanging configuration.



Following Bajaj, Sethna (1984) and Buzano, Geymonat, Poston (1985) we use the
coordinates x1, x2 and an angle describing the twist as variables.

In these variables for four springs fs is given up to third order terms by

fs = −c


x1 + αsẋ1 + ε2s

(x1

2
(x2

1 − 4x2
2) + αs

[
(x2

1 − x2
2)ẋ1 − 2x1x2ẋ2

])
x2 + αsẋ2 + ε2s

(x2

2
(x2

2 − 4x2
1)− αs

[
(x2

1 − x2
2)ẋ2 + 2x1x2ẋ1

])
0

 .

c = 4`3cs/(2EJ) is the dimensionless spring stiffness,

αs a damping constant and εs = `/`s where `s is the length of a spring,

fs becomes rotationally symmetric for `s →∞.

Hence a rotationally symmetric support can be approximately realized either by an array
of springs or very long springs.



Steps in the computation of the amplitude equations

1. Solution of linear eigenvalue problem and of the adjoint problem since the linear
operator A is not self-adjoint.

2. Definition of projection on Null space and on the space orthogonal to it.

3. Calculation of an approximation of the center manifold up to the necessary order
following from Determinacy of the amplitude equations.

4. In the tube problem, if third order terms were sufficient, point (3) is trivial. In this
case we have

û(s, t) =
m∑

j=1

qj(t)wj(s)

The system of m amplitude equations is (w?
k is the adjoint eigenfunction to wk)∫ 1

0

w?T
k

˙̂uds =
∫ 1

0

w?T
k Aûds+

∫ 1

0

w?T
k g(û, λc)ds , k = 1, . . . ,m.



Linearization about trivial state

Linearization of equations of motion about the trivial straight downhanging state

r = se3 , B = E , T ≡ 0 , F = (1− s)γe3

which is a solution for all values of % and c results in

ẍi + δẋi + xIV
i + α1ẋ

IV
i + 2

√
β%ẋ′i + %2x′′i − γ[(1− s)x′i]

′ = 0

for i = 1, 2 and one equation for the twisting angle χ

γ3(χ′′ + α3χ̇
′′) = 0 ,



with the boundary and jump conditions

xi(0) = 0

x′i(0) = 0

χ(0) = 0

x′′i (1) + α1ẋ
′′
i (1) = 0

x′′′i (1) + α1ẋ
′′′
i (1) = 0

γ3(χ′(1) + α3χ̇
′(1)) = 0

x′′′i (ξ+) + α1ẋ
′′′
i (ξ+)− (x′′′i (ξ−) + ẋ′′′i (ξ−)) = −c(xi(ξ) + αsẋi(ξ)).

Since the equation is explicitly depending on the arclength s a numerical solution with
the boundary solver BNDSCO (Oberle, Grimm, Berger 1985) is given.



Stability boundary in parameter space (ξ = 0.5)



O(2)-symmetric coupled Flutter-Divergence instability
At loss of stability we have one purely imaginary pair and one zero root

 0 −ω 0
ω 0 0
0 0 0


with multiplicity two, resulting into a six dimensional system of amplitude equations in
real variables and three in complex variables. Up to third order terms they are

ż1 = iωz1 +
∑

j+k+l+m+n+p=3

a1jklmnpz
j
1z

k
1z

l
2z

m
2 z

n
2 z

p
3

ż2 = iωz2 +
∑

j+k+l+m+n+p=3

a2jklmnpz
j
1z

k
1z

l
2z

m
2 z

n
3 z

p
3

ż3 =
∑

j+k+l+m+n+p=3

a3jklmnpz
j
1z

k
1z

l
2z

m
2 z

n
3 z

p
3.



There are 56 nonlinear terms in each of the three equations. But all of them must not
be computed in the reduction process. The reason is that the amplitude equations must

1. possess the same symmetry properties as the original system

2. can be strongly simplified by Normal Form Theory (Arnol’d 1978, Holmes 1981)

Applying the equivariance test for a rotationally (O(2)) symmetric system according to

Rotation: z1 → eiϕz1 , z2 → e−iϕz2 , z3 → eiϕz3

Reflection z1 ↔ z2 , z3 ↔ z3

reduces the number of terms to 18. Subsequent application of Normal Form Theory
further reduces the number of terms to 4.



With the two unfolding parameters µ and ν the amplitude equations are

v̇1 = (µ+ iΩ +A1|v1|2 +A2|v2|2 +A3|v3|2)v1 +A4v2v
2
3

v̇2 = (µ+ iΩ +A2|v1|2 +A1|v2|2 +A3|v3|2)v2 +A4v1v
2
3

v̇3 = ( ν +A5|v1|2 +A5|v2|2 +A6|v3|2)v3 +A7v1v2v3.

