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Hydrodynamics from Grad’s equations:
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1 ETH-Zürich, Department of Materials, Institute of Polymers, ETH-Zentrum, Sonneggstr. 3, ML J 19,
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Abstract. A detailed treatment of the classical Chapman-Enskog derivation of hydrodynamics is given in
the framework of Grad’s moment equations. Grad’s systems are considered as the minimal kinetic models
where the Chapman-Enskog method can be studied exactly, thereby providing the basis to compare various
approximations in extending the hydrodynamic description beyond the Navier-Stokes approximation.
Various techniques, such as the method of partial summation, Padé approximants, and invariance principle
are compared both in linear and nonlinear situations.
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1 Introduction

1.1 The “ultra-violet catastrophe” of the Chapman-Enskog expansion

Most of the interesting expansions in non-equilibrium statistical physics are divergent. This
paraphrase of the well known folklore “Dorfman’s theorem” conveys the intrinsic problem
of many-body systems: A number of systematic (at the first glance) methods has led to (a).
An excellent but already known on the phenomenological grounds first approximation. (b).
Already the next correction, not known phenomenologically and hence of interest, does not
exist because of a divergence. There are many examples of this situations: Cluster expansion
of the exact collision integral for dense gases lead to divergent approximations of transport
coefficients, non-convergent long tails of correlation functions in the Green-Kubo formulae
etc.

Derivation of the hydrodynamic equations from a microscopic description is the classical
problem of physical kinetics. As is well known, the famous Chapman-Enskog method [1]
provides an opportunity to compute a solution from the Boltzmann kinetic equation as a formal
series in powers of the Knudsen number ε. The parameter ε reflects the ratio between the mean

∗ Corresponding author: ikarlin@ifp.mat.ethz.ch
∗∗ Work supported by the Clay Mathematics Institute

c© 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 0003-3804/02/10–1111-0783 $ 17.50+.50/0



784 Ann. Phys. (Leipzig) 11 (2002) 10–11

free path of a particle, and the scale of variations of the hydrodynamic fields, the density,
the mean flux, and the temperature. If the Chapman-Enskog expansion is truncated at a
certain order, we obtain subsequently: the Euler hydrodynamics ( ε0), the Navier-Stokes
hydrodynamics (ε1), the Burnett hydrodynamics (ε2), the super-Burnett hydrodynamics (ε3),
etc. The post-Navier-Stokes terms extend the hydrodynamic description beyond the strictly
hydrodynamic limit ε � 1.

However, as it has been first demonstrated by Bobylev [2], even in the simplest regime
(one-dimensional linear deviations around the global equilibrium), the Burnett hydrodynamic
equations violate the basic physics behind the Boltzmann equation. Namely, sufficiently short
acoustic waves are increasing with time instead of decaying. This contradicts the H-theorem,
since all near-equilibrium perturbations must decay. The situation does not improve in the
next, super-Burnett approximation.

This “ultra-violet catastrophe” which occurs in the lower-order truncations of the Chapman-
Enskog expansion creates therefore very serious difficulties in the problem of an extension of
the hydrodynamic description into a highly non-equilibrium domain (see [3] for a discussion
of other difficulties of the post-Navier–Stokes terms of the Chapman-Enskog expansion). The
Euler and the Navier–Stokes approximations remain basic in the hydrodynamic description,
while the problem of their extension is one of the central open problems of the kinetic theory.
The study of approximate solutions based on the Chapman-Enskog method still continues [4].

All this begs for a question: What is wrong with the Chapman-Enskog method? At the first
glance, the failure of the Burnett and of the super-Burnett hydrodynamics may be accounted
in favor of a frequently used argumentation about the asymptotic character of the Chapman-
Enskog expansion. However, it is worthwhile to notice here that divergences in the low-order
terms of formal expansions are not too surprising. In many occasions, in particular, in quantum
field theory [5] and in statistical physics [6], the situation is often improved if one takes
into account the very remote terms of corresponding expansions. Thus, a more constructive
viewpoint on the Chapman-Enskog expansion could be to proceed along these lines, and to try
to sum up the Chapman-Enskog series, at least formally and approximately.

An attempt of this kind of working with the Chapman-Enskog expansion is undertaken in
this paper. The formalities are known to be rather awkward for the Boltzmann equation, and
untill now, exact summations of the Chapman-Enskog expansion are known in a very limited
number of cases [7]. In this paper, we will concentrate on the Chapman-Enskog method as
applied to the well known Grad moment equations [8]. The use of the Grad equations for
our purpose brings, of course, considerable technical simplifications as compared to the case
of the Boltzmann equation but it does not make the problem trivial. Indeed, the Chapman-
Enskog method amounts to a nonlinear recurrence procedure even as applied to the simplest,
linearized Grad equations. Moreover, as we will see it soon, the Chapman-Enskog expansion
for moment systems inherits Bobylev’s instability in the low-order approximations. Still, the
advantage of our approach is that many explicit results can be obtained and analyzed. In order
to summarize, in this paper we consider Grad’s moment equations as finitely-coupled kinetic
models where the problem of reduced description is meaningful, rather than as models of
extended hydrodynamics. The latter viewpoint is well known as a microscopic background of
the extended irreversible thermodynamics [9, 10].

The outline of this paper is as follows: after an introduction of the Chapman-Enskog pro-
cedure for the linearized Grad equations (Section 1.2), we will open the discussion with two
examples (the linearized one- and three-dimensional 10 moment Grad equations) where the
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Chapman-Enskog series is summed up exactly in a closed form (Sections 2.1 and 2.2). These re-
sults makes it possible to discuss the features of the Chapman-Enskog solution in the short-wave
domain in the frames of the model, and will serve for a purpose of testing various approximate
methods thereafter. We will see, in particular, that the “smallness” of the Knudsen number ε
used to develop the Chapman-Enskog method has no direct meaning in the exact result. Also,
it will become clear that the finite-order truncations, even provided they are stable, give less
opportunities to approximate the solution in a whole, and especially in the short-wave domain.

The exact solutions are, of course, the lucky exceptions, and even for the Grad moment
equations the complexity of the Chapman-Enskog method increases rapidly with an increase
of the number of the moments taken into account. Further (Section 3.1) we will review a
technique of summing the Chapman-Enskog expansion partially. This technique is heuristic
(as are the methods of partial summing in general), but still it removes the Bobylev instability,
as well as it qualitatively reproduces the features of the exact solutions in the short-wave limit.

The style of working in the sections mentioned so far falls into a paradigm of the Taylor-
like expansions into powers of the Knudsen number. This viewpoint on the problem of a
derivation of the hydrodynamics will be altered beginning with the Section 3.2. There we
demonstrate that a condition of a dynamic invariance which can be realized directly and with
no request of the Knudsen number brings us to the same result as the exact summation of
the Chapman-Enskog expansion. The Chapman-Enskog method thereafter can be regarded
for a one possibility to solve the resulting invariance equations. Further, we demonstrate that
iterative methods provide a reasonable alternative to the Taylor expansion in this problem.
Namely, we show that the Newton method has certain advantages above the Chapman-Enskog
method (Section 3.3). We also establish a relationship between the method of partial summing
and the Newton method.

The material of further sections serves for an illustrative introduction how the pair ‘invariance
equation + Newton method’ can be applied to the problems of kinetic theory. In Sections 3.4
and 3.5 we derive and discuss the invariance equations for the linearized thirteen-moment Grad
equations. Section 3.6 is devoted to kinetic equations of the Grad type, arising in the problems
of phonon transport in massive solids at low temperatures. In particular, we demonstrate that
the onset of the second sound regime of phonon propagation corresponds to a branching point
of the exact sum of the relevant Chapman–Enskog expansion.

In Section 3.7 we apply the invariance principle to nonlinear Grad equations. We sum up
exactly a subseries of the Chapman-Enskog expansion, namely, the dominant contribution in
the limit of high average velocities. This type of contribution is therefore important for an
extension of the hydrodynamic description into the domain of strong shock waves. We give
a relevant analysis of the corresponding invariance equation, and, in particular, discuss the
nature of singular points of this equation. A brief discussion concludes this paper. Some of
the results presented below were published earlier in [11–20]

1.2 The Chapman-Enskog method for linearized Grad’s equations

In this section, for the sake of completeness, we introduce linearized Grad’s equations and the
Chapman-Enskog method for them in a form to be used in this paper. Since the Chapman-
Enskog method is extensively discussed in a number of books, especially, in the classical
monograph [1], our presentation will be brief.
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Notations will follow those of the papers [2, 11]. We denote ρ0, T0 and u = 0 as the
fixed equilibrium values of the density, of the temperature and of the averaged velocity (in the
appropriate Galilean reference frame), while δρ, δT and δu are small deviations of the hydro-
dynamic quantities from their equilibrium values. Grad’s moment equations [8] which will
appear below, contain the temperature dependent viscosity coefficient µ(T ). It is convenient to
write µ(T ) = η(T )T . The functional form of η(T ) is dictated by the choice of the model for
particle’s interaction. In particular, we have η = const for Maxwell’s molecules, and η ∼ √

T
for hard spheres. Let us introduce the following system of dimensionless variables:

u =
δu√

kBT0/m
, ρ =

δρ

ρ0
, T =

δT

T0
, (1)

x =
ρ0

η(T0)
√

kBT0/m
x′, t =

ρ0

η(T0)
t′,

where x′ are spatial coordinates, and t′ is the time. In the sequel, we use the system of units
in which Boltzmann’s constant kB and the particle’s mass m are one. Three-dimensional
thirteen moment Grad’s equations, linearized near the equilibrium, take the following form
when written in terms of the dimensionless variables (1):

∂tρ = −∇ · u, (2)

∂tu = −∇ρ − ∇T − ∇ · σ,

∂tT = −2
3
(∇ · u + ∇ · q),

∂tσ = −∇u − 2
5
∇q − σ, (3)

∂tq = −5
2
∇T − ∇ · σ − 2

3
q.

In these equations, σ(x, t) and q(x, t) are dimensionless quantities corresponding to the stress
tensor and to the heat flux, respectively. Further, the gradient ∇ stands for the vector of spatial
derivatives ∂/∂x. The dot denotes the standard scalar product, while the overline stands for a
symmetric traceless dyad. In particular,

∇u = ∇u + (∇u)T − 2
3
I∇ · u,

where I is unit matrix.
Grad’s equations (2) and (3) is the simplest model of a coupling of the hydrodynamic vari-

ables, ρ(x, t), T (x, t) and u(x, t), to the non-hydrodynamic variables σ(x, t) and q(x, t).
The problem of reduced description is to close the first three equations (2), and to get an au-
tonomous system for the hydrodynamic variables alone. In other words, the non-hydrodynamic
variables σ(x, t) and q(x, t) should be expressed in terms of the variables ρ(x, t), T (x, t) and
u(x, t). The Chapman-Enskog method, as applied for this purpose to Grad’s system (2) and
(3), involves the following steps:

First, we introduce a formal parameter ε, and write instead of equations (3):

∂tσ = −∇u − 2
5
∇q − 1

ε
σ, (4)
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∂tq = −5
2
∇T − ∇ · σ − 2

3ε
q.

Second, the Chapman-Enskog solution is found as a formal expansions of the stress tensor and
of the heat flux vector:

σ =
∞∑

n=0

εn+1σ(n); (5)

q =
∞∑

n=0

εn+1q(n).

Zero-order coefficients, σ(0) and q(0) are:

σ(0) = −∇u, q(0) = −15
4

∇T. (6)

Coefficients of the order n ≥ 1 are found from the recurrence procedure:

σ(n) = −
{

n−1∑
m=0

∂
(m)
t σ(n−1−m) +

2
5
∇q(n−1)

}
, (7)

q(n) = −3
2

{
n−1∑
m=0

∂
(m)
t q(n−1−m) + ∇ · σ(n−1)

}
,

where ∂
(m)
t are recurrently defined Chapman-Enskog operators. They act on functions ρ(x, t),

T (x, t) and u(x, t), and on their spatial derivatives, according to the following rule:

∂
(m)
t Dρ =

{ −D∇ · u m = 0
0 m ≥ 1 ; (8)

∂
(m)
t DT =

{ − 2
3D∇ · u m = 0

− 2
3D∇ · q(m−1) m ≥ 1

;

∂
(m)
t Du =

{ −D∇(ρ + T ) m = 0
−D∇ · σ(m−1) m ≥ 1

.

Here D is an arbitrary differential operator with constant coefficients.
Given the initial condition (6), the Chapman-Enskog equations (7) and (8) are recurrently

solvable. Finally, by terminating the computation at the order N ≥ 0, we obtain the N th order
approximations to the expansions (5), σN and qN :

σN =
N∑

n=0

εn+1σ(n), qN =
N∑

n=0

εn+1q(n). (9)

Substituting these expressions instead of the functions σ and q in the equations (2), we close
the latter to give the hydrodynamic equations of the order N . In particular, N = 0 results in
the Navier-Stokes approximation, N = 1 and N = 2 give the Burnett and the super-Burnett
approximations, respectively, and so on.

Though the ‘microscopic’ features of Grad’s moment equations are, of course, much simpler
as compared with the Boltzmann equation, the Chapman-Enskog procedure for them just
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described is not trivial. Our purpose is to study explicitly the features of the gradient expansions
like (5) in the highly non-equilibrium domain, in particular, to find out to what extend the finite-
order truncations (9) approximate the solution, and what kind of alternative strategies to find
approximations are possible. In the following, when referring to Grad’s equations, we use
the notation mDnM , where m is the spatial dimension of corresponding fields, and n is the
number of these fields. For example, the above system is the 3D13M Grad’s system.

2 Exact summation of the Chapman–Enskog expansion

2.1 The 1D10M Grad equations

In this section, we open our discussion with the exact summation of the Chapman-Enskog
series for the simplest Grad’s system, the one-dimensional linearized ten-moment equations.
Throughout the section we use the hydrodynamic variables p(x, t) = ρ(x, t) + T (x, t) and
u(x, t), representing the dimensionless deviations of the pressure and of the average velocity
from their equilibrium values. The starting point is the linearized Grad’s equations for p, u,
and σ, where σ is the dimensionless xx-component of the stress tensor:

∂tp = −5
3
∂xu, (10)

∂tu = −∂xp − ∂xσ,

∂tσ = −4
3
∂xu − 1

ε
σ.

