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Structure of talk

• Learning data on compact sets: The [DC] and [CD]
problems.

• Towards the [DC] problem on compact sets: sensor
networks, G invariant kernels and invariance.

• Towards the [CD] problem on rectifiable manifolds