In a final step polar coordinates vj = rje
iϕj are introduced to obtain

ṙ1 = (µ+ c1r
2
1 + c2r

2
2 + c3r

2
3)r1 + r2r

2
3(c4 cosψ + d4 sinψ)

ṙ2 = (µ+ c2r
2
1 + c1r

2
2 + c3r

2
3)r2 + r1r

2
3(c4 cosψ − d4 sinψ)

ṙ3 = (ν + c5(r21 + r22) + c6r
2
3 + c7r1r2 cosψ)r3

ψ̇ = (d1 − d2 − 2d5)(r21 − r22) + d4r
2
3

(
r2
r1
− r1
r2

)
cosψ−

− c4r
2
3

(
r1
r2

+
r2
r1

)
sinψ − 2c7r1r2 sinψ.



By introducing ψ = ϕ1 − ϕ2 − 2ϕ3, the three differential equations for the phases
ϕ1, ϕ2, ϕ3 could be combined into one equation for ψ.



Classification of the stationary solutions

Nr. Orbit repr. Σ Σx = Fix(Σ) dim Σx

(0) (0, 0, 0) O(2)× S1 (0, 0, 0) 0 TS, straight hanging tube
(1) (0, 0, b) Z2(κ)× S1 (0, 0, x) 1 SB, planar buckled tube
(2) (a, a, 0) Z2(κ)⊕ Zc

2 (z, z, 0) 2 SW, planar oscillation about TS

(3) (a, 0, 0) S̃O(2) (z, 0, 0) 2 TW, rotating motion
(4) (a, a, b) Z2(κ) (z, z, x) 3 oscillation in plane of buckl.
(5) (a, a, ib) Z2(κπ, π) (z, z, iy) 3 oscillation ⊥ to buckling plane
(6) (a, b, 0) Zc

2 (z1, z2, 0) 4 modulated rotating motion
(7) (a, a, w) 1 6 asymmetric oscillation

Tabelle 1: Stationary solutions and their isotropy subgroups (Golubitsky, Stewart,
Schaeffer 1985)



Physical interpretation of the stationary solutions
(1) r1 = r2 = r3 = 0: TS, vertical hanging tube, (O(2)× S1)

(2) r1 = r2 = 0, r3 6= 0: SB, statically buckled, (Z2(κ)× S1)

(3) r1 = r2 6= 0, r3 = 0: SW, planar oscillation about TS, (Z2(κ)⊕ Zc
2)

(4) r1 = r2 6= 0, r3 6= 0, sinψ = 0: SW about SB. There are two distinct solutions:

(i) ψ = 0: oscillation in the plane of buckling, (Z2(κ))
(ii) ψ = π: oscillation orthogonal to the plane of buckling, (Z2(κπ, π))

(5)(i) r1 6= 0, r2 = r3 = 0: TW, rotating tube, (S̃O(2))
(ii) r1 = 0, r2 6= 0, r3 = 0: TW, rotating in opposite direction, (S̃O(2))

(6) r1 6= 0, r2 6= 0, r3 = 0: MW, modulated wave (motion on a torus), (Zc
2)

(7) r1 6= 0, r2 = O(|r1r23|), r3 6= 0: SB with superposed TW.



Mode shapes: statical buckled



Mode shapes: standing wave

z

x



Mode shapes: rotating wave



Isotropy-Lattice

The lattice of isotropy subgroups of O(2)× S1 for bifurcation at one zero root and an
imaginary pair clearly shows how the symmetries of the different solutions are related to
each other

O(2)× S1

Z2(κ)× S1 Z2(κ)⊕ Zc2 S̃O(2)

Z2(κ) Z2(κπ,π) Zc2

1



Heteroclinic cycle (Guckenheimer, Golubitsky, Krupa)

The tube moves from the planar buckled state Z2(κ)⊕ S1 in the (x1, x3) to the planar
buckled state Z2(κπ)⊕ S1 in the (x2, x3) plane, which due to the rotational symmetry
is the same as the one in the (x1, x3) plane.

x1

x2
Z2 (κ) × S 1

(κ)Z2 ⊕ cZ2
S 1Z ×2 (κπ)

Z2 (κπ,π)

Z2 (κ)−ζ ∈ O(2)



Global theory

Literature: Constantin, Foias, Nicolaenko, Temam (1989), Foias, Jolly, Kevrekidis, Sell,
Titi (1988), Brunovsky (1993).

Theoretically important: Inertial manifolds

The importance of the concept of inertial manifolds is that it has been proved
mathematically that certain dissipative partial differential equations (PDE) possess
finite dimensional smooth invariant manifolds called inertial manifolds which contain all
the attractors of the PDE.

The inertial manifold attracts exponentially fast all trajectories which start from initial
conditions which are not located on the manifold.