The system of equations for three functions is the derivative of the ten-moment Grad’s
system (see Eq. (38) below). Equations (10) provides the simplest model of a coupling of the
hydrodynamic variables, u and p, to the single non-hydrodynamic variable σ, and corresponds
to a heat non-conductive case.

Our goal here is to shorten the description, and to get a closed set of equations with respect
to variables p and u only. That is, we have to express the function σ in the terms of spatial
derivatives of the functions p and of u. The Chapman-Enskog method, as applied to eq. (10)
results in the following series representation:

σ =
∞∑

n=0

εn+1σ(n). (11)

Coefficients σ(n) are due to the following recurrence procedure [11]:

σ(n) = −
n−1∑
m=0

∂
(m)
t σ(n−1−m), (12)

where the Chapman-Enskog operators ∂
(m)
t act on p, on u, and on their spatial derivatives as

follows:

∂
(m)
t ∂l

xu =
{ −∂l+1

x p, m = 0
−∂l+1

x σ(m−1), m ≥ 1
, (13)

∂
(m)
t ∂l

xp =
{ − 5

3∂l+1
x u, m = 0

0, m ≥ 1 .
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Here l ≥ 0 is an arbitrary integer, and ∂0
x = 1. Finally,

σ(0) = −4
3
∂xu, (14)

which leads to the Navier–Stokes approximation of the stress tensor: σNS = εσ(0).
Because of a somewhat involved structure of the recurrence procedure (12) and (13), the

Chapman-Enskog method is a nonlinear operation even in the simplest model (10). Moreover,
the Bobylev instability is again present.

Indeed, computing the coefficients σ(1) and σ(2) on the basis of the expressions (12), we
obtain:

σB = εσ(0) + ε2σ(1) = −4
3
(ε∂xu + ε2∂2

xp), (15)

and

σSB = εσ(0) + ε2σ(1) + ε3σ(2) = −4
3

(
ε∂xu + ε2∂2

xp +
1
3
ε3∂3

xu

)
, (16)

for the Burnett and the super-Burnett approximations, respectively. Now we can substitute
each of the approximations, σNS, σB, and σSB instead of the function σ in the second of the
equations of the set (10). Then the equations thus obtained, together with the equation for the
density ρ, will give us the closed systems of the hydrodynamic equations of the Navier-Stokes,
of the Burnett, and of the super-Burnett levels. To see the properties of the resulting equations,
we compute the dispersion relation for the hydrodynamic modes. Using a new space-time
scale, x′ = ε−1x, and t′ = ε−1t, and next representing u = ukϕ(x′, t′), and p = pkϕ(x′, t′),
where ϕ(x′, t′) = exp(ωt′ + ikx′), and k is a real-valued wave vector, we obtain the following
dispersion relations ω(k) from the condition of a non-trivial solvability of the corresponding
linear system with respect to uk and pk:

ω± = −2
3
k2 ± 1

3
i|k|
√

4k2 − 15, (17)

for the Navier-Stokes approximation,

ω± = −2
3
k2 ± 1

3
i|k|
√

8k2 + 15, (18)

for the Burnett approximation (15), and

ω± =
2
9
k2(k2 − 3) ± 1

9
i|k|
√

4k6 − 24k4 − 72k2 − 135, (19)

for the super-Burnett approximation (16).
These examples demonstrate that the real part Re ω±(k) ≤ 0 for the Navier-Stokes (17)

and for the Burnett (18) approximations, for all wave vectors. Thus, these approximations
describe attenuating acoustic waves. However, for the super-Burnett approximation, the func-
tion Re ω±(k) (19) becomes positive as soon as |k| >

√
3. That is, the equilibrium point

is stable within the Navier-Stokes and the Burnett approximation, and it becomes unstable
within the super-Burnett approximation for sufficiently short waves. Similar to the case of the
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Bobylev instability of the Burnett hydrodynamics for the Boltzmann equation, the latter result
contradicts the dissipative properties of the Grad system (10): the spectrum of the full 1D10M
system (10) is stable for arbitrary k.

Our goal now is to sum up the series (11) in a closed form. Firstly, we will make some
preparations.

As was demonstrated in [11], the functions σ(n) in Eqs. (11) and (12) have the following
explicit structure to arbitrary order n ≥ 0:

σ(2n) = an∂2n+1
x u, (20)

σ(2n+1) = bn∂2(n+1)
x p,

where the coefficients an and bn are determined through the recurrence procedure (12), and
(13). The Chapman-Enskog procedure (12) and (13) can be represented in terms of the real-
valued coefficients an and bn (20). We will do this below.

Knowing the structure (20) of the coefficients of the Chapman-Enskog expansion (11), we
can write down its formal sum. It is convenient to use the Fourier variables introduced above
which amounts essentially to the change ε∂x → ik. Substituting the expression (20) into the
Chapman-Enskog series (11), we obtain the following formal expression for the Fourier image
of the sum:

σk = ikA(k2)uk − k2B(k2)pk, (21)

where the functions A(k2) and B(k2) are formal power series with the coefficients (20):

A(k2) =
∞∑

n=0

an(−k2)n, (22)

B(k2) =
∞∑

n=0

bn(−k2)n.

Thus, the question of the summation of the Chapman-Enskog series (11) amounts to finding
the two functions, A(k2) and B(k2) (22). Knowing A and B, we derive a dispersion relation
for the hydrodynamic modes:

ω± =
k2A

2
± |k|

2

√
k2A2 − 20

3
(1 − k2B). (23)

Now we will concentrate on the problem of a computation of the functions A and B (22)
in a closed form. For this purpose, we will first express the Chapman-Enskog procedure (12)
and (13) in terms of the coefficients an and bn (20). At the same time, our derivation will
constitute a proof of the structure (20).

It is convenient to start with the Fourier representation of the equations (12) and (13).
Writing u = uk exp(ikx), p = pk exp(ikx), and σ = σk exp(ikx), we obtain the following
representation:

∂
(m)
t uk =

{ −ikpk, m = 0
−ikσ

(m−1)
k , m ≥ 1

, (24)
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∂
(m)
t pk =

{ − 5
3 ikuk, m = 0

0, m ≥ 1 ,

while

σ
(n)
k = −

n−1∑
m=0

∂
(m)
t σ

(n−1−m)
k , (25)

and

σ
(2n)
k = an(−k2)nikuk, (26)

σ
(2n+1)
k = bn(−k2)n(−k2)pk.

The Navier–Stokes and the Burnett approximations give a0 = − 4
3 , and b0 = − 4

3 . Thus, the
structure (26) is proven for n = 0.

The further derivation relies upon induction. Let us assume that the ansatz (26) is proven
up to the order n. Computing the coefficient σ

(2(n+1))
k from the equation (25), we have:

σ
(2(n+1))
k = −∂

(0)
t σ

(2n+1)
k −

n∑
m=0

∂
(2m+1)
t σ

(2(n−m))
k −

n∑
m=1

∂
(2m)
t σ

(2(n−m)+1)
k . (27)

Due to the assumption of the induction, we can adopt the form of the coefficients σ
(j)
k (26) in

all the terms on the right hand side of the latter expression. On the basis of the expressions
(26) and (24), we conclude that each summand in the last sum in (27) is equal to zero. Further,
the term ∂

(0)
t σ

(2n+1)
k gives a linear contribution:

∂
(0)
t σ

(2n+1)
k = ∂

(0)
t bn(−k2)n(−k2)pk = −5

3
bn(−k2)n+1ikuk,

while the terms in the remaining sum contribute nonlinearly:

∂
(2m+1)
t σ

(2(n−m))
k = an−m(−k2)n−mik∂

(2m+1)
t uk = −an−mam(−k2)n+1ikuk.

Substituting the last two expressions into the equation (27), we see that it has just the same
structure as the coefficient σ

(2(n+1))
k in (26). Thus, we come to the first recurrence equation:

an+1 =
5
3
bn +

n∑
m=0

an−mam.

Computing the coefficient σ
(2(n+1)+1)
k by the same pattern, we come to the second recurrence

equation, and the Chapman-Enskog procedure (12) and (13) becomes the following equivalent
formulation in terms of the coefficients an and bn (20):

an+1 =
5
3
bn +

n∑
m=0

an−mam, (28)

bn+1 = an+1 +
n∑

m=0

an−mbm.
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The initial condition for this set of equations is dictated by the Navier-Stokes and the Burnett
terms:

a0 = −4
3
, b0 = −4

3
(29)

Our goal now is to compute the functions A and B (22) on the basis of the recurrence
equations (28). At this point, it is worthwhile to notice that usual routes of dealing with the
recurrence system (28) would be either to truncate it at a certain n, or to calculate all the
coefficients explicitly, and next to substitute the result into the power series (22). Both these
routes are not successful here. Indeed, retaining the coefficients a0, b0, and a1 gives the
super-Burnett approximation (16) which has the Bobylev short-wave instability, and there is
no guarantee that the same failure will not occur in the higher-order truncation. On the other
hand, a term-by-term computation of the whole set of coefficients an and bn is a quite nontrivial
task due to a nonlinearity in the equations (28).

Fortunately, another route is possible. Multiplying both the equations in (28) with (−k2)n+1,
and performing a formal summation in n from zero to infinity, we arrive at the following ex-
pressions:

A − a0 = −k2

{
5
3
B +

∞∑
n=0

n∑
m=0

an−m(−k2)n−mam(−k2)m

}
, (30)

B − b0 = A − a0 − k2
∞∑

n=0

n∑
m=0

an−m(−k2)n−mbm(−k2)m.

Now we notice that

lim
N→∞

N∑
n=0

n∑
m=0

an−m(−k2)n−mam(−k2)m = A2, (31)

lim
N→∞

N∑
n=0

n∑
m=0

an−m(−k2)n−mbm(−k2)m = AB.

Accounting the initial condition (29), we come in (30) to a pair of coupled quadratic equations
for the functions A and B:

A = −4
3

− k2
(

5
3
B + A2

)
, (32)

B = A(1 − k2B).

The result (32) concludes essentially the question of the computation of the functions A and
B (22). Still, further simplifications are possible. In particular, it is convenient to reduce the
consideration to a single function. Resolving the system (32) with respect to the function B,
and introducing a new function, X(k2) = k2B(k2), we come to an equivalent cubic equation:

−5
3
(X − 1)2

(
X +

4
5

)
=

X

k2 . (33)

Since the functions A and B (22) are real-valued, we are interested only in the real-valued
roots of eq. (33).
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Fig. 1 Real-valued root of Eq. (33) as a function of k2

An elementary analysis of this equation brings the following result: the real-valued root
X(k2) of the equation (33) is unique and negative for all finite values of the parameter k2.
Moreover, the function X(k2) is a monotonic function of k2. The limiting values are:

lim
|k|→0

X(k2) = 0, lim
|k|→∞

X(k2) = −0.8. (34)

The function X(k2) is plotted in Fig. 1.
Under the circumstances just mentioned, a function under the root in the Eq. (23) is negative

for all values of the wave vector k, including the limits, and we come to the following dispersion
law:

ω± =
X

2(1 − X)
± i

|k|
2

√
5X2 − 16X + 20

3
, (35)

where X = X(k2) is the real-valued root of the equation (33). Since the function X(k2) is a
negative function for all |k| > 0, the attenuation rate, Reω±, is negative for all |k| > 0, and
the exact acoustic spectrum of the Chapman-Enskog procedure is stable for arbitrary wave
lengths. In the short-wave limit, expression (35) reads:

lim
|k|→∞

ω± = −2
9

± i|k|
√

3. (36)

The characteristic equation of the original Grad equations (10) reads:

3ω3 + 3ω2 + 9k2ω + 5k2 = 0. (37)

The two complex-conjugated roots of this equation correspond to the hydrodynamic modes,
while the non-hydrodynamic real mode, ωnh(k), and ωnh(0) = −1, and ωnh → −0.5, as
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Fig. 2 Attenuation rates for the 1D10M Grad system. Solid: Exact summation of the
Chapman–Enskog Expansion. Dots: The Navier–Stokes approximation. Dash: The super–
Burnett approximation. Circles: Hydrodynamic and non-hydrodynamic modes of the 1D10M
Grad system

|k| → ∞. Recall that the non-hydrodynamic modes of the Grad equations are characterized
by the common property that for them ω(0) 	= 0. These modes are irrelevant to the Chapman-
Enskog method. As the final comment here, the expression (36) demonstrates a tendency of the
exact attenuation rate, Re ω±, to a finite value, − 2

9 ≈ −0.22, as |k| → ∞. This asymptotics
is in a complete agreement with the data for the hydrodynamic branch of the spectrum (37) of
the original Grad equations (10). The attenuation rates (real parts of the dispersion relations
ω± for the Burnett (18), the super-Burnett (19), the exact Chapman-Enskog solution (35), are
compared to each other in Fig. 2. In this figure, we also represent the attenuation rates of the
hydrodynamic and of the non-hydrodynamic mode of the Grad equations (37). The results of
this section lead to the following discussion:

(i) The example considered above gives an opportunity to treat the problem of a summation
of the Chapman-Enskog expansion. The exact dispersion relation (35) of the Chapman-Enskog
procedure is demonstrated to be stable for all wave lengths, while the Bobylev instability is
present on the level of the super-Burnett approximation. Moreover, it can be demonstrated
that the function X (the real root of the equation (33)) is a real-valued analytic function of the
variable k. Thus, the treatment of the formal expansions performed above is justified.

(ii) The exact result of the Chapman-Enskog procedure has a clear non-polynomial charac-
ter. Indeed, this follows directly from (34): the function X(k2) cannot be a polynomial because
it maps the axis k into a segment [0,−0.8]. As a conjecture here, the resulting exact hydrody-
namics is essentially nonlocal in space. For this reason, even if the hydrodynamic equations of
a certain level of the approximation is stable, it cannot reproduce the non-polynomial behavior
for sufficiently short waves.

(iii) The result of this section demonstrates that, at least in some cases, the sum of the
Chapman-Enskog series amounts to a quite regular function, and the “smallness” of the Knud-
sen number ε used to develop the Chapman-Enskog procedure (12) is no more necessary at
the outcome.
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2.2 The 3D10M Grad equations

In this section we generalize our considerations of the Chapman-Enskog method the three-
dimensional linearized 10-moment Grad equations [8]. The Chapman-Enskog series for the
stress tensor, which is again due to a nonlinear procedure, will be summed up in a closed form.
The method we use follows essentially the one discussed above, though the computations are
slightly more extensive. The reason to consider this example is that we would like to know
what happens to the diffusive hydrodynamic mode in the short-wave domain.

