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Abstract—Linear spaces of continuous functions of real variables closed under the superposition
operation are considered. It has been proved that when such a space contains constants, linear
functions, and at least one nonlinear function, it is dense in the space of all continuous functions in
the topology of uniform convergence on compact sets.

So, the approximation of continuous functions of several variables by an arbitrary nonlinear con-
tinuous function of one variable, linear functions, and their superpositions is possible.
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1. INTRODUCTION

From a mathematical standpoint, this work extends the classical Weierstrass and Stone theorems
on density of polynomials and continuous function rings separating points [1] to semigroups of
functions. The product operation under which the function rings are closed is replaced by the
operation of function superposition.

The main applied issue of the results obtained is that every nonlinearity makes it possible
to compute any function: if we have at least one device computing some (arbitrary) nonlinear
continuous function, and if it is possible to calculate every linear combination and superposition
of functions as well as to use constants, then every continuous function can be approximated.

The question of representing continuous functions of several variables by superposition of con-
tinuous functions with fewer variables has been the essence of Gilbert’s 13" problem. Arnold
and Kolmogorov resolved the problem [2,3]: every continuous function of several variables can
be represented by the superposition of functions only of two variables.

Specifically, every continuous function of n variables can be represented as a sum of 3n func-
tions; each summand is a superposition produced by substituting one of the arguments in the
Sunction of two variables for a function of n — 1 variables.
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Descending by n to 2, we come to a representation of the function of n variables from the
function of two variables (by superposition and addition operations).

The question of representing continuous functions of several variables by continuous functions
of a single variable has also been solved.

In the paper [4], Kolmogorov has proved an elegant theorem, which follows.

KoLMOGOROV THEOREM. (See [4].) Every continuous function of n variables defined in the
standard n-dimensional cube can be represented in the following form:

2n+1 n
f(xl’xZ’ LR ,(L'n) = Z hq lz (pg(xp)} ’
q=1

p=1

where the functions he(u) and y¥(x,) are continuous, and moreover, the functions @§(z,) are
standard, i.e., they are independent of the function f.

It should be noted that the functions @h(z,) used here are essentially nonsmooth. Therefore,
in applied problems, it is necessary either to increase the number of variables in the functions
over which expansion is done, or to consider approximate and not accurate representations.

In this letter, we study approximate representations of functions of several variables by func-
tions of one variable. In contrast to the Kolmogorov theorem, the question we address is: how
broad is the class of functions that can be approximated using a single {arbitrarily taken, and
not specially constructed) nonlinear continuous function?

The answer is: every continuous function can be arbitrarily accurately approrimated by opera-
tions of addition, multiplication by a number, superposition, and an arbitrary (one is sufficient)
continuous nonlinear function of one variable.

Renewed interest in the classical question of approximation functions of several variables by
superpositions and sums of functions of one variable and a new version of this question (confined
to one arbitrarily taken nonlinear function) have been invoked by neurocomputing studies.

In applied problems of approximation, the current trend is to use devices which compute
superpositions of simple functions of one variable, and their linear combinations. These devices
receive the name “artificial neural networks” [5-7].

Most applications of artificial neural networks are concerned with estimating and approximat-
ing unknown input-output dependency from examples, in order to use this dependency to predict
future outputs from the given input values.

The question of what functions they are able to approximate is becoming topical.

Relevant theorems on completeness for several versions of the neural networks have been proved
[8-12]. They are distinct in admissible architectures of the networks, in functions that are com-
puted by an individual “neuron”, etc. The present work proves the theorem on completeness for
arbitrary continuous functions.

For the neural networks, our result states that the function of neuron activation must be
nonlinear—and nothing else. Whatever this nonlinearity is, the network of connections can be
constructed, and coefficients of linear connections between the neurons can be adjusted in such
a way that the neural network will compute any continuous function from its input signals with
any given accuracy.

2. SEMIGROUPS OF CONTINUOUS FUNCTIONS
OF ONE VARIABLE

Let us consider the space C(R) of continuous functions on a real axis in the topology of
the uniform convergence on compact sets. The space C(R) with superposition of functions
(f o g)(z) = f(g(x)) on it is a semigroup. Function id (id(z) = z) is a unit in this semigroup.
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THEOREM 1. Let E be a closed subspace in C(R) which is a semigroup, 1 € E andid € E (1 is
a function identically equal to 1). Then, either E = C(R) or E is a subspace of linear functions

(f(z) = az +b).

The proof is based on several lemmas.

LEMMA 1. Under the conditions of Theorem 1, let there exist function f € E which is not linear.
Then, there exists a twice continuously differentiable function g € E which is not linear.

PRrooOF. Let v(z) € C®(R), v(z) = 0 for |z| > 1. Consider the averaging operator
15@ = [ iz (L) a.