The restriction of the PDE to the inertial manifold is an ODE which describes the
asymptotic behaviour without error. It can be regarded as the global analog of the
normal form of Center Manifold Theory.



Four questions have to be answered in reducing the PDE to an ODE on
the inertial manifold:

1. Existence of solutions

2. Compactness of universal attractor

3. Dimension of universal attractor

4. Existence of inertial manifold

Ad 1: Existence of solutions is guaranteed if one can prove that the long time behaviour
of the solutions is characterised by a finite dimensional absorbing subset of the phase
space. For engineering problems, which include damping, the existence of an absorbing
set often can be shown rigorously.

Ad 2: If the phase space of the dynamical system is a Hilbert space and solutions are



expanded in an orthogonal basis of this Hilbert space, one would like to show that the
higher modes in this basis decay strongly.

Ad 3: Estimating Hausdorff or fractal dimension of the universal attractor is based upon
linearizing the system along its trajectories and computing a Lyapunov spectrum. A
rough estimate of part of the Lyapunov spectrum can be obtained from looking at the
growth rates of n-dimensional volumes in the linearized flow. If there is some n, for
which all n-dimensional volumes decrease along the flow, then n is an upper bound for
the dimension of the universal attractor.

Ad 4: One can hope that not only the attractors of an infinite dimensional system will
be finite, but that there will be a smooth finite dimensional subset that is invariant
under the flow and contains the universal attractor. Such a subset is called an Inertial
Manifold.

The existence of inertial manifolds is a more delicate matter than the existence of
universal attractors.

The question that one asks is when a smooth invariant submanifold in a dynamical
system will persist under perturbation. The attracting invariant manifold persistent



under perturbations must have more extreme Lyapunov exponents in its normal
directions than in its tangential directions.

If the partial differential equations being studied have large gaps in their spectra, then
these can be used to look for invariant manifolds that lie close to the linear space
spanned by the modes whose eigenvalues lie to the right of a gap in the complex plane.

There are many examples for which such spectral gaps exist. For example for a
reaction-diffusion equation in one dimension, the eigenvalues of the Laplacian give
eigenvalues that decay in magnitude like −n2 and this leads to the existence of the
appropriate gap conditions.



The solution may be expanded in an orthonormal basis of a Hilbert space assuming that
the higher modes decay fast. As in Center Manifold theory the concept of active modes

u(x, t) = q1(t)w1(x) + · · ·+ qN(t)wm(x) + · · ·

is introduced. The modes w1(x), · · · , wm(x) are called active if they describe the
asymptotic behavior for t→∞. If we express

v(x, t) = q1(t)w1(x) + · · ·+ qm(t)wm(x)

this results in ∫
Ω

|u(x, t)− v(x, t)|2dx→ 0 for t→∞.

The question of the number of active modes and the existence of a smooth invariant
manifold called Inertial Manifold which contains the attractor depends on a
”gap condition” in the spectrum of the linear operator.



Meaning of the gap condition

We ask the question: Does a smooth invariant manifold of a dynamical system persist
under perturbation?

Consider an operator A : E → E. Assume that the spectrum of A, σ(A), admits a
decomposition

σ(A) = σ1 ∪ σ2



Reλ > β1 for λ ∈ σ1, Reλ < β2 for λ ∈ σ2, and β1 > β2. (7)

Let E = E1 ⊕ E2 be the decomposition of the space E into invariant subspaces
corresponding to the decomposition of σ(A), PA = A1 := A |E1, QA = A2 := A |E2.

Question: Given γ ∈ (β2, β1), how large can the norm of a bounded operator B be in
order that the gap in the spectrum of the perturbed operator A+B persists (i.e., it
stays away from the line Reλ = γ)?

In other words, any λ ∈ C with Reλ = γ should not be in the spectrum of A+B:
Hence A+B − λI should be invertible. From the identity

A+B − λI = (A− λI)(I + (A− λI)−1B)

follows, λ /∈ Sp(A+B) provided

| (A− λI−1) || B |< 1.



From the Cauchy formula for the functions of the operator A (holds e.g. if A is
bounded or unbounded sectorial) we get

| (A− λI)−1 |=

=| 1
2πi

∫
Γ1

(µ− λ)−1(A1 − µI)−1dµ | + | 1
2πi

∫
Γ2

(µ− λ)−1(A2 − µI)−1dµ |

=| 1
2πi

∫
Γ1

∫ 0

−∞
e(µ−λ)tdt(A1 − µI)−1dµ | + | 1

2πi

∫
Γ2

∫ ∞

0

e(µ−λ)tdt(A2 − µI)−1dµ |

=|
∫ 0

−∞
e−λt 1

2πi

∫
Γ1

eµt(A1 − µI)−1dµdt | + |
∫ ∞

0

e−λt 1
2πi

∫
Γ2

eµt(A2 − µI)−1dµdt |

=
∫ 0

−∞
e−λt | eA1t | dt+

∫ ∞

0

e−λt | eA2t | dt

≤M [
∫ 0

−∞
e(−γ+β1)tdt+

∫ ∞

0

e(−γ+β2)tdt]

= M [
1

β1 − γ
+

1
γ − β2

]



where Γ1, Γ2 are (possibly unbounded) positively oriented curves encircling σ1, σ2.