Throughout the section, we use the variables (1), and p and u are dimensionless deviations
of the pressure and of the mean flux from their equilibrium values, respectively. The point of
departure is the set of the three-dimensional linearized Grad equations for the variables p, u,
and σ, where σ is a dimensionless stress tensor:

∂tp = −5
3
∇ · u, (38)

∂tu = −∇p − ∇ · σ,

∂tσ = −∇u − 1
ε
σ.

Eq. (38) provides a simple model of a coupling of the hydrodynamic variables, u and p,
to the non-hydrodynamic variable σ. These equations are suitable for an application of the
Chapman-Enskog procedure. Therefore, our goal here is not to investigate the properties of eq.
(38) as they are, but to reduce the description, and to get a closed set of equations with respect
to the variables p and u alone. That is, we have to express σ in terms of spatial derivatives of
p and of u. The Chapman-Enskog method, as applied to eq. (38) results in the following:

σ =
∞∑

n=0

εn+1σ(n). (39)

The coefficients σ(n) are due to the following recurrence procedure:

σ(n) = −
n−1∑
m=0

∂
(m)
t σ(n−1−m), (40)

where the Chapman-Enskog operators ∂
(m)
t act on the functions p and u, and on their deriva-

tives, as follows:

∂
(m)
t Du =

{ −D∇p, m = 0
−D∇ · σ(m−1), m ≥ 1

, (41)

∂
(m)
t Dp =

{ − 5
3D∇ · u, m = 0

0, m ≥ 1 .

Here D is an arbitrary differential operator D =
∏3

i=1 ∂li
i , while li is an arbitrary integer, and

∂0
i = 1. Finally, σ(0) = −∇u, which leads to the Navier-Stokes approximation.

Our goal is to sum up the series (39) in a closed form. Firstly, we will make some prepara-
tions.
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As was demonstrated in [11], σ(n) in the equations (39), (40), and (41), have the following
explicit structure for arbitrary order n ≥ 0 (a generalization of the expressions (20) onto the
three-dimensional case):

σ(2n) = an∆n∇u + bn∆n−1G∇ · u, (42)

σ(2n+1) = cn∆nGp,

where ∆ = ∇ · ∇ is the Laplace operator, and the operator G has the form:

G = ∇∇ − 1
3
I∆ =

1
2
∇∇. (43)

The real-valued and yet unknown coefficients an, bn, and cn in the equation (42) are due
to the recurrence procedure (40), and (41). Knowing the structure of the coefficients of the
Chapman-Enskog series (42), we can reformulate the Chapman-Enskog solution in terms of a
self-consistent recurrence procedure for the coefficients an, bn, and cn. Let us consider this
derivation in more detail.

The point of departure is the Fourier representation of the recurrence equations (40), (41),
and (42). Writing

u = uk exp(ik · x),
p = pk exp(ik · x),

σ(n) = σ
(n)
k exp(ik · x),

and introducing the unity vector ek directed along k (k = kek), we come in the equations
(40), (41), and (42) to the following:

σ
(n)
k = −

n−1∑
m=0

∂
(m)
t σ

(n−1−m)
k , (44)

∂
(m)
t Dkuk =

{ −Dkikpk, m = 0
−Dkik · σ

(m−1)
k , m ≥ 1

, (45)

∂
(m)
t Dkpk =

{ − 5
3Dkik · uk, m = 0

0, m ≥ 1 .

where Dk is an arbitrary tensor Dk =
∏3

s=1(iks)ls , and

σ
(2n)
k = (−k2)n(aniku + bnigk(k · u)), (46)

σ
(2n+1)
k = cn(−k2)n+1gkpk,

where

gk = (ekek − 1
3
I) =

1
2
ekek. (47)

From the form of the Navier–Stokes approximation, σ
(0)
k , it follows that a0 = −1 and

b0 = 0, while a direct computation of the Burnett approximation leads to:

σ
(1)
k =

1
2
k2gkpk. (48)
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Thus, we have c0 = − 1
2 , and with this the ansatz (42) is proven for n = 0 in both the even and

the odd orders.
The further derivation relies upon induction. Let the structure (46) be proven up to the order

n. The computation of the next, n + 1 order coefficient σ
(2(n+1))
k , involves only the terms of

the lower order. From the equation (44) we obtain:

σ
(2(n+1))
k = −∂

(0)
t σ

(2n+1)
k −

2n+1∑
m=1

∂
(m)
t σ

(2n+1−m)
k . (49)

The first term in the right hand side depends linearly on the coefficients cn:

−∂
(0)
t σ

(2n+1)
k = −cn(−k2)n+1gk∂

(0)
t pk (50)

=
5
3
cn(−k2)n+1igkk · uk.

The remaining terms on the right hand side of the equation (49) contribute nonlinearly. Splitting
the even and the odd orders of the Chapman-Enskog operators ∂

(m)
t , we rewrite the sum in the

equation (49):

−
2n+1∑
m=1

∂
(m)
t σ

(2n+1−m)
k = −

n∑
l=1

∂
(2l)
t σ

(2(n−l)+1)
k −

n∑
l=0

∂
(2l+1)
t σ

(2(n−l))
k . (51)

Due to (46) and (45), each term in the first sum is equal to zero, and we are left only with the
second sum. We compute:

∂
(2l+1)
t σ

(2(n−l))
k = (−k2)n−l(an−lik∂

(2l+1)
t uk + bn−ligkk · ∂

(2l+1)
t uk), (52)

while

∂
(2l+1)
t uk = −(−k2)l+1

(
aluk +

1
3
(al + 2bl)ek(ek · uk)

)
. (53)

In the last expression, the use of the following identities was made:

k · kuk = k2
(

uk +
1
3
ek(ek · uk)

)
, (54)

k · gk =
2
3
k.

Substituting the expression (53) into the right hand side of the equation (52), and thereafter
substituting the result into the right hand side of the expression (51), we come to the following
in the right hand side of the equation (49):

σ
(2(n+1))
k = (−k2)n+1

(
n∑

m=0

an−mam

)
ikuk + (−k2)n+1 (55)

×
(

5
3
cn +

n∑
m=0

{
1
3
(2an−m + bn−m)(am + 2bm) + an−mbm

})
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×igk(k · uk).

The functional structure of the right hand side of this expression is the same as that of the first
of the equations in the set (46), and thus we come to the first recurrence equation:

an+1kuk + bn+1gk(k · uk) =

(
n∑

m=0

an−mam

)
kuk (56)

+

(
5
3
cn +

n∑
m=0

{
1
3
(2an−m + bn−m)(am + 2bm) + an−mbm

})
gk(k · uk).

Considering in the same way the coefficient σ
(2(n+1)+1)
k , we come to the second recurrence

equation,

cn+1 = 2an+1 + bn+1 +
2
3

n∑
m=0

(2an−m + bn−m)cm. (57)

Thus, the complete set of the recurrence equations is given by Eq. (56) and Eq. (57). Eq. (56)
is equivalent to a pair of scalar equations. Indeed, introducing new variables,

rn =
2
3
cn, (58)

qn =
2
3
(2an + bn),

and using the identity,

kuk = (kuk − 2gk(k · uk)) + 2gk(k · uk),

and also noticing that

gk : (kuk − 2gk(k · uk)) = 0,

where : denotes the double contraction of tensors, we arrive in the equations (56) and (57) at
the following three scalar recurrence relations in terms the coefficients rn, qn, and an:

rn+1 = qn+1 +
n∑

m=0

qn−mrm (59)

qn+1 =
5
3
rn +

n∑
m=0

qn−mqm

an+1 =
n∑

m=0

an−mam

The initial condition for this system is provided by the explicit form of the Navier–Stokes and
of the Burnett approximations, and it reads:

r0 = −4/3, q0 = −4/3, a0 = −1. (60)
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The recurrence relations (59) are completely equivalent to the original Chapman-Enskog
procedure (40) and (41). In the one-dimensional case, the recurrence system (59) reduces to the
first two equations for rn and qn. In this case, the system of recurrence equations is identical
(up to the notations) to the recurrence system (28), considered in the preceding section. For
what follows, it is important to notice that the recurrence equation for the coefficients an is
decoupled from the equations for the coefficients rn and qn.

Now we will express the Chapman-Enskog series of the stress tensor (39) in terms of the
coefficients rn, qn, and an. Using again the Fourier transform, and substituting the expression
(42) into the right hand side of the equation (39), we derive:

σk = A(k2)(kuk − 2gk(k · uk)) +
3
2
Q(k2)gk(k · uk) − 3

2
k2R(k2)gkpk, (61)

From here on, we use a new spatial scale which amounts to k′ = εk, and drop the prime. The
functions A(k2), Q(k2), and R(k2) in the equation (61) are defined by the power series with
the coefficients due to (59):

A(k2) =
∞∑

n=0

an(−k2)n, (62)

Q(k2) =
∞∑

n=0

qn(−k2)n,

R(k2) =
∞∑

n=0

rn(−k2)n.

Thus, the question of summation of the Chapman-Enskog series (39) amounts to finding
the three functions, A(k2), Q(k2), and R(k2) (62) in the three- and two-dimensional cases, or
to the two functions, Q(k2), and R(k2) in the one-dimensional case.

Now we will focus on a problem of a computation of the functions (62) from the recurrence
equations (59). At this point, it is worthwhile to notice again that a truncation at a certain n is
not successful. Indeed, already in the one-dimensional case, retaining the coefficients q0, and
r0, and q1 gives the super-Burnett approximation (16) which has the short-wave instability for
k2 > 3, as it was demonstrated in the preceding section, and there is no guarantee that the
same will not occur in a higher-order truncation.

Fortunately, the route of computations introduced in the preceding section works again.
Multiplying each of the equations in (62) with (−k2)n+1, and performing a summation in n
from zero to infinity, we derive:

Q − q0 = −k2

{
5
3
R +

∞∑
n=0

n∑
m=0

qn−m(−k2)n−mqm(−k2)m

}
, (63)

R − r0 = Q − q0 − k2
∞∑

n=0

n∑
m=0

qn−m(−k2)n−mrm(−k2)m,

A − a0 = −k2
∞∑

n=0

n∑
m=0

an−m(−k2)n−mam(−k2)m.
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Now we notice that

lim
N→∞

N∑
n=0

n∑
m=0

an−m(−k2)n−mam(−k2)m = A2, (64)

lim
N→∞

N∑
n=0

n∑
m=0

qn−m(−k2)n−mrm(−k2)m = QR,

lim
N→∞

N∑
n=0

n∑
m=0

qn−m(−k2)n−mqm(−k2)m = Q2.

Taking into account the initial conditions (60), and also using the expressions (64), we come
in the equation (63) to the following three quadratic equations for the functions A, R, and Q:

Q = −4
3

− k2
(

5
3
R + Q2

)
, (65)

R = Q(1 − k2R),
A = −(1 + k2A2).

The result (65) concludes essentially the question of computation of functions (62) in a closed
form. Still, further simplifications are possible. In particular, it is convenient to reduce a
consideration to a single function within the first two equations in the system (65). Introducing
a new function, X(k2) = k2R(k2), we come to an equivalent cubic equation:

−5
3
(X − 1)2(X +

4
5
) =

X

k2 . (66)

This equation coincides with the equation (66) of the previous section. We will also rewrite
the third equation in the system (65) using a function Y (k2) = k2A(k2):

Y (1 + Y ) = −k2. (67)

The functions of our interest (62) can be straightforwardly expressed in terms of the relevant
solutions to the equations (66) and (67). Since all the functions in (62) are real-valued functions,
we are interested only in the real-valued roots of the algebraic equations (66) and (67).

The relevant analysis of the cubic equation (66) was already done above: the real-valued
root X(k2) is unique and negative for all finite values of parameter k2. Limiting values of the
function X(k2) at k → 0 and at k → ∞ are given by the expression (34):

lim
k→0

X(k2) = 0, lim
k→∞

X(k2) = −4
5
.

The quadratic equation (67) has no real-valued solutions for k2 > 1
4 , and it has two real-

valued solution for each k2, where k2 < 1
4 . We denote kc = 1

2 as the corresponding critical
value of wave vector. For k = 0, one of these roots is equal to zero, while the other is equal to
one. The asymptotics Y → 0, as k → 0, answers the question which of these two roots of eq.
(67) is relevant to the Chapman-Enskog solution, and we derive:

Y =
{ − 1

2

(
1 − √

1 − 4k2
)

k < kc
none k > kc

(68)
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The function Y (68) is negative for k ≤ kc.
From now on, X and Y will denote the relevant roots of the equations (66) and (67) just

discussed. The Fourier image of the expression ∇ · σ follows from (61):

ik · σk = Y ((ek · uk)ek − uk) − X

1 − X
(ek · uk)ek − iXkpk. (69)

The latter expression contributes to the right-hand side of the second of equations in the
Grad system (38) (more specifically, it contributes to the corresponding Fourier transform
of this equation). Knowing (69), we can calculate the dispersion ω(k) of the plane waves ∼
exp{ωt+ik·x} which now follows from the exact solution of the Chapman-Enskog procedure.
The calculation of the dispersion relation amounts to an evaluation of the determinant of a
(d + 1) × (d + 1) matrix, and is quite standard (see, e.g. [21]). We therefore reproduce only
the final result. The exact dispersion relation of the hydrodynamic modes reads:

(ω − Y )d−1
(

ω2 − X

1 − X
ω +

5
3
k2(1 − X)

)
= 0. (70)

Here d is the spatial dimension.
From the dispersion relation (70), we easily derive the following classification of the hy-

drodynamic modes:
(i) For d = 1, the spectrum of the hydrodynamic modes is purely acoustic with the dispersion

ωa which is given by the expression (35):

ωa =
X

2(1 − X)
± i

k

2

√
5X2 − 16X + 20

3
, (71)

where X = X(k2) is the real-valued root of eq.(66). Since X is a negative function for all
k > 0, the attenuation rate of the acoustic modes, Re ωa, is negative for all k > 0, and the
exact acoustic spectrum of the Chapman-Enskog procedure is free of the Bobylev instability
for arbitrary wave lengths.