The inclusion J.f € E holds for every € > 0. Indeed, f(z + y) € E for every fixed y (the
constants belong to E, and E is closed under linear operations and superposition of the functions).
Integral J, f is in E, because E is a closed linear subspace in C(R) and this integral is the limit
of finite sums.

Function J.f is in C*°(R) because

[ te+nzo(d) a= [ s (

) dz
(remember that v is a function with a compact support).
There exists € > 0 such that the function g = J.f is not linear because J.f — f with & — 0,
the space of linear functions is closed, and f is not a linear function. So, under the assumptions
of the lemma, there exists a nonlinear function g € E N C*°(R) which can be taken in form

g=J.f

LEMMA 2. Under the conditions of Theorem 1, let there exist a twice differentiable function
g € E which is not linear. Then, the function ¢(x) = z? is in E.

PROOF. There is a point x¢ for which ¢g"(z¢) # 0. Denote

7‘(.’1)) (g(x + .’L'o) g(x()) — g (1:0))
g"(xo)

It is obvious that r € E, r(0) = 0, r'(0) = 0, r"(0) = 2, 7(z) = x? + o(z?). Therefore,

EET(E‘”) - 22, with € — 0.

LEMMA 3. Let, under the conditions of Theorem 1, the function q(x) = z2 be in E. Then E is
a ring: for every f,g € E, their product fg € E.

PROOF. Under the conditions of the lemma, f2 € E holds for every f € E (E is a semigroup).
What follows is obvious:

fo=5[(F+97 -~ 4.

From Lemmas 1-3, it follows that under the conditions of Theorem 1, if E has even one
nonlinear function, then E is a ring, and contains, in particular, all polynomials. Hence, by the
Weierstrass theorem, it follows that E = C(R.).



S48 A. N. GORBAN’

3. APPROXIMATION OF FUNCTIONS
OF SEVERAL VARIABLES

Most important for applications are the functions of several variables. Let C(R"™) be a space
of continuous functions on R" in the topology of uniform convergence on compact sets.

For every natural n, let there be set a closed subspace E, C C(R") (i = 1,...,n). Let us
assume that this set {E, } has the following properties:

(1) 1 € E,, for all n;
(2) E, contains all linear functions on R";

(3) iffl)f?v”')fk € E‘n and f € Ek7 then f(flaf?a" "fk) € En;
(4) there exists a function f € E; which is not linear.

THEOREM 2. Under the conditions (1)-(4), E, = C(R"), for all n.

ProoF. By Theorem 1, E; = C(R). By analogy with Lemma 3, all E,, are rings. Hence, and
with the Weierstrass theorem, the required equality follows: E,, = C(R"), for all n.

COROLLARY. Let the conditions (1)-(3) of Theorem 2 as well as the following condition (4)
hold:

(4') for some n > 1, there exists a function f € E, which is not linear.
Then E,, = C(R"), for all n.

PROOF. The function f € E,, from condition (4') is not linear with restriction to at least one
straight line in R™. Using the conditions (1)-(3) produce from it a nonlinear function in R. The
rest follows from Theorem 2.

The Stone-Weierstrass theorem deals with continuous functions on general compact spaces.
The next theorem gives its generalization.

THEOREM 3. Let X be a compact space, C(X) be a space of continuous functions on X, E be
a closed subspace in C(X), 1 € E, functions from E separate points in X, and f(g(z)) € E for
some nonlinear continuous function of one variable f and every g € E. Then E = C(X).

Proor. Let E; = {f € C(R) | f(g(z)) € E, for all ¢ € E}. For E;, conditions of Theorem 1
hold. According to Theorem 1, E; = C(R). In particular, f(z) = z2 € E;, and E is a ring. By
the Stone theorem [1], E = C(X).

4. DISCUSSION

Investigation of neural networks has complemented the Weierstrass and Stone theorems: if a
semigroup of continuous functions of one variable is closed under linear operations and limit tran-
sitions, and contains constants, linear functions, and at least one nonlinear function, it contains
all continuous functions.

In addition, the theorem on approximation of functions of several variables is valid: every
continuous function of several variables can be approximated arbitrarily accurately using linear
functions, superposition operation, and an arbitrary function of one variable.

When we can use superposition of functions, linear functions, and at least one arbitrary nonlin-
ear continuous function of one variable, we can approximate every continuous function of several
variables.

These theorems can be interpreted as statements about universal approximation properties
of every nonlinearity: linear operations and cascade combinations can be used to produce from
arbitrary nonlinear elements every required result with preassigned accuracy.

The proofs given are based on the Weierstrass theorem. It would be of interest to derive “purely
semigroup” proofs without this theorem, and what’s more-—without support of the fact that a
linearly closed and topologically closed semigroup of continuous functions is a ring.
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