Thus, σ(A+B) ∩ {Reλ = γ} = ∅ provided that

| B |M [
1

β1 − γ
+

1
γ − β2

] < 1

i.e. the norm of B is small compared to the gap in the spectrum. In other words: γ
devides the spectrum.

For several important classes of operators generating semigroups A1 turns out to be
bounded and (7) implies that eA1t, eA2t satisfy the estimates:

| eA1t |≤Meβ1t for t ≤ 0, ⇔ | eA1t |≥ 1
M
eβ1t for t ≥ 0 (8)

| eA2t |≤Meβ2t for t ≥ 0 (9)

for some M > 0. If A is bounded this is always the case.



The estimates (8), (9) imply that E splits into two transversal subspaces E1, E2 such
that the exponential rate of increase of the trajectories of the differential equation

u̇ = Au

is strictly higher than γ in E1 and strictly lower than γ in E2 (for γ ≤ 0 ”increase” may
still be negative). Coordinates exist in which the equation decouples

u̇1 = A1u1

u̇2 = A2u2.

For a linear perturbation such a splitting still exists, provided that the norm of the
perturbation is sufficiently small compared to the gap in the spectrum of A.

Invariant manifold theorems extend this result to a linear differential equation being
perturbed by a nonlinear function

u̇ = Au+ f(u)

which is sufficiently small expressed by the Lipschitz constant.



Inertial Manifold for Nonlinear Autonomous System
u̇ = Au+ f(u) (10)

H1 σ(A) = σ1 ∪ σ2 with Reλ2 < β2 < β1 < Reλ1 for all λ1 ∈ σ1, λ2 ∈ σ2

H2 f satisfies: f(0) = 0 and uniformly globally Lipschitz continuous (constant L) in u,

| f(u)− f(ũ) |≤ L | u− ũ |

Then we can write (10) in the form

u̇1 = A1u1 + f1(u1, u2)

u̇2 = A2u2 + f2(u1, u2)

Fix γ ∈ (β1, β2) and denote

κ := M [
| P |

(β1 − γ)
+

| Q |
(γ − β2)

] (11)



Assume that hypotheses (H1) and (H2) hold and that

Lκ < 1

Then, there exists a function W1 : E1 × R → E2, Lipschitz continuous in u with
constant

Λ :=
MLκ

1− Lκ
In the considered autonomous case u2 = W1(u1) is an invariant manifold.

If γ < 0 and Λ < 1 the manifold W1 has the tracking property: for each u ∈ U there is
a unique point y ∈W1 such that | gt(u)− gt(y) |→ 0 for t→∞.

The restriction of the flow to the manifold W1 is governed by the differential equation

u̇1 = A1u1 + f(u1,W1(u1))

called the reduction of (10) to W1. The tracking property has as its immediate
consequence that due to γ < 0 and Λ < 1 all attractors lie in W1.



Applications

The essential condition for the existence of an inertial manifold

Lκ < 1

can be satisfied in two ways: either the Lipschitz constant L of f or the constant κ
defined by (11) is small. The latter option means that the gap must be large enough.

1) Laplacian A = ∆: one gets the following estimates for the magnitude of the
eigenvalues:

λj ∼ j
2
d

where d is the dimension of the space.

Hence for

d = 1 λj ∼ j2, λj+1 − λj ∼ j growing gap exists for growing j

and for

d = 2 λj ∼ j, λj+1 − λj ∼ 1 growing gap does not exist.



2) Clamped-free beam with external damping

ü+ δu̇+ uIV = 0

u(0) = 0, u′(0) = 0, u′′(1) = 0, u′′′(1) = 0
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3) Clamped-free beam with internal damping

ü+ α1u̇
IV + uIV = 0

u(0) = 0, u′(0) = 0, u′′(1) + α1u̇
′′(1) = 0, u′′′(1) + α1u̇

′′′(1) = 0
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Nonlinear Galerkin (Approximate Inertial Manifold)

u̇ = A(λ)u + g(u, λ),

and make the finite dimensional ansatz:

u(x, t) = uc︸︷︷︸
Rm

+ us︸︷︷︸
Rn−m

, n . . . shape functions

An iterative scheme to calculate an approximation of the ”inertial manifold” is set up:

1. Discretize the original infinite dimensional system by an n-term Galerkin ansatz

2. Designate m essential variables by p ⊂ Rm and noncritical variables by q ⊂ Rn−m.
Select the essential modes corresponding to the distribution of the eigenvalues in the
complex plane. Check for a ”gap condition” separating the other eigenvalues from
the critical ones.