(ii) For d > 1, the dispersion of the acoustic modes is given by the equation (71). As follows
from the Chapman-Enskog procedure, the diffusion-like (real-valued) mode has the dispersion
ωd:

ωd =
{ − 1

2

(
1 − √

1 − 4k2
)

k < kc
none k > kc

(72)

The diffusion mode is (d−1) times degenerated, the corresponding attenuation rate is negative
for k < kc, and this mode cannot be extended beyond the critical value kc = 1

2 within the
Chapman-Enskog method.

The reason why this rather remarkable peculiarity of the Chapman-Enskog procedure occurs
can be found upon a closer investigation of the spectrum of the underlying Grad moment system
(38).

Indeed, in the original system (38), besides the hydrodynamic modes, there exist several
non-hydrodynamic modes which are irrelevant to the Chapman-Enskog solution. All these non-
hydrodynamic modes are characterized with a property that corresponding dispersion relations
ω(k) do not go to zero, as k → 0. In the point kc = 1

2 , the diffusion branch (72) intersects
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Fig. 3 Attenuation rates for the 3D10M Grad system. Bold: The acoustic branch, exact
summation. Dots: The acoustic branch, Navier–Stokes approximation. Circles: The acoustic
branch, super-Burnett approximation. Solid: The diffusion branch, exact summation. Dash:
The critical mode of the 3D10M Grad system

with one of the non-hydrodynamic branches of the equation (38). For the larger values of
the wave vector k, these two branches produce a pair of complex conjugated solutions with
the real part equal to − 1

2 . Thus, though the spectrum of the original equations (38) continues
indeed after kc, the Chapman-Enskog method does not recognize this extension as a part of the
hydrodynamic branch. It is also interesting to notice that if we would accept all the roots of
the equation (67), including the complex values for k > kc, and not only the real-valued root
as was suggested by the asymptotics of the Chapman-Enskog solution (see the explanations
preceding the equation (68)), then we would come in (70) to the structure of the dispersion
relation just mentioned.

The attenuation rates (the functions Re ωa and Re ωd) are represented in Fig. 3, together
with the relevant dependencies for the approximations of the Chapman-Enskog method. The
non-hydrodynamic branch of eq. (38) which causes the breakdown of the Chapman-Enskog
solution is also represented in Fig. 3. It is rather remarkable that while the exact hydrodynamic
description becomes inapplicable for the diffusion branch at k ≥ kc, the usual Navier–Stokes
description is still providing a good approximation to the acoustic mode around this point.

The analysis of this section leads to the following additional remarks to the conclusions
made in the end of the Section 2.1.:

(i) The example considered above gives an opportunity to discuss the features of Chapman-
Enskog solutions and the problem of an extension of the hydrodynamic modes into a highly
non-equilibrium domain on the exact basis and in the full spatial dimension. The exact acoustic
mode in the framework of the Chapman-Enskog procedure is demonstrated to be stable for
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all wave lengths, while the diffusion-like mode can be regarded for the hydrodynamic mode
only in a bounded domain k < kc. It is remarkable that the result of the Chapman-Enskog
procedure has a clear non-polynomial character. As a conjecture here, the resulting hydrody-
namics is essentially nonlocal in space. It is also clear that any polynomial approximation
to the Chapman-Enskog series will fail to reproduce the peculiarity of the diffusion mode
demonstrated in frames of the exact solution.

(ii) Concerning an extension of hydrodynamics into a highly non-equilibrium domain on the
basis of the Boltzmann equations, this question remains open in a sense of an exact summation
as above. In this respect, results for simplified models can serve either for a test of approximate
procedures or at least for a guide. In particular, the mechanism of the singularity of the
diffusion-like mode through a coupling to the non-hydrodynamic mode might be a rather
general mechanism of limitation of the hydrodynamic description, and not just a feature of the
Grad systems.

(iii) The result of this section demonstrates that the sum of the Chapman-Enskog series
amounts to either a quite regular function (as is the function X), or to a function with a
singularity at finite kc. In both cases, however, the “smallness” of the Knudsen number ε used
to develop the Chapman-Enskog procedure plays no role in the outcome of the Chapman-
Enskog procedure.

3 The dynamic invariance principle

3.1 Partial summation of the Chapman-Enskog expansion

The examples considered above demonstrate that it makes sense to speak about the sum of
the Chapman-Enskog expansion, at least when the Chapman-Enskog method is applied to
the (linearized) Grad equations. However, even in this case, the possibility to perform the
summation exactly seems to be a lucky exceptions rather than a rule. Indeed, computations
become more bulky with the increase of the number of the moments included in the Grad
equations. Therefore, we arrive at a question: how can we approximate the recurrence equations
of the Chapman-Enskog method to account all the orders in the Knudsen number? Any such
method amounts to some “partial” summation of the Chapman-Enskog expansion, and this
type of working with formal series is widely spread in various fields of physics.

In this section we will discuss a method of approximating the Chapman-Enskog expansion
in a whole. As we now have the exact expressions for the Chapman-Enskog solution for the
linearized 10 moment Grad equations, it is natural to start with this example for the reason of
comparison.

Let us come back to the originating one-dimensional Grad equations (10), and to the corre-
sponding formulas of the Chapman-Enskog method (12) and (13). Instead of using the exact
equations (12) in each order n, we introduce the following approximate equations:

Let N ≥ 1 is some fixed integer. Then, instead of equations (12), we write:

σ(n) = −
n−1∑
m=0

∂
(m)
t σ(n−1−m), n ≤ N, (73)

σ(n) = −
N−1∑
m=0

∂
(m)
t σ(n−1−m), n > N. (74)
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This approximation amounts to the following: up to the order N , the Chapman-Enskog pro-
cedure (12) is taken exactly (equation (73)), while in the computations of the higher orders
(equation (74)) we restrict the set of the Chapman-Enskog operators (13) only to the order N .
Thus, the Chapman-Enskog coefficients σ(n) of the order higher than N are taken into account
only “partially”. As N tends to infinity, the recurrence procedure (73) and (74) tends formally
to the exact Chapman-Enskog procedure (12). We will further refer to the equations (73) and
(74) as to the regularization of the N − th order. In particular, taking N = 1, we come to the
regularization of the Burnett approximation, taking N = 2 we come to the regularization of
the super-Burnett approximation, etc.

It can be demonstrated that the approximate procedure just described does not alter the
structure of the functions σ(2n) and σ(2n+1) (20), while the recurrence equations for the coef-
ficients an and bn (20) will differ from the exact result of the full Chapman-Enskog procedure
(28). The advantage of the regularization procedure (73) and (74) above the exact Chapman-
Enskog recurrence procedure (12) is that the resulting equations for the coefficients an and bn

are always linear, as they appear from the equations (73) and (74). This feature enables one
to sum up the corresponding series exactly, even if the originating nonlinear procedure leads
to a too difficult analysis. The number N can be called the “depth” of the approximation:
the greater is N the more low-order terms of the Chapman-Enskog expansion are taken into
account exactly due to the equations (73).

For the first example, let us take N = 1 in the equations (73) and (74). The regularization
of the Burnett approximation in accord with these equations reads:

σ(n) = −∂
(0)
t σ(n−1), (75)

where n ≥ 1, and σ(0) = −(4/3)∂xu. Turning to the Fourier variables, we derive:

σ
(2n)
k = an(−k2)nikuk, (76)

σ
(2n+1)
k = bn(−k2)n+1pk,

while the coefficients an and bn are due to the following recurrence procedure:

an+1 =
5
3
bn, bn = an, a0 = −4

3
, (77)

and whereupon

an = bn =
(

5
3

)n

a0. (78)

Thus, denoting as σR
1k the Fourier transform of the regularized Burnett approximation, we

obtain:

σR
1k = − 4

3 + 5k2

(
ikuk − k2pk

)
. (79)

It should be noticed that the recurrence equations (77) can also be obtained from the exact
recurrence equations (28) by canceling the nonlinear terms. Thus, the approximation adopted
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within the regularization procedure (75) amounts to the following rational approximation of
the functions A and B (22):

AR
1 = BR

1 = − 4
3 + 5k2 . (80)

Substituting the latter expressions instead of the functions A and B in the formula for the
dispersion (23), we come to the dispersion relation of the hydrodynamic modes within the
regularized Burnett approximation:

ω± = − 2k2

3 + 5k2 ± i|k|
√

75k2k2 + 66k2 + 15
25k2k2 + 30k2 + 9

. (81)

The dispersion relation (81) is stable for all wave vectors, and in the short-wave limit we have:

lim
|k|→∞

ω± = −0.4 ± i|k|
√

3. (82)

Thus, the regularized Burnett approximation leads to a qualitatively the same behavior of the
dispersion relation, as it is for the exact result (36), giving the limiting value of the attenuation
rate equal to −0.4 instead of the exact value −2/9.

Consider now the regularization of the super-Burnett approximation. This amounts to setting
N = 2 in the recurrence equations (73) and (74). Then, instead of the equations (75), we have:

σ(1) = −∂
(0)
t σ(0), (83)

σ(2+n) = −∂
(0)
t σ(n+1) − ∂

(1)
t σ(n),

where n ≥ 0. The corresponding recurrence equations for the coefficients an and bn now are
as follows:

an+1 =
1
3
bn, an = bn, a0 = −4

3
. (84)

Thus, instead of the expressions (80), we come to the following:

AR
2 = BR

2 = − 4
3 + k2 . (85)

The corresponding dispersion relation of the regularized super-Burnett approximation reads:

ω± = − 2k2

3 + k2 ± i|k|
√

25k2k2 + 78k2 + 45
3k2k2 + 18k2 + 27

, (86)

while in the short-wave limit the following asymptotics takes place:

lim
|k|→∞

ω± = −2 ± i|k|
√

25
3

. (87)

The Bobylev instability is removed again within the regularization of the super-Burnett
approximation, and also the lower-order terms of the Chapman-Enskog expansion are taken
into account more precisely in comparison to the regularized Burnett approximation. However,
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the approximation in a whole has not improved (see Fig. 4). Thus, we can conclude that though
the partial summation method (73) and (74) is in a capacity to remove the Bobylev instability,
and to reproduce qualitatively the exact Chapman-Enskog solution in the short-wave domain,
the exactness, however, does not increase monotonically with the depth of the approximation
N . This drawback of the regularization procedure indicates once again that an attempt to
capture the lower-order terms of the Chapman-Enskog procedure does not succeed in a better
approximation in a whole.

3.2 The dynamic invariance

All the procedures considered so far (exact or approximate) were taking the Chapman-Enskog
expansion as the starting point. However, the result of the summation in these procedures does
not involve the Knudsen number ε explicitly, neither the sum does apply for a “smallness” of this
parameter. Therefore, it makes sense to reformulate the problem of the reduced description (for
the Grad equations (10) this amounts to the problem of constructing a function σk(uk, pk, k))
in a way where the parameter ε does not come into play at all. Further, in a framework of such
an approach, we can seek for a method of explicit constructing the function σk(uk, pk, k), and
which does not rely upon the Taylor-like expansions as above.

In this section we introduce the approach just mentioned, considering again the illustrative
example (10). These ideas will be extensively used in the sequel, and they also constitute the
basis of the so-called method of invariant manifold for dissipative systems [23].

Let us rewrite here the equations (10), in the Fourier variables, and canceling the parameter ε:

∂tpk = −5
3
ikuk, (88)

∂tuk = −ikpk − ikσk,

∂tσk = −4
3
ikuk − σk.

The result of the reduction in the system (88) amounts to a function σk(uk, pk, k), which
depend parametrically on the hydrodynamic variables uk and pk, and also on the wave vector
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k. Due to the linearity of the problem under the consideration, this function depends linearly
on uk and pk, and we can start with the form given by the equation (21):

σk(uk, pk, k) = ikAuk − k2Bpk, (89)

where A and B are undetermined functions of k. Now, however, we do not refer to a power
series representation of these functions as in the equations (22).

Given the form of the function σk(uk, pk, k) (89), we can compute its time derivative in
two different ways. On the one hand, substituting the function (89) into the right hand side of
the third of the equations in the set (88), we derive:

∂micro
t σk = −ik

(
4
3

+ A

)
uk + k2Bpk. (90)

On the other hand, computing the time derivative due to the first two equations (88), we come
to the following:

∂macro
t σk =

∂σk

∂uk
∂tuk +

∂σk

∂pk
∂tpk (91)

= ikA (−ikpk − ikσk) − k2B

(
−5

3
ikuk

)

= ik

(
5
3
k2B + k2A

)
uk + k2 (A − k2B

)
pk.

Equating the expressions in the right hand sides of the equations (90) and (91), and requiring
that the resulting equality holds for any values of the variables uk and pk, we come to the
following two algebraic equations:

F (A, B, k) = −A − 4
3

− k2
(

5
3
B + A2

)
= 0, (92)

G(A, B, k) = −B + A
(
1 − k2B

)
= 0.

These equations are nothing else but the equations (32). Recall that equations (32) have been
obtained upon the summation of the Chapman-Enskog expansion. Now, however, we have
come to the same result without using the expansion. Thus, the equations (92) (or, equivalently,
(32)) can be used as a starting point for the constructing the function (89).

Now it is important to comment on the somewhat formal manipulations which have led
to the equations (92). First of all, by the very sense of the reduced description problem,
we are looking for a set of functions σk which depend on the time only through the time
dependence of the hydrodynamic variables uk and pk. That is, we are looking for a set (89),
which is parameterized with the values of the hydrodynamic variables. Further, the two time
derivatives, (90) and (91), are relevant to the “microscopic” and the “macroscopic” evolution
within the set (89), respectively. Indeed, the expression in the right hand side of the equation
(90) is just the value of the vector field of the original Grad equation in the points of the set
(89). On the other hand, the expression (91) reflects the time derivative due to the reduced
(macroscopic) dynamics, which, in turn, is self-consistently defined by the form (89). The
equations (92) provide, therefore, the dynamic invariance condition of the reduced description
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for the set (89): the function σk(uk(t), pk(t), k) is a solution to both the full Grad system (88)
and to the reduced system which consists of the two first (hydrodynamic) equations. For this
reason, the equations (92) and their analogs which will be obtained on the similar reasoning,
will be called the invariance equations.

3.3 The Newton method

Let us concentrate on the problem of solving the invariance equations (92). Clearly, if we are
going to develop the functions A and B into the power series (22), we will come back to the
Chapman-Enskog procedure. Now, however, we see that the Chapman-Enskog expansion is
just a method to solve the invariance equations (92), and maybe not the optimal one.

Another possibility is to use iterative methods. Indeed, let us apply the Newton method.
The algorithm of is as follows: Let A0 and B0 are some initial approximations chosen for the
procedure. The correction, A1 = A0 + δA1 and B1 = B0 + δB1, due to the Newton iteration
is obtained upon a linearization of the equations (92) about the approximation A0 and B0.
Computing the derivatives, we can represent the equation of the Newton iteration in the matrix
form:(

∂F (A,B,k)
∂A |A=A0,B=B0

∂F (A,B,k)
∂B |A=A0,B=B0

∂G(A,B,k)
∂A |A=A0,B=B0

∂G(A,B,k)
∂B |A=A0,B=B0

)(
δA1
δB1

)
+
(

F (A0, B0, k)
G(A0, B0, k)

)
= 0.

(93)

where

∂F (A, B, k)
∂A

|A=A0,B=B0
= − (1 + 2k2A0

)
, (94)

∂F (A, B, k)
∂B

|A=A0,B=B0
= −5

3
k2,

∂G(A, B, k)
∂A

|A=A0,B=B0
= 1 − k2B0,

∂G(A, B, k)
∂B

|A=A0,B=B0
= − (1 + k2A0

)
.

Solving the system of linear algebraic equations, we come to the first correction δA1 and δB1.
Further corrections are found iteratively:

An+1 = An + δAn+1, (95)

Bn+1 = Bn + δBn+1,

where n ≥ 0, and( −(1 + 2k2An) − 5
3k2

1 − k2Bn −(1 + k2An)

)(
δAn+1
δBn+1

)
+
(

F (An, Bn, k)
G(An, Bn, k)

)
= 0. (96)

Within the algorithm just presented, we come to the problem how to choose the initial
approximation A0 and B0. Indeed, the method (95) and (96) is applicable formally to any
initial approximation, however, the convergence (if at all) might be sensitive to the choice.
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For the first experiment let us take the Navier-Stokes approximation of the functions A
and B:

A0 = B0 = −4
3

The outcome of the first two Newton iterations (the attenuation rates as they follow from the
first and the second Newton iteration) are presented in Fig. 5. It is clearly seen that the Newton
iterations converge rapidly to the exact solution for moderate k, however, the asymptotic
behavior in the short-wave domain is not improved.

Another possibility is to take the result of the regularization procedure as presented above.
Let the regularized Burnett approximation (80) is taken for the initial approximation, that is:

A0 = AR
1 = − 4

3 + 5k2 , B0 = BR
1 = − 4

3 + 5k2 . (97)

Substituting the expression (97) into the equation (95) and (96) for n = 0, and after some
algebra, we come to the following first correction:

A1 = − 4(27 + 63k2 + 153k2k2 + 125k2k2k2)
3(3 + 5k2)(9 + 9k2 + 67k2k2 + 75k2k2k2)

, (98)

B1 = − 4(9 + 33k2 + 115k2k2 + 75k2k2k2)
(3 + 5k2)(9 + 9k2 + 67k2k2 + 75k2k2k2)

The functions (98) are not yet the exact solution to the equations (92) (that is, the functions
F (A1, B1, k) and G(A1, B1, k) are not equal to zero for all k). However, substituting the
functions A1 and B1 instead of A and B into the dispersion relation (23), we derive in the
short-wave limit:

lim
|k|→∞

ω± = −2
9

± i|k|
√

3. (99)
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That is, already the first Newton iteration, as applied to the regularized Burnett approximation,
leads to the exact expression in the short-wave domain. Since the first Newton iteration appears
to be asymptotically exact, the next iterations improve the solution only for the intermediate
values of k, whereas the asymptotic behaviour remains exact in all the iterations. The attenua-
tion rates for the first and for the second Newton iterations with the initial approximation (97)
are represented in Fig. 6. The agreement with the exact solution is excellent.

A one more test is to take the result of the super-Burnett approximation (85) for the initial
condition in the Newton procedure (96). As we know, the regularization of the super-Burnett
approximation is provides a poorer approximation in comparison to the approximation (97), in
particular, in the short-wave domain. Nevertheless, the Newton iterations do converge though
less rapidly (see Fig. 7).

The examples considered so far demonstrate that the Newton method, as applied to the
invariance equations (92) is a more powerful tool in comparison to the Chapman-Enskog
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procedure. It is also important that the initial approximation should be “properly chosen”, and
should reproduce the features of the solution in a whole (not only in the long-wave limit), at
least qualitatively.

The best among the initial approximations considered so far is the regularized Burnett
approximation (97). We have already commented on the relation of this approximation to the
invariance equations, as well as on its relation to the Chapman-Enskog procedure. The further
important observation is as follows:

Let us choose the Euler approximation for the functions A and B, that is:

A0 = B0 = 0 (100)

The equation of the first Newton iteration (96) is very simple:( −1 − 5
3k2

1 −1

)(
δA1
δB1

)
+
( − 4

3
0

)
= 0, (101)

and

A1 = B1 = − 4
3 + 5k2 . (102)

Thus, the regularized Burnett approximation is at the same time the first Newton correction
as applied to the Euler initial approximation. This propertie distinguishes the regularization
of the Burnett approximation among other regularizations. Now the functions (98) can be
regarded as the second Newton correction as applied to the Euler initial approximation (100).

Finally, let us examine the question what does the Newton method do in a case of singu-
larities. As we have demonstrated in the previous section, the singularity of the diffusion-like
mode occurs when this mode couples to a non-hydrodynamic mode of the 10 moment Grad
system if the spatial dimension is greater that one.

We leave it here without a proof that the invariance equation method as applied to the 10
moment Grad system (38) leads to the system of equations (65). We have already demonstrated
what is the outcome of the Newton method as applied to the first two equations of this system
(responsible for the acoustic mode and containing no singularities). The Newton method, as
applied to the equation (67), reads:

Yn+1 = Yn + δYn+1, (103)

(1 + 2Yn)δYn+1 + {Yn(1 + Yn) + k2} = 0,

where n ≥ 0, and Y0 is a chosen initial approximation. Taking the Euler approximation
(Y0 = 0), we derive:

Y1 = −k2, (104)

Y2 = −k2(1 + k2)
1 − 2k2 .

The second approximation, Y2, is singular at the point k2 =
√

1/2, and it can be demonstrated
that all the further corrections do also have the first singularity at points kn, while the sequence
k2, . . . , kn tends to the actual branching point of the invariance equation (67) kc = 1/2. The
analysis of further corrections demonstrates that the convergence is very rapid (see Fig. 8).
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The approximations (104) demonstrate that unlike the polynomial approximations, the New-
ton method is sensitive to detect the actual singularities of the hydrodynamic spectrum. For-
mally, the function Y2 becomes positive as k becomes larger than k2, and thus attenuation rate,
ωd = Y2 becomes positive after this point. However, unlike the super-Burnett approximation
for the acoustic mode, this transition occurs now in a singular point. Indeed, the attenuation rate
Y2 tends to “minus infinity”, as k tends to k2 from the left. Thus, as described with the New-
ton procedure, the non-physical domain is separated from the physical one with an “infinitely
viscid” threshold. The occurrence of the poles in the Newton iterations is, of course, quite
clear. Indeed, the Newton method involves the derivative of the function R(Y ) = Y (Y + 1)
which appears on the left hand side of the equation (67). The derivative dR(Y )/dY becomes
zero in the singularity point Yc = −1/2. The results of this section bring us to the following
discussion:

(i) The result of the exact summation of the Chapman-Enskog procedure brings us to the
same system of equations as the principle of the dynamic invariance. This is demonstrated
above for a specific situation but it holds as well for any (linearized) Grad system. The resulting
equations are always nonlinear (even for the simplest linearized kinetic systems, such as Grad
equations).

(ii) Now we are able to alter the viewpoint: the set of the invariance equations can be
considered as the basic in the theory, while the Chapman-Enskog method is a way to solve it
via an expansion in powers of k. The method of power series expansion is neither the only
method to solve equations, nor the optimal. Alternative iteration methods might be better
suited to the problem of constructing the reduced description.

(iii) An opportunity to derive the invariance equation in a closed form, and next to solve
it this or that way, is, of course, rather exotic. The situation becomes complicated already
for the nonlinear Grad equations, and we should not expect anything simple in the case of
the Boltzmann equation. Therefore, if we are willing to proceed along these lines in other
problems, the attention draws towards the approximate procedures. With this, the question
appears: what amount of information is required to execute the procedures? Indeed, the
Navier–Stokes approximation can be obtained without any knowledge of the whole nonlinear
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system of invariance equations. It is important that the Newton method, as applied to our
problem, does not require any global information as well. This was demonstrated above by a
relation between the first iteration as applied to the Euler approximation and the regularization
of the Burnett approximation.

3.4 Invariance equation for the 1D13M Grad system

Let us consider as the next example the problem of the reduced description for the one-
dimensional thirteen moment Grad system. Using the dimensionless variables as above, we
write the one-dimensional version of the Grad equations (2) and (3) in the k-representation:

∂tρk = −ikuk, (105)

∂tuk = −ikρk − ikTk − ikσk,

∂tTk = −2
3
ikuk − 2

3
ikqk,

∂tσk = −4
3
ikuk − 8

15
ikqk − σk,

∂tqk = −5
2
ikTk − ikσk − 2

3
qk.

The Grad system (105) provides the simplest coupling of the hydrodynamic variables ρk, uk,
and Tk to the non-hydrodynamic variables, σk and qk, the latter corresponds to the heat flux. As
above, our goal is to reduce the description for the Grad system (105) to the three hydrodynamic
equations with respect to the variables ρk, uk, and Tk. That is, we have to express the functions
σk and qk in terms of ρk, uk, and Tk:

σk = σk(ρk, uk, Tk, k),
qk = qk(ρk, uk, Tk, k).

The Chapman-Enskog method, as applied for this purpose, results in the following algebraic
scheme (we omit the Knudsen number ε):

σ
(n)
k = −

{
n−1∑
m=0

∂
(m)
t σ

(n−1−m)
k +

8
15

ikq
(n−1)
k

}
(106)

q
(n)
k = −

{
n−1∑
m=0

∂
(m)
t q

(n−1−m)
k + ikσ

(n−1)
k

}
,

where the Chapman-Enskog operators act as follows:

∂
(m)
t ρk =

{ −ikuk m = 0
0, m ≥ 1 , (107)

∂
(m)
t uk =

{ −ik(ρk + Tk) m = 0
−ikσ

(m−1)
k , m ≥ 1

,

∂
(m)
t Tk =

{ − 2
3 ikuk m = 0

− 2
3 ikq

(m−1)
k , m ≥ 1

.
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The initial condition for the recurrence procedure (106) reads: σ
(0)
k = − 4

3 ikuk, and q
(0)
k =

− 15
4 ikTk, which leads to the Navier-Stokes-Fourier hydrodynamic equations.

Computing the coefficients σ
(1)
k and q

(1)
k , we come to the Burnett approximation:

σ1k = −4
3
ikuk +

4
3
k2ρk − 2

3
k2Tk, (108)

q1k = −15
4

ikTk +
7
4
k2uk.

The Burnett approximation (108) coincides with that obtained from the Boltzmann equation,
and it is precisely the case where the instability was first demonstrated in the paper [2].

The structure of the terms σ
(n)
k and q

(n)
k (an analog of the equations (20) and (42)) is as

follows:

σ
(2n)
k = an(−k2)nikuk, (109)

σ
(2n+1)
k = bn(−k2)n+1ρn + cn(−k2)n+1Tk,

q
(2n)
k = βn(−k2)nikρk + γn(−k2)nikiTk,

q
(2n+1)
k = αn(−k2)n+1uk.

A derivation of the invariance equation for the system (105) goes along the same lines as in
the previous section. We seek the functions of the reduced description in the form:

σk = ikAuk − k2Bρk − k2CTk, (110)

qk = ikXρk + ikY Tk − k2Zuk,

where the functions A, . . . Z are a subject of a further analysis.
The invariance condition results in a closed system of equations for the functions A, B, C,

X , Y , and Z. As above, computing the microscopic time derivative of the functions (110),
due to the two last equations of the Grad system (105) we derive:

∂micro
t σk = −ik

(
4
3

− 8
15

k2Z + A

)
uk (111)

+k2
(

8
15

X + B

)
ρk + k2

(
8
15

Y + C

)
Tk,

∂micro
t qk = k2

(
A +

2
3
Z

)
uk + ik

(
k2B − 2

3
X

)
ρk − ik

(
5
2

− k2C − 2
3
Y

)
Tk.

On the other hand, computing the macroscopic time derivative due to the first three equations
of the system (105), we obtain:

∂macro
t σk =

∂σk

∂uk
∂tuk +

∂σk

∂ρk
∂tρ +

∂σk

∂Tk
∂tTk (112)

= ik

(
k2A2 + k2B +

2
3
k2C − 2

3
k2k2CZ

)
uk

+
(

k2A − k2k2AB − 2
3
k2k2CX

)
ρk
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+
(

k2A − k2k2AC − 2
3
k2k2CY

)
Tk;

∂macro
t qk =

∂qk

∂uk
∂tuk +

∂qk

∂ρk
∂tρuk +

∂qk

∂Tk
∂tTk

=
(

−k2k2ZA + k2X +
2
3
k2Y − 2

3
k2k2Y Z

)
uk

+ik

(
k2Z − k2k2ZB +

2
3
k2Y X

)
ρk

+ik

(
k2Z − k2k2ZC +

2
3
k2Y 2

)
Tk.

Equating the corresponding expressions in the formulas (111) and (112), we come to the
following system of coupled equations:

F1 = −4
3

+
8
15

k2Z − A − k2A2 − k2B − 2
3
k2C +

2
3
k2k2CZ = 0, (113)

F2 =
8
15

X + B − A + k2AB +
2
3
k2CX = 0,

F3 =
8
15

Y + C − A + k2AC +
2
3
k2CY = 0,

F4 = A +
2
3
Z + k2ZA − X − 2

3
Y +

2
3
k2Y Z = 0,

F5 = k2B − 2
3
X − k2Z + k2k2ZB − 2

3
k2Y X = 0,

F6 = −5
2

+ k2C − 2
3
Y − k2Z + k2k2ZC − 2

3
k2Y 2 = 0.