3. Rewrite the n-th order system in the form

dp

dt
= A1p + Pg(p + q) (12)

dq

dt
= A2q +Qg(p + q) (13)

where A1 = PA and A2 = QA and P : Rn → Rm and Q = I − P are proper
projections.

4. Write the reduced system

dp

dt
= A1p + Pg(p + φa(q)) ,

where φa is an approximation of the ”inertial manifold”.



5. Create an iterative scheme. Set dq/dt = 0 to obtain the mapping

q = −A−1
2 Qg(p + q) .

The approximate inertial manifold φa is given as its fixed point. Approximate it by
φi. Starting with φ0 ≡ 0 (linear approximation, flat Galerkin) one obtains

φ1 = −A−1
2 QF(p)

φ2 = −A−1
2 QF(p + φ1(p)) . . . . .

6. Due to the neglection of q̇ it is questionable to go to high approximations.

7. Post-processed Galerkin method (E. Titi)

In the approximate inertial manifold approach (12) is replaced by

dpa

dt
= PApa + PF(pa + φa(pa)) , (14)



where φa is an approximation of the inertial manifold.

To solve (14), first, at each step φa must be computed and, second, the integration
of (14), is also more costly than the integration of the flat Galerkin equation

dpf

dt
= PApf + PF(pf) , (15)

where φa = 0. However, pf calculated from (15) will be in general less accurate
then pa calculated from (14).

In Garcia, Novo, Titi (1998) the post-processed Galerkin method is used to calculate
pf from (15) and only if output is required at time τ to lift it up to φa yielding

upp(τ) ≈ pf(τ) + φa(pf(τ)).

whereas uaim(τ) computed from the nonlinear Galerkin equation (14) is

uaim(τ) ≈ pa(τ) + φa(pa(τ)).



Computationally a great reduction is achieved since lifting is done only when output
is required and not at every time step in the integration.



Comparison of CM and AIM

We consider two losses of stability of an equilibrium: (1) divergent and (2) flutter.

Example 1: Divergent bifurcation We consider

ẋ = ax2 + bxy + fx3

ẏ = −y + cx2 + dxy + ex3 .

we make an ansatz for the center manifold in the form

y = H(x) = h2x
2 + h3x

3 + . . . .

Up to third order one obtains

(2h2x)(ax2) + h2x
2 + h3x

3 − cx2 − dxh2x
2 − ex3 = 0 .



Vanishing of coefficients of second and third order terms

h2 − c = 0

2h2a+ h3 − dh2 − e = 0 ,

resulting in the coefficients

h2 = c

h3 = e+ cd− 2ac .

For the AIM we obtain

φ1 = cx2

φ2 = cx2 + dcx3 + ex3 .

Comparison with the CM-result shows that the quadratic term is the same, but that



the cubic is already different. Hence AIM gives a correct result up to third order
terms in the amplitude equation.

Example 2: Hopf bifurcation We study the set of equations

ż = iωz + a|z|2 + bzu+ . . .

u̇ = −µu+ c20z
2 + c11|z|2 + c02z̄

2 + duz + . . . .

For CM reduction we make an ansatz

u = H(z) = h20z
2 + h11|z|2 + h02z̄

2 + . . . .

Inserting we obtain

2h20zż+h11(z ˙̄z+żz̄)+2h02z̄ ˙̄z = −µ(h20z
2+h11|z|2+h02z̄

2)+c20z2+c11|z|2+c02z̄2+h.o.t.



Now we substitute in this expression for ż = iωz and ˙̄z = −iωz̄ to obtain

2iωh20z
2 − 2iωh02z̄

2 = (c20 − µh20)z2 + (c11 − µh11)|z|2 + (c02 − µh02)z̄2 + h.o.t.

For the lowest order (quadratic) terms we obtain

h20 =
c20

µ+ 2iω
, h11 =

c11
µ
, h02 =

c02
µ− 2iω

. (16)

The lowest order terms of the AIM are

h20 =
c20
µ

, h11 =
c11
µ

h02 =
c02
µ

.

They are distinct from the CM values.

Hence for a Hopf bifurcation (flutter instability) the neglection of the dynamic term
in the passive set of equations can already result in incorrect amplitude (bifurcation)
equations of lowest (third) order.



However if | µ |� ω the AIM is a good approximation.

If the nonlinearities start with cubic terms then instead of the denominator µ+ 2iω
in (16) a term µ+ 3iω appears, resulting in even a larger difference.