As above, the invariance equations (113) can be also obtained upon the summation of the
Chapman-Enskog expansion, after the Chapman-Enskog procedure is casted into a recurrence
relations for the coefficients an, . . . , αn (109). This route is less straightforward than the one
just presented, and we omit the proof.

The Newton method, as applied to the system (113), results in the following algorithm:
Denote as A the six-component vector function A = (A, B, C, X, Y, Z). Let A0 is the

initial approximation, then:

An+1 = An + δAn+1, (114)

where n ≥ 0, and the vector function δAn+1 is a solution to the linear system of equations:

NnδAn+1 + F n = 0. (115)

Here F n is the vector function with the components Fi(An), and Nn is a 6 × 6 matrix:


−(1 + 2k2An) −k2 −2/3k2(1 − k2Zn)
k2Bn − 1 1 + k2 2/3k2Xn

k2Cn − 1 0 1 + 2/3k2Yn + k2An

1 + k2Zn 0 0
0 k2(1 + k2Zn) 0
0 0 k2(1 + k2Zn)

(116)
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0 0 2/3k2(4/5 + k2Cn)
2/3(4/5 + k2Cn) 0 0

0 2/3(4/5 + k2Cn) 0
−1 −2/3(1 − k2Zn) 2/3 + k2An + 2/3k2Yn

−2/3(1 + k2Yn) −2/3k2Xn −k2(1 − k2Bn)
0 −2/3(1 + 2k2Yn) −k2(1 − k2Cn)




The Euler approximation gives: A0 = · · · = Z0 = 0, while F1 = −4/3, F6 = −5/2, and
F2 = · · · = F5 = 0. The first Newton iteration (115) as applied to this initial approximation,
leads again to a simple algebraic problem, and we have finally obtained:

A1 = −20
141k2 + 20

867k4 + 2105k2 + 300
, (117)

B1 = −20
459k2k2 + 810k2 + 100

3468k2k2k2 + 12755k2k2 + 11725k2 + 1500
,

C1 = −10
51k2k2 − 485k2 − 100

3468k2k2k2 + 12755k2k2 + 11725k2 + 1500
,

X1 = − 375k2(21k2 − 5)
2(3468k2k2k2 + 12755k2k2 + 11725k2 + 1500)

,

Y1 = − 225(394k2k2 + 685k2 + 100)
4(3468k2k2k2 + 12755k2k2 + 11725k2 + 1500)

,

Z1 = −15
153k2 + 35

867k4 + 2105k2 + 300
.

Substituting the expression (109) into the first three equations of the Grad system (105), and
proceeding to the dispersion relation as above, we derive the latter in terms of the functions
A, . . . , Z:

ω3 − k2
(

2
3
Y + A

)
ω2 (118)

+ k2
(

5
3

− 2
3
k2Z − 2

3
k2C − k2B +

2
3
k2AY +

2
3
k2k2CZ

)
ω

+
2
3
k2(k2X − k2Y + k2k2BY − k2k2XC) = 0.

When the functions A1, . . . , Z1 (117) are substituted instead of A, . . . , Z into the equa-
tion (118), the dispersion relation of the first Newton iteration, as applied to the invariance
equations (113) with the Euler initial approximation, is obtained. This result coincides with
the regularization of the Burnett approximation, which was considered in [11]. There it was
demonstrate that the equilibrium is stable within this approximation for arbitrary wave lengths.
The dispersion relation for the Burnett approximation, in turn, is due to the approximation

A = −4/3, B = −4/3, C = 2/3, X = 0, Y = −15/4, Z = −7/4,

as it follows from a comparison of the expressions (108) and (110). The dispersion relation for
the Burnett approximation coincides with the one obtained in [2] from the Boltzmann equation.
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3.5 Invariance equation for the 3D13M Grad system

The final example to be considered is the 13 moment Grad system in the full spatial dimension,
(2) and (3). Let us rewrite here the original system in terms of Fourier variables:

∂tρk = −ikek · uk, (119)

∂tuk = −ikekρk − ikekTk − ikek · σk,

∂tTk = −2
3
ik(ek · uk + ek · qk),

∂tσk = −ikekuk − 2
5
ikekqk − σk,

∂tqk = −5
2
ikekTk − ikek · σk − 2

3
qk.

Here we have represented the wave vector k as k = kek, and ek is the unit vector.

The structure of the even and odd Chapman-Enskog coefficients, σ
(n)
k and q

(n)
k , turns out

to be as follows:

σ
(2n)
k = (−k2)nik {an(ekuk − 2gk(ek · uk)) + bngk(ek · uk)} , (120)

σ
(2n+1)
k = (−k2)n+1gk{cnTk + dnρk},

q
(2n)
k = (−k2)nikek{γnTk + δnρk},

q
(2n+1)
k = (−k2)n+1{αnek(ek · uk) + βn(uk − ek(ek · uk)},

where gk = 1/2ekek, and the real-valued coefficients an, . . . , βn are due to the Chapman-
Enskog procedure (7) and (8).

The expressions just presented prompt that the dynamic invariant form of the stress tensor
and of the heat flux reads:

σk = ikA(ekuk − 2gk(ek · uk)) + 2ikBgk(ek · uk) (121)

−2k2CgkTk − 2k2Dgkρk,

qk = ikZekTk + ikUekρk

−k2X(uk − ek(ek · uk)) − k2Y ek(ek · uk),

where the functions A, . . . , Y depend on k. The dynamic invariance condition results in the
following two closed systems for these functions:

2
5
U + D − B +

2
3
k2CU +

4
3
k2BD = 0, (122)

2
5
Z + C − B +

2
3
k2CZ +

4
3
k2BC = 0,

−1 +
2
5
k2Y − B − 2

3
k2C − k2D − 4

3
k2B2 +

2
3
k2k2CY = 0,

4
3
k2D − 2

3
U − k2Y − 2

3
k2ZU +

4
3
k2k2Y D = 0,

−5
2

+
4
3
k2C − 2

3
Z − k2Y − 2

3
k2Z2 +

4
3
k2k2Y C = 0,
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4
3
B +

2
3
Y − U − 2

3
Z +

2
3
k2ZY +

4
3
k2Y B = 0,

and

−1 − A +
2
5
k2X − k2A2 = 0, (123)

A +
2
3
X + k2AX = 0

The method of summation of the Chapman-Enskog expansion can be also developed, starting
with the structure of the Chapman-Enskog coefficients (120), and in the same manner as
in Section 2. Simple but rather extensive computations in this case lead, of course, to the
invariance equations (122) and (123).

The Newton method, as applied to the systems (122) and (123) with the initial Euler approx-
imation, leads in the first iteration to the regularization of the Burnett approximation reported
earlier in [11].

Introducing the functions Ā = k2A and X̄ = k2X , we come in the equation (123) to the
following:

R(Ā) =
5Ā(3Ā2 + 5Ā + 2)

4(6Ā + 5)
= −k2, (124)

while

X̄ = − 3Ā

2 + 3Ā
.

The derivative, dR(Ā)/dĀ, becomes equal to zero in the point Āc ≈ −0.364, which gives
the critical wave vector kc =

√
−R(Āc) ≈ 0.305. The Newton method, as applied to the

equation (124) with the initial Euler condition Ā = 0, gives the following: the outcomes of the
first and of the second iterations are regular functions, while the third and the further iterations
bring a singularity which converges to the point kc (see Fig. 9). These singularities (the real
poles) of the Newton corrections are of the same nature as discussed above.

3.6 Gradient expansions in kinetic theory of phonons

3.6.1 Exact Chapman-Enskog solution and onset of second sound
In this section, we close our discussion of linearized Grad systems with an application to
simple models of the phonon transport in rigid insulators. It is demonstrated that the extended
diffusion mode transforms into second sound mode due to its coupling to a non-hydrodynamic
mode at some critical value of the wave vector. This criticality shows up as a branching point of
the extension of the diffusion mode within the Chapman–Enskog method. Though the analysis
is essentially similar to the examples considered above, it is presented in some details for the
sake of completeness.

Experiments on heat pulses propagation through crystalline media [24] confirmed exis-
tence of a temperature window (the Guyer-Krumhansl window [25]) with respect to which
the features of heat propagation are qualitatively different: At temperatures exceeding the
high-temperature edge of the window, the heat propagates in a diffusion-like way. Below the



I. V. Karlin and A. N. Gorban, Exact hydrodynamics 819

-4

-3

-2

-1

0
0 0.1 0.2 0.3 0.4 0.5

k

Fig. 9 Solutions to the Eq.
(123). Circles: Numerical solu-
tions. Dots: The first Newton it-
eration. Solid: The 4th Newton
iteration

low-temperature edge of the window, the propagation goes in a ballistic way, with a constant
speed of sound. Within the window, the propagation becomes wave-like. This latter regime is
called second sound (see [26] for a review).

This problem has drawn some renewed attention in the last years. Models relevant for a
unified description of diffusion, second sound, and ballistic regimes of heat propagation are
intensively discussed (see [27, 28] and references therein). To be specific, recall the simplest
and typical model of the phonon transport [27]. Let e(x, t) and p(x, t) be small deviations of
the energy density and of the energy flux of the phonon field from their equilibrium values,
respectively. Then

∂te = −c2∇ · p, (125)

∂tp = −1
3
∇e − 1

τR
p. (126)

Here c is the Debye velocity of phonons, and τR is the characteristic time of resistive
processes. Equations (125) can be derived from the Boltzmann–Peierls kinetic equation, within
the relaxation time approximation, by a method similar to the Grad method [27]. Eqs. (125)
provide the simplest model of a coupling between the hydrodynamic variable e and the non-
hydrodynamic variable p, allowing for a qualitative description of both the diffusion and the
second sound. Following the standard argumentation [27], we observe the two limiting cases:
1). As τR → 0, the equation (126) yields the Fourier relation p = − 1

3τR∇e which closes the
equation (125) to give the diffusion equation:

∂te +
1
3
τRc2∆e = 0. (127)

2). As τR → ∞, the equation (126) yields ∂tp = − 1
3∇e, and the equation (125) closes to

give the wave equation:

∂2
t e +

1
3
c2∆e = 0. (128)
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The equation (127) describes the usual diffusive regime of the heat propagation, while the
equation (128) is relevant to the (undamped) second sound regime with the velocity u2 = c/

√
3,

and are both closed with respect to the variable e.
However, even within the simplest model (125), the problem of closure remains unsolved in

a systematic way when τR is finite. The natural way of doing so is provided by the Chapman-
Enskog method. In the situation under consideration, the Chapman-Enskog method yields
an extension of the diffusive transport to finite values of the parameter τR, and leads to an
expansion of the non-hydrodynamic variable p in terms of the hydrodynamic variable e. With
this, if we are able to make this extension of the diffusive mode exactly, we could learn more
about the transition between the diffusion and second sound (within the frames of the model).

The Chapman-Enskog method, as applied to the model (125), results in the following series
representation:

p =
∞∑

n=0

p(n), (129)

where the coefficients p(n) are due to the Chapman-Enskog recurrence procedure,

p(n) = −τR

n−1∑
m=0

∂
(m)
t p(n−1−m), (130)

while the Chapman-Enskog operators ∂
(m)
t act on e as follows:

∂
(m)
t e = −c2∇ · p(m). (131)

Finally, the zero order term reads: p(0) = − 1
3τR∇e, and leads to the Fourier approximation

of the energy flux.
To sum up the series (129) in a closed form, we, will specify the nonlinearity appearing

in equations (130) and (131). The coefficients p(n) in equations (129) and (130) have the
following explicit structure for arbitrary order n ≥ 0:

p(n) = an∆n∇e, (132)

where the real-valued and yet unknown coefficients an are due to the recurrence procedure
(130), and (131). Indeed, the form (132) is true for n = 0 (a0 = − 1

3τR). Let us assume that
(132) is proven up to the order n − 1. Then, computing the nth order coefficient p(n), we
derive:

p(n) = −τR

n−1∑
m=0

∂
(m)
t an−1−m∆(n−1−m)∇e (133)

= −τR

n−1∑
m=0

an−1−m∆(n−1−m)∇ (−c2am∇ · ∇∆me
)

= τRc2

{
n−1∑
m=0

an−1−mam

}
∆n∇e.
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The last expression has the form (132). Thus, the Chapman-Enskog procedure for the model
(125) is equivalent to the following nonlinear recurrence relation in terms of the coefficients
an:

an = τRc2
n−1∑
m=0

an−1−mam, (134)

subject to the initial condition a0 = − 1
3τR. Further, it is convenient to make the Fourier

transform. Using p = pk exp{ik · x} and e = ek exp{ik · x}, where k is the real-valued
wave vector, we derive in (132): p

(n)
k = anik(−k2)nek, and

pk = ikA(k2)ek, (135)

where

A(k2) =
∞∑

n=0

an(−k2)n. (136)

Thus, the the Chapman-Enskog solution (129) amounts to finding the function A(k2) repre-
sented by the power series (136). If the function A is known, the exact Chapman-Enskog
closure of the system (125) amounts to the following dispersion relation of plane waves
∼ exp{ωkt + ik · x}:

ωk = c2k2A(k2). (137)

Here ωk is a complex-valued function of the real-valued vector k: Reωk is the attenuation
rate, Imωk is the frequency.

Multiplying both the equations in (134) with (−k2)n, and performing a summation in n
from 1 to infinity, we get:

A − a0 = −τRc2k2
∞∑

n=0

n∑
m=0

an−m(−k2)n−mam(−k2)m,

Now we notice that

lim
N→∞

N∑
n=0

n∑
m=0

an−m(−k2)n−mam(−k2)m = A2,

Accounting a0 = − 1
3τR, we come to a quadratic equation for the function A:

τRc2k2A2 + A +
1
3
τR = 0. (138)

Further, a selection procedure is required to choose the relevant root of the equation (138).
Firstly, recall that all the coefficients an (132) are real-valued by the sense of the Chapman-
Enskog method (130) and (131), hence the function A (136) is real-valued. Therefore, only
the real-valued root of the equation (138) is relevant to the Chapman-Enskog solution. The
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first observation is that the equation (138) has no real-valued solutions as soon as k is bigger
than the critical value kc, where

kc =
√

3
2τRc

. (139)

Secondly, there are two real-valued solutions to the equation (138) at k < kc. However, only
one of them satisfies the Chapman-Enskog asymptotic limk→0 A(k2) = − 1

3τR.
With the two remarks just given, we finally derive the following exact Chapman-Enskog

dispersion relation (137):

ωk =

{
−(2τR)−1

(
1 −√1 − (k2)/(k2

c )
)

k < kc

none k > kc
. (140)

The Chapman-Enskog dispersion relation corresponds to the extended diffusion transport,
and it comes back to the standard Fourier approximation in the limit of long waves k/kc � 1.
The Chapman-Enskog solution does not exist as soon as k/kc > 1. In the point kc, the extended
diffusion branch crosses one of the non-hydrodynamic branches of the (125). For larger k, the
extended diffusion mode and the critical non-hydrodynamic mode produce a pair of complex
conjugated solutions with the real part equal to − 1

2τR
. The imaginary part of this extension

after kc has the asymptotics ±iu2k, as k → ∞, and where u2 = c/
√

3 is the (undamped)
second sound velocity in the model (125) (see equation (128)). Though the spectrum of the
original eq. (125) continues indeed after kc, the Chapman-Enskog method does not recognize
this extension as a part of the hydrodynamic branch, while the second sound regime is born
from the extended diffusion after the coupling to the critical non-hydrodynamic mode.

Finally, let us consider the opportunities provided by the Newton method as applied to the
invariance equation. First, the invariance equation can be easily obtained in a closed form
here. Consider again the expression for the heat flux in terms of the energy density (135),
pk = ikA(k2)ek, where now the function A is not thought as the Chapman-Enskog series
(136). The invariance equation is a constraint on the function A, expressing the form-invariance
of the heat flux (135) under both the dynamic equations (125) and (126). Computing the time
derivative of the function (135) due to equation (125), we obtain:

∂macro
t pk = ikA(k2)∂tek = c2k2A2ikek. (141)

On the other hand, computing the time derivative of the same function due to equation (126),
we have:

∂micro
t pk = −1

3
ikek − 1

τR
Aikek. (142)

Equating the expressions (141) and (142), we come to the desired invariance equation for the
function A. This equation coincides with the exact Chapman-Enskog equation (138).

As the second step, let us apply the Newton method to the invariance equation (138), taking
the Euler approximation (AN

0 ≡ 0) for the initial condition. Rewriting the equation (138) in
the form F (A, k2) = 0, we come to the following Newton iterations:

dF (A, k2)
dA

∣∣∣∣
A=An

(An+1 − An) + F (An, k2) = 0. (143)
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The first two iterations give:

τ−1
R A1 = −1

3
, (144)

τ−1
R A2 = − 1 − 1

4y2

3(1 − 1
2y2)

. (145)

The first Newton iteration (144) coincides with the first term of the Chapman-Enskog ex-
pansion. The second Newton iteration (145) is a rational function with the Taylor expansion
coinciding with the Chapman-Enskog solution up to the super-Burnett term, and it has a pole
at y2 =

√
2. The further Newton iterations are also rational functions with the relevant poles

in the points yn, and the sequence of this points tends very rapidly to the location of the actual
singularity yc = 1 (y3 ≈ 1.17, y4 ≈ 1.01, etc.).

3.6.2 Inclusion of normal processes
The account for normal processes in frames of the semi-hydrodynamical models [27] leads
to the following generalization of the Eq. (125) (written in Fourier variables, in the one-
dimensional case):

∂tek = −ikc2pk, (146)

∂tpk = −1
3
ikek − ikNk − 1

τR
pk, (147)

∂tNk = − 4
15

ikc2pk − 1
τ

Nk. (148)

Here τ = τNτR/(τN +τR), τN is the characteristic time of normal processes, and Nk is the
additional field variable. Following the principle of invariance as explained in the preceding
section, we write the closure relation for the non-hydrodynamic variables pk and Nk as:

pk = ikAkek, Nk = Bkek, (149)

where Ak and Bk are two unknown functions of the wave vector k. Further, following the
principle of invariance as explained in the preceding section, each of the relations (149) should
be invariant under the dynamics due to Eq. (146), and due to Eqs. (147) and (148). This results
in two equations for the functions Ak and Bk:

k2c2A2
k = − 1

τR
Ak − Bk − 1

3
, (150)

k2c2AkBk = −1
τ

Bk +
4
15

k2c2Ak.

When the energy balance equation (146) is closed with the relation (149), this amounts to a
dispersion relation for the extended diffusion mode, ωk = k2c2Ak, where Ak is the solution
to the invariance equations (150), subject to the condition Ak → 0 as k → 0. Resolving
equations (150) with respect to Ak, and introducing Ak = k2c2Ak, we arrive at the following:

Φ(Ak) =
5Ak(1 + τAk)(τRAk + 1)

5 + 9τAk

= −1
3
τRk2c2. (151)
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The invariance equation (151) is completely analogous to the Eq. (138). Written in the form
(151), it allows for a direct investigation of the critical points. For this purpose, we find zeroes
of the derivative, dΦ(Ak)/dAk = 0. When the roots of the latter equation, A

c

k, are found,
the critical values of the wave vector are given as −(1/3)k2

cc
2 = Φ(A

c

k). The condition
dΦ(Ak)/dAk = 0 reads:

18τ2τRA
3
k + 3τ(3τ + 8τR)A

2
k + 10(τ + τR)Ak + 5 = 0. (152)

Let us consider the particularly interesting case, ε = τN/τR � 1 (the normal events are less
frequent than resistive). Then the real-valued root of the equation (152), Ak(ε), corresponds
to the coupling of the extended diffusion mode to the critical non-hydrodynamic mode. The
corresponding modification of the critical wave vector kc (139) due to the normal processes
amounts to a shifts towards shorter waves, and we derive:

[kc(ε)]2 = k2
c +

3ε

10τ2
Rc2 . (153)

3.6.3 Account for anisotropy
The above examples concerned the isotropic Debye model. Let us consider the simplest
anisotropic model of a cubic media with a longitudinal (L) and two degenerated transverse (T)
phonon modes, taking into account resistive processes only. Introduce the Fourier variables,
ek, eT

k , pT
k , and pL

k , where ek = eL
k + 2eT

k is the Fourier transform of the total energy of
the three phonon modes (the only conserving quantity), while the rest of variables are specific
quantities. The isotropic model (125) generalizes to give [27]:

∂tek = −ic2
Lk · pL

k − 2ic2
T k · pT

k , (154)

∂te
T
k = −ic2

T k · pT
k +

1
λ

[
c3
L(ek − 2eT

k ) − c3
T eT

k

]
, (155)

∂tp
L
k = −1

3
ik(ek − 2eT

k ) − 1
τL
R

pL
k , (156)

∂tp
T
k = −1

3
ikeT

k − 1
τT
R

pT
k , (157)

where λ = τT
R c3

T + 2τL
Rc3

L. The term containing the factor λ−1 corresponds to the energy
exchange between the L and T phonon modes. The invariance constraint for the closure
relations,

pL
k = ikAkek, pT

k = ikBkek, eT
k = Xkek, (158)

result in the following invariance equations for the k-dependent functions Ak, Bk, and Xk:

k2c2
LA2

k + 2k2c2
T AkBk = − 1

τL
R

Ak − 1
3

(1 − 2Xk) , (159)

2k2c2
T B2

k + k2cLBkAk = − 1
τT
R

Bk − 1
3
Xk, (160)

Xk

(
k2c2

LAk + 2k2c2
T Bk

)
= c2

T k2Bk +
1
λ

[
c3
L − Xk

(
2c3

L + c3
T

)]
. (161)
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When the energy balance equation (154) is closed with the relations (158), this leads to the
dispersion relation for the extended diffusion mode, ωk = Ak + 2Bk, where the functions
Ak = k2c2

LAk, and Bk = k2c2
T Bk, satisfy the condition: Ak → 0, and Bk → 0, as k → 0.

The resulting dispersion relation is rather complicated in the general case of the four parameters
of the problem, cL, cT , τL

R and τT
R . Therefore, introducing a function Y k = Ak + 2Bk, let

us consider the following specific situations of closed equations for the Y k on the basis of the
invariance equations (159):

(i). cL = cT = c, τL
R = τT

R = τR (complete degeneration of the parameters of the L and T
subsystems): The system (159) results in two decoupled equations:

Y k

(
τRY k + 1

)
+

1
3
k2c2τR = 0, (162)

(
τRY k + 1

)2
+

1
3
k2c2τ2

R = 0. (163)

The equation (162) coincides with the eq. (138) for the isotropic case, and its solution defines
the coupling of the extended diffusion to a non-hydrodynamic mode. The equation (163) does
not have a solution with the required asymptotic Y k → 0 as k → 0, and is therefore irrelevant
to the features of the diffusion mode in this completely degenerated case. It describes the two
further propagating and damped non-hydrodynamic modes of the Eqs. (154). The nature of
these modes, as well of the mode which couples to the diffusion mode well be seen below.

(ii). cL = cT = c, τL
R 	= τT

R (nondegenerate characteristic time of resistive processes in the
L and the T subsystems):[

Y k

(
τL
RY k + 1

)
+

1
3
k2c2τL

R

]
(164)

×
[(

τ ′
RY k + 3

) (
τT
RY k + 1

)
+

1
3
k2c2τT

R τ ′
R

]
+

2
3
k2c2 (τT

R − τL
R

)
= 0,

where τ ′
R = 2τL

R + τT
R . As τT

R − τL
R → 0, the Eq. (164) tends to the degenerated case

(162). At k = 0, τL
R 	= τL

R , there are four solutions to the Eq. (164). The Y 0 = 0 is
the hydrodynamic solution indicating the beginning of the diffusion mode. The two non-
hydrodynamic solutions, Y 0 = −1/τL

R , and Y 0 = −1/τT
R , Y 0 = −3/τ ′

R, are associated
with the longitudinal and the transverse phonons, respectively. The difference in relaxational
times makes the latter transverse root nondegenerate, instead there appears the third non-
hydrodynamic mode, Y 0 = −3/τ ′

R.
(iii). cL 	= cT , τL

R = τT
R = τR (nondegenerate speed of the L and the T sound).[

Y k

(
τRY k + 1

)
+

1
3
k2c2

LτR

]
(165)

×
[(

τRY k + 1
)2

+
1
3
k2c2

T τ2
R

]
+

2
3
k2τR

c3
L(c2

T − c2
L)

2c3
L + c3

T

(
τRY k + 1

)
= 0.

As cT − cL → 0, the Eq. (165) tends to the degenerated case (162). However, this time the
non-hydrodynamic mode associated with the transverse phonons is degenerated at k = 0.

Thus, we are able to identify the modes in the equations (162) and (163). The non-
hydrodynamic mode which couples to the extended diffusion mode is associated with the
longitudinal phonons, and is the case (162). The case (163) is due to the transverse phonons.
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In the nondegenerate cases, (164) and (165), the both pairs of modes become propagating after
certain critical values of k, and the behavior of the extended diffusion mode is influenced by all
the three non-hydrodynamic modes just mentioned. It should be stressed, however, that second
sound mode which is the continuation of the diffusion mode [24], is due to the eq. (162). The
results of the above analysis lead to the following discussion:

(i) The examples considered above indicate an interesting mechanism of a kinetic formation
of the second sound regime from the extended diffusion with the participation of the non-
hydrodynamic mode. The onset of the propagating mode shows up as the critical point of the
extension of the hydrodynamic solution into the domain of finite k, which was found within the
Chapman–Enskog and equivalent approaches. This results concern the situation at the high-
temperature edge of the Guyer–Krumhansl window, and are complementary to the coupling
between the transversal ballistic mode and second sound at the low-temperature edge [29].

(ii) The crossover from the diffusion-like to the wave-like propagation was previously found
in [30] in frames of exact Chapman-Enskog solution to the Boltzmann equation for the Lorentz
gas model [7], and for similar models of phonon scattering in anisotropic disordered media
[31]. The characteristic common feature of the models studied in [7, 30, 31] and the models
[27] is the existence of a gap between the hydrodynamic (diffusive) and the non-hydrodynamic
components of the spectrum. Therefore, one can expect that the destruction of the extended
diffusion is solely due to the existence of this gap. In applications to the phonon kinetic theory
this amounts to the introduction of the relaxation time approximation. In other words, we may
expect that the mechanism of crossover from diffusion to second sound in the simple models
[27] is identical to what could be found from the phonon–Boltzmann kinetic equation within
the relaxation time approximation. However, a remark is in order since the original (i. e.,
without the relaxation time approximation) phonon kinetic equations are gapless (cf., e. g.,
[26]). On the other hand, most of the works on heat propagation in solids do explore the idea of
the gap, since it is only possible to speak of the diffusion if such a gap exists. To conclude this
point, the following general hypothesis can be expressed: the existence of the diffusion (and
hence of the gap in the relaxational spectrum) leads to its destruction through the coupling to
a non-hydrodynamic mode.

3.7 Nonlinear Grad equations

In the preceding sections, the Chapman-Enskog and other methods were probed explicitly for
the linearized Grad equations far beyond the usual Navier–Stokes approximation. This was
possible, first of all, because the problem of the reduced description was shaped into a rather
simple algebraic form. Indeed, the algebraic structure of the stress tensor σk(ρk,uk, Tk,k)
and of the heat flux qk(ρk,uk, Tk,k) was fairly simple. However, when we attempt to extend
the approach onto the nonlinear Grad equations, the algebraic structure of the problem is no
longer simple. Indeed, when we proceed along the lines of the Chapman-Enskog method,
for example, the number of types of terms, ∇u, ∇∇u, (∇u)2, ∇T∇ρ, and so on, in the
Chapman-Enskog coefficients σ(n) and q(n) demonstrates the combinatorial growth with the
order n.