Karhunen Loeve method

The Karhunen Loeve method or Proper Orthogonal Decomposition method (Sirovich
1989, Holmes, Lumley, Berkooz 1996) allows to generate an optimal set of basis
functions (φ1, . . . , φm), based on second-order statistics.

By optimal we mean that compared to any other choice of basis functions for the same
number m a better approximation is achieved.

However, data from experiments or simulation are necessary to apply this method.

Basic Idea of the Karhunen Loeve method (Lumley 1971)

Having some experimental or simulation data available, the basic idea is to find a
deterministic function f which in some statistical sense has the structure typical of the
members u of the ensemble obtained from experiments or simulation.

Assume that u is a vector in a function space then f should be as nearly parallel to u in
a statistical sense as possible.

We assume that the projection of u on f given by (u, f) is defined. The task is to



maximize (u, f)
Obviously one can increase the value of (u, f) simply by increasing the magnitude of f
without changing its form. Hence, one must normalize by the length of the vector f

(u, f)

(f, f)
1
2

.

We restrict to a Hilbert space of functions f where (f, f) exists.

Since the f which maximizes (u, f) is just u one has to maximize in some average
sense.

If the mean value of u is zero one would obtain E{(u, f)}) = 0. Hence instead of (u,f)

(f,f)
1
2

the quadratic expression
E{(u, f)(u, f)}

(f, f)
= λ ≥ 0.

will be maximized.

The solution as stated would yield only the best approximation to the esemble by a
single function. But the other critical points of this functional are also physically



significant. They belong to a set of functions providing the desired basis.

The problem can be stated in the calculus of variations: Extremize E{(u, f)(u, f)}
subject to the constraint (f, f) = 1. The corresponding functional for this constraint
variational problem is:

J [f ] = E{(u, f)(u, f)} − λ((f, f)− 1).

Requiring that the functional derivative of J is zero, results in the eigenvalue problem∫
D

E{u(x)u(x′)}f(x′)dx′ = λf(x).

whose kernel is the averaged autocorrelation function

E{u(x)u(x′)} = R(x, x′)

Its solution supplies, first, the set of optimal eigenmodes fi and, second, the
corresponding eigenvalues λi which measure the energy content carried by the various
modes.



By optimal eigenfunctions or eigenvectors a system is understood which approximates
the data in such a way that the eigenvectors are parallel to the axis of the energy
ellipsoid. Here also an analogy to the inertia ellipsoid is given.



Karhunen-Loeve method applied to Galerkin approximation

We assume that an ensemble {ui}p
i=1 of p pattern vectors is obtained from numerical

simulation, where each ui ∈ V = Rn. Let B be a basis B = {v1, . . . ,vn} such that
any ui can be represented by

ui =
n∑

j=1

bijvj .

We define now the ensemble average of a set of p pattern vectors by

E{u} = 〈u〉 =
1
p

p∑
i=1

ui .

Often a time continuous quantity u(t) is either measured or computed and stored at
discrete time steps ti. For equidistant time steps

u(ti) =
n∑

j=1

bj(ti)vj .



The averaging process

〈u〉 = lim
t→∞

1
T

∫ T

0

u(t)dt

yields, replacing the integral by a finite sum,

〈u〉 = 〈u(ti)〉 =
1
p∆t

p∑
i=1

 n∑
j=1

bj(ti)vj

 ∆t .

Since ∆t cancels out we again end up with the expression given above if we use
ui = u(ti).

The aim is to represent ui in a new basis B̃ = (φ1, . . . ,φn) in the form

ui =
n∑

j=1

aijφj.



such that the ensemble average error ems of the truncated expansion

ui ≈ uim =
m∑

j=1

aijφj

will have minimal error.

The general theory requires the minimization of the quadratic expression

ems = 〈‖u− um‖2〉.

The task to be performed is an optimal decomposition of the vectors

ui = uim + ei

where uim ∈Wm, ei ∈W⊥
m with V = Wm ⊕W⊥

m.

Inserting results in



ei = ui − uim =
n∑

j=m+1

aijφj.

Forming the quadratic minimization problem for ems we have

ems =

〈 n∑
j=m+1

ajφj,

n∑
k=m+1

akφk

〉
=

〈∑
j,k

ajak(φj, φk)

〉

=

〈
n∑

j=m+1

a2
j

〉
=

〈
n∑

j=m+1

(u, φj)2
〉

We note that

(φ, u)2 = (uTφ)T (uTφ) = φTuuTφ = (φ, uuTφ)

and with

C =
〈
uuT

〉



we have

ems =

〈
n∑

j=m+1

(φj, uu
Tφj)

〉
=

n∑
j=m+1

(φj,
〈
uuT

〉
φj) =

n∑
j=m+1

(φj, Cφj)

To determine the minimum of ems we use the Lagrange multiplier method. From

L(φ) =
n∑

j=m+1

(φj, Cφj)−
n∑

j=m+1

λj ((φj, φj)− 1)

follows by setting the Frechet derivative to zero

(C − λjI)φj = 0

That is, the φj are the solution of the eigenvalue problem

Cφj = λφj



where C is the ensemble averaged covariance matrix

C =
〈
uuT

〉



Some properties of the Karhunen–Loeve method:

1. If 〈u〉 = 0 then 〈aj〉 = 0,

〈aj〉 =
〈
(u,φj)

〉
= (〈u〉 ,φj) =

〈
0,φj

〉
= 0.

2. The optimal eigenvectors diagonalize the covariance matrix.

3. The eigenvalues of C are non-negative

λj =
〈
a2

j

〉
≥ 0 j = 1, . . . , n.

If the basis {qj} is ordered in accordance to

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0

then

ems =
n∑

j=m+1

(φj,Cφj) =
n∑

i=m+1

(φj, λjφ
j) =

n∑
j=m+1

λj ,



will be a minimum.

4. Since ak = (u,φk) we obtain

〈akaj〉 = 〈(u,φk)(u,φj)〉 = 〈(φk,uuTφj)〉 =
(
φk, 〈uuT 〉φj

)
=

(
φk,Cφj

)
=

(
φk, λjφj

)
= λjδkj .

Hence the eigenvalue λj = 〈ajaj〉 corresponds to the statistical variance or can be
considered to be a measure of the “kinetic energy” in the j-th eigenmode.

If the eigenvalues are normalized as probabilities the percentual energy content of an
approximation can be estimated.



Example: Double pendulum with follower force



The equations of motion are(
4 3

2 cos(ψ1 − ψ2)
3
2 cos(ψ1 − ψ2) 1

) (
ψ̈1

ψ̈2

)
=

−3
2ψ̇

2
2 sin(ψ1 − ψ2)

3
2ψ̇

2
1 sin(ψ1 − ψ2)

−
(
k1 + k2 −k2

−k2 k2

) (
ψ̇1

ψ̇2

)
−

(
γ1 + γ2 −γ2

−γ2 γ2

) (
ψ1

ψ2

)
+

F sin(ψ1 − ψ2)
0 .

They are already divided by m`2

3 . Linearization about ψ1 = ψ2 = 0 yields

(
4 3

2
3
2 1

) (
ψ̈1

ψ̈2

)
+

(
k1 + k2 −k2

−k2 k2

) (
ψ̇1

ψ̇2

)
+

(
γ1 + γ2 − F −γ2 + F

−γ2 γ2

) (
ψ1

ψ2

)
= 0.

For γ1 = γ2 = k1 = 1.0 and k2 = 0.6 the critical value F = Fc for loss of stability is
Fc = 2.196.



At F = Fc a stable (supercritical) limit cycle bifurcates from the equilibrium. The
nonlinear equations of motion are simulated for F = 3.0 > Fc ( in the domain of the
stable limit cycle)

With u = (ψ1, ψ2)T and the stepsize ∆t = 0.25 sec p = 2000 samples from the
simulation data are taken. the covariance matrix

These covariance matrices for minimizing the error in position (p), velocity (v) and
acceleration (a) are

Cp =
(
.2952 .5587
.5587 1.1000

)
, Cv =

(
.1050 .1965
.1965 .3946

)
, Ca =

(
.03936 .06563
.06563 .1583

)
.



Solving the respective eigenvalue problems we obtain

λp
1 = 1.386 φ1 =

(
.4559
.8900

)
λp

2 = .8974 · 10−2 φ2 =
(
−.8900
.4559

)
λv

1 = .4939 φ1 =
(
.4510
.8925

)
λv

2 = .5693 · 10−2 φ2 =
(
−.8925
.4510

)
λa

1 = .1874 φ1 =
(
.4053
.9142

)
λa

2 = .1026 · 10−1 φ2 =
(
−.9142
.4053

) .

All three cases show that the flutter motion is strongly coupled and that the first mode
is more significant than the second one.

Normalizing the eigenvalues as probabilities:

(p) λ1 = .9778 λ2 = .0222
(v) λ1 = .9886 λ2 = .0113
(a) λ1 = .9479 λ2 = .0521 .

The KL-eivenvectors (the optimal eigenvectors) point into the direction of the axes of



the energy ellipsoid of the simulation data.

The scattered points represent the transient motion ending in the limit cycle which is
given by the full line.



Comparison of various Galerkin approximations

As example we use large amplitude oscillations of the straight downhanging fluid
conveying tube.

For the calculation of the critical parameter value %c cartesian coordinates are
introduced and the linearized eigenvalue problem given by

ẍ2 + αeẋ2 + xIV
2 + α1ẋ

IV
2 + 2

√
β%ẋ′′2 + %2x′′2 − γ [(1− s)x′2]

′ = 0

with the boundary conditions

x2(0) = x′2(0) = 0
x′′2(1) = x′′′(1) = 0 .

must be solved.

For % = %c = 8.027, a loss of stability of the downhanging tube by a supercritical Hopf
bifurcation takes place.



Various sets of ansatz functions

We compare three different sets of ansatz functions for the Galerkin reduction:

1. Eigenvectors of the linearized problem at %s = 10.0 > %c ≈ 8.027. The eigenvectors
are sorted according to the value of the real part of the corresponding eigenvalue.

2. Oscillation modes of a clamped tube (beam). The mode shapes of the unloaded
undamped tube (without fluid) are sorted according to their node number.

3. Karhunen Loeve basis. The data necessary for the KL-analysis is obtained from the
simulation data of the tube motion for %s = 10.0.



Simulation of the tube

Simulation of the fluid conveying tube for %s = 10. A Finite Difference discretisation
with N = 32 elements is used, resulting in a system with dimension n = 64
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Projection of the simulation results on the (ϕ16, ϕ̇16)-plane for: full system n = 64
(“Full”), standard Galerkin (“GAL”), nonlinear Galerkin (“NLG”), Galerkin with KL
modes (”GKL”) and post-processed Galerkin (“PPG”). The results for Full and GKL
are not distinguishable.
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To see which modes (eigenvectors) make relevant contributions to the motion of the
tube we calculate the average contribution of the modes by averaging their amplitudes
along the periodic motion. If a(t) is the vector of the coefficients we calculate

1
N

N∑
i=1

a2
k(ti)

to obtain the contribution of the k-th mode (eigenvector).

The results are shown for the three different choices of modes in the following sheets



Eigenfunctions

Averaged contribution of each of the first 64 eigenvectors (modes) to the limit cycle
oscillation
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Distribution of eigenvalues in complex plane

Eigenvalues in the complex plane for % = 0 and % = %s with the modes shapes of
eigenvalues 35 and 36.

At −1/α1 ≈ −50 ( α1 is the material damping coefficient), an accumulation of the
eigenvalues occurs.
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Beam modes

Averaged contribution of the first 64 beam modes to the limit cycle oscillation
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KL

Averaged contribution of the KL-modes to the limit cycle oscillation. The results for
% = 12 are calculated from the simulation data obtained with % = 10
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Shapes of the first four KL-modes
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Tabelle 2:
n = 4 8 16 32 64
0.7661 0.8049 0.8128 0.8138 0.8147
0.2073 0.1936 0.1867 0.1857 0.1848
0.0265 0.0012 4.64E-4 3.97E-4 3.80E-4
2.2E-5 1.86E-4 5.93E-5 4.49E-5 4.15E-5

1.66E-7 8.76E-8 4.98E-8 4.30E-8
1.84E-9 2.26E-8 1.17E-8 9.96E-9
. . . . . . . . . . . .

Normalized Eigenvalues of the KL-reduction representing the energy contribution of the
respective mode



Condensation (R.J.Guyan, AIAA Journal 1964)

We arrange the structural equation

F = Kx

so that after partitioning in the form(
F1

F2

)
=

(
A B
B′ C

) (
x1

x2

)
the forces F2 are to be zero. From the second equation B′x1 + Cx2 = 0 follows

x2 = −C−1B′x1

Hence the variables x2 at which no forces are applied can be eliminated witout any



approximation to result in the reduced system

F1 = (A−BC−1B′)x1

with the reduced stiffness matrix

K1 = A−BC−1B′.

Condensation is used to reduce the dimension in FE calculations.



Conclusions

1. Invariant manifolds play an important role both for the behaviour of dissipative and
conservative systems by slaving fast modes to slow modes.

2. The concept of inertial manifolds is important from a theoretical point of view to
show that for certain PDEs a description of the global asymptotic behavior including
all attractors can be given by an ODE without any error.

3. In practical calculations Approximate Inertial Manifolds (Nonlinear Galerkin
Methods) of various type are used.

4. If a flat Galerkin reduction is used Karhunen-Loeve modes give the best
approximation.

5. With arbitrary, admissible, ansatz functions the nonlinear Galerkin via AIM is much



better than the flat Galerkin and allows, what seems to be most important in this
respect, a strong dimension reduction.

6. An explanation that the results of the KL approximation for the tube oscillations are
so good could be that the limit cycle from which the data was taken will be close to
a planar structure. Therefore only two modes already make an essential contribution.

7. For local problems Center Manifold theory works very effective.