Still, a progress is possible if we impose some rules of selection of relevant terms. As
applied to the Chapman-Enskog expansion, these selection rules prescribe to keep only the
contributions coming from the terms with a definite structure in each order σ(n) and q(n),
and to ignore all other terms. This approach can be linked again with the partial summation
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rules for the perturbation series in many-body theories, where usually terms with a definite
structure are summed instead of a series in a whole. Our viewpoint on the problem of ex-
tension of the hydrodynamics in the nonlinear case can be expressed as follows: The exact
extension seems to be impossible, and, moreover, quite useless because of the lack of a physical
transparency. Instead, certain sub-series of the Chapman-Enskog expansion, selected on clear
physical grounds, may lead to less complicated equations, which, at the same time, provide
an extension of a certain subclass of hydrodynamic phenomena. This viewpoint is illustrated
in this section by considering a sub-series of the Chapman-Enskog expansion which gives the
dominating contribution when the flow velocity becomes very large (and thus it is relevant to
a high-speed subclass of hydrodynamic phenomena such as strong shock waves).

The approach to the Chapman-Enskog series for the nonlinear Grad equations just men-
tioned, and which was based on a diagrammatic representation of the Chapman-Enskog method,
has been attempted earlier in [14]. In this section, however, we will take the route of the dynamic
invariance equations which leads to the same results more directly.

3.7.1 The dynamic viscosity factor
The starting point is the set of one-dimensional nonlinear Grad equations for the hydrodynamic
variablesρ, u andT , coupled to the non-hydrodynamic variableσ, where σ is thexx-component
of the stress tensor:

∂tρ = −∂x(ρu); (166)

∂tu = −u∂xu − ρ−1∂xp − ρ−1∂xσ; (167)

∂tT = −u∂xT − (2/3)T∂xu − (2/3)ρ−1σ∂xu; (168)

∂tσ = −u∂xσ − (4/3)p∂xu − (7/3)σ∂xu − p

µ(T )
σ. (169)

Here µ(T ) is the temperature-dependent viscosity coefficient. We will adopt the form µ(T ) =
αT γ , which is characteristic to the point-center models of particle’s collisions, where γ varies
from γ = 1 (Maxwellian molecules) to γ = 1/2 (hard spheres), and where α is a dimensional
factor.

Even in this model, the Chapman-Enskog expansion appears to be exceedingly complicated
in the full setting. Therefore, we address another, more restrictive problem: What is the leading
correction to the Navier–Stokes approximation when the characteristic value of the average
velocity is comparable to the thermal velocity?

Our goal is to compute the correction to the Navier-Stokes closure relation, σNS = −(4/3)
µ∂xu, for high values of the average velocity. Let us consider first the Burnett correction as
from the Eq. (166):

σB = −4
3
µ∂xu +

8(2 − γ)
9

µ2p−1(∂xu)2 − 4
3
µ2p−1∂x(ρ−1∂xp). (170)

The correction of the desired type is given by the nonlinear term proportional to (∂xu)2. Each
further nth term of the Chapman-Enskog expansion contributes, among others, the nonlinear
term proportional to (∂xu)n+1. Such terms can be named high-speed terms since they dom-
inate the rest of the contributions in each order of the Chapman-Enskog expansion when the
characteristic average velocity is comparable to the heat velocity. Indeed, if U is a character-
istic mean velocity, and u = Uu, where u is dimensionless, then the term (∂xu)n+1 receives
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the factor Un+1 which is the highest possible order of U among the terms available in the nth
order of the Chapman-Enskog expansion. Simple dimensional analysis leads to a conclusion
that such terms are of the form µgn∂xu, where g = p−1µ∂xu is dimensionless. Therefore, the
Chapman-Enskog expansion for the function σ may be formally rewritten as:

σ=−µ

{
4
3

− 8(2−γ)
9

g+r2g
2+. . .+rngn+. . .

}
∂xu+. . . (171)

The series in the brackets is the collection of the high-speed contributions of interest, coming
from all the orders of the Chapman-Enskog expansion, while the dots outside the brackets stand
for the terms of other nature. Thus, the high-speed correction to the Navier–Stokes closure
relation in frames of the Grad equations (166) takes the form:

σnl = −µR(g)∂xu, (172)

where R(g) is the function represented by a formal subsequence of Chapman-Enskog terms
in the expansion (171). The function R can be viewed also as a dynamic modification of the
viscosity µ due to the gradient of the average velocity.

We will now turn to the problem of an explicit derivation of the function R (172). Follow-
ing the principle of dynamic invariance, we, first, compute the microscopic derivative of the
function σnl by substituting the expression (172) into the right hand side of the Eq. (169):

∂micro
t σnl = −u∂xσnl − 4

3
p∂xu − 7

3
σnl∂xu − p

µ(T )
σnl (173)

=
{

−4
3

+
7
3
gR + R

}
p∂xu + . . . ,

where dots denote the terms irrelevant to the closure relation (172) (such terms appear, of
course, because (172) is not the exact closure relation).

Second, computing the macroscopic derivative of the closure relation (172) due to the
equations (166), (167), and (168), we have:

∂macro
t σnl = −[∂tµ(T )]R∂xu − µ(T )

dR

dg
[∂tg]∂xu − µ(T )R∂x[∂tu]. (174)

In the latter expression, the time derivatives of the hydrodynamic variables should be replaced
with the right hand sides of the Eqs. (166), (167), and (168), where, in turn, the function
σ should be replaced by the function σnl (172). After some computation, we come to the
following:

∂macro
t σnl =

{
gR +

2
3
(1 − gR) ×

(
γgR + (γ − 1)g2 dR

dg

)}
p∂xu + . . . (175)

Here dots stand again for the terms irrelevant to the present analysis.
Equating the relevant terms in Eqs. (173) and (175), we come to the invariance equation for

the function R:

(1 − γ)g2 (1 − gR)
dR

dg
+ γg2R2 +

[
3
2

+ g(2 − γ)
]

R − 2 = 0. (176)
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Fig. 10 Viscosity factor R(g) for Maxwell molecules. Solid: exact solution. Dash: the
Burnett approximation. Dots: the Navier-Stokes approximation

For Maxwell molecules (γ = 1), Eq. (176) simplifies considerably, and is algebraic:

g2R2 +
(

3
2

+ g

)
R − 2 = 0. (177)

The solution which recovers the Navier–Stokes closure relation in the limit of small g reads:

RMM =
−3 − 2g + 3

√
1 + (4/3)g + 4g2

4g2 . (178)

Function RMM (178) is demonstrated in Fig. 10. Notice that the function RMM is positive
for all values of its argument g, as is appropriate for the viscosity factor, while the Burnett
approximation to the function RMM violates the positivity.

For other models (γ 	= 1), the invariance equation (176) is a rather complicated nonlinear
ODE with the initial condition R(0) = 4/3 (the Navier–Stokes condition). Several ways to
derive analytic results are possible. One possibility is to expand the function R into powers of
g, in the point g = 0. This way will bring us back to the original sub-series of the Chapman-
Enskog expansion (see Eq. (171)). Instead, we take the opportunity offered by the parameter
γ. Introduce another parameter β = 1 − γ, and consider the expansion:

R(β, g) = R0(g) + βR1(g) + β2R2(g) + . . . .

Substituting this expansion into the invariance equation (176), we derive R0(g) = RMM(g),

R1(g) = − (1 − gR0)gR0 + (3/2)g2(dR0/dg)
2g2R0 + g + (3/2)

, (179)
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Fig. 11 Viscosity factor R(g) for hard spheres. Solid: the first approximation. Dash: exact
solution for Maxwell molecules

etc. That is, the solution for other models is constructed in a form of a series with the exact
solution for the Maxwell molecules as the leading term. For hard spheres (β = 1/2), the result
to the first-order term reads: RHS ≈ RMM + (1/2)R1. The resulting approximate viscosity
factor is given in Fig. 11. The features of the approximation obtained are qualitatively the same
as in the case of the Maxwell molecules.

3.7.2 Attraction to the invariant set
Above, we have derived a correction to the Navier–Stokes expression for the stress σ, in the
one–dimensional case, for large values of the average velocity u. This correction has the form
σ = −µR(g)∂xu, where g ∝ ∂xu is the longitudinal rate. The viscosity factor R(g) is a
solution to the differential equation (176), subject to a certain initial condition. Uribe and Piña
[32] have indicated some interesting features of the invariance equation (176) for the model of
hard spheres. In particular, they have found that a numerical integration from the initial point
into the domain of negative longitudinal rates is very difficult. What happens to the relevant
solution at negative values of g?

Let us denote as P = (g, R) the points of the (g, R) plane. The relevant solution R(g)
emerges from the point P0 = (0, 4/3), and can be uniquely continued to arbitrary values
of g, positive and negative. This solution can be constructed, for example, with the Taylor
expansion, and which is identical with the relevant sub–series of the Chapman–Enskog expan-
sion. However, the difficulty in constructing this solution numerically for g < 0 originates
from the fact that the same point P0 is the point of essential singularity of other (irrelevant)
solutions to the Eq. (176). Indeed, for |g| � 1, let us consider R̃(g) = R(g) + ∆, where
R(g) = (4/3) + (8/9)(γ − 2)g is the relevant solution for small |g|, and ∆(g) is a deviation.



I. V. Karlin and A. N. Gorban, Exact hydrodynamics 831

-2

-1

0

1

2

3

-2 -1 0 1 2

R

g

Fig. 12 Viscosity factor as an attractor. Solid lines: numerical integration with various initial
points (crosses). Two poorly resolved lines correspond to the initial conditions (−100, 0) and
(−100, 3). Circles: Taylor expansion to the 5th order. Dots: the analytical approximation of
(179). Dash: boundaries of the basin of attraction

Neglecting in the Eq. (176) all regular terms (of the order g2), and also neglecting g∆ in com-
parison to ∆, we derive the following equation: (1−γ)g2(d∆/dg) = −(3/2)∆. The solution
is ∆(g) = ∆(g0) exp[a(g−1 − g−1

0 )], where a = (3/2)(1 − γ)−1. The essential singularity
at g = 0 is apparent from this solution, unless ∆(g0) 	= 0 (that is, no singularity exists only
for the relevant solution, R̃ = R). Let ∆(g0) 	= 0. If g < 0, then ∆ → 0, together with all its
derivatives, as g → 0. If g > 0, the solution blows up, as g → 0.

The complete picture for γ 	= 1 is as follows: The lines g = 0 and P = (g, g−1) define
the boundaries of the basin of attraction A = A−

⋃
A+, where A− = {P | − ∞ < g <

0, R > g−1}, and A+ = {P |∞ > g > 0, R < g−1}. The graph G = (g, R(g)) of the
relevant solution belongs to the closure of A, and goes through the points P0 = (0, 4/3),
P− = (−∞, 0), and P+ = (∞, 0). These points at the boundaries of A are the points
of essential singularity of any other (irrelevant) solution with the initial condition P ∈ A,
P /∈ A

⋂
G. Namely, if P ∈ A+, P /∈ A+

⋂
G, the solution blows up at P0, and attracts to

P+. If P ∈ A−, P /∈ A−
⋂

G, the solution blows up at P−, and attracts to P0.

The above consideration is supported by a numerical study of the Eq. (176). In Fig. 12,
it is demonstrated how the dynamic viscosity factor R(g) emerges as the attractor of various
solutions to the invariance equation (176) [the case considered corresponds to hard spheres, γ =
1/2]. The analytical approximation (179) is also shown in Fig. 12 for the sake of comparison.
It provides a reasonable global approximation to the attractor for both positive and negative g.
We conclude with a discussion.

(i) The main feature of the above example of extending the hydrodynamic description into
a highly non-equilibrium and nonlinear domain can be expressed as follows: this is an exact
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partial summation of the Chapman-Enskog expansion. “Partial” means that the relevant high-
speed terms, dominating the other contributions in the limit of the high average velocity, were
accounted to all the orders of the original Chapman-Enskog expansion. “Exact” means that,
though we have used the formally different route, the result is indeed the sum of the relevant
sub-series of the original Chapman-Enskog expansion. In other words, if we now expand the
function RMM(g) (178) in powers of g, in the point g = 0, we come back to the corresponding
series inside the brackets in the Eq. (171). That this is indeed true can be checked up to the few
lower orders straightforwardly, though the complete proof requires a more involved analysis,
and will be reported elsewhere. As the final comment to this point, we would like to stress a
certain similarity between the problem considered above and the frequent situations in many-
body problems: there is no a single leading term but instead there is the leading sub-series of
the perturbation expansions, under certain conditions.

(ii) Let us discuss briefly the features of the resulting hydrodynamics. The hydrodynamic
equations are now given by Eqs. (166), (167), and (168), where σ is replaced with σnl (172).
First, the correction concerns the nonlinear regime, and thus the linearized form of new equa-
tions coincides with the linearized Navier–Stokes equations. Second, the solution (178) for the
Maxwellian molecules and the result of approximation (179) for other models suggests that
the modified viscosity µR gives a vanishing contribution in the limit of very high values of the
average velocity. This feature seems to be of no surprise: if the average velocity is very high in
comparison to other characteristic velocities (in our case, to the heat velocity), no mechanisms
of momentum transfer are relevant except for the transfer with the stream. However, a cautious
remark is in order since the original “kinetic” description are Grad equations (166) and not the
Boltzmann equation.

(iii) The invariance equation (176) defines the relevant physical solution to the viscosity
factor for all values of g, and demonstrates an interesting phase-space behavior similar to those
of finite-dimensional dynamical systems.

4 Conclusions

Up to now, the problem of the exact relationship between kinetics and hydrodynamics remains
unsolved. All the methods used to establish this relationship are not rigorous, and involve
approximations. In this work, we have considered situations where hydrodynamics is the
exact consequence of kinetics, and in that respect, a new class of exactly solvable models of
statistical physics has been established.

The main lesson we can learn from the exact solution is the following: The Chapman-Enskog
method is the Taylor series expansion approach to solving the appropriate invariance equation.
Alternative iteration methods are much more robust for solving this equation. Therefore, it
seems quite important to develop approaches to the problem of reduced description based on
the principle of dynamic invariance rather than on particular methods of solving the invariance
equations. The exact solutions where these questions can be answered in all the quantitative
details provide a sound motivation for such developments. Interested reader is directed to
the paper [23] where a general formulation of the reduced description from the standpoint of
constructing invariant manifolds has been developed, as well as to some recent applications in
the problems of Boltzmann kinetic theory, chemical kinetics, and polymer kinetic theory are
given [33–36].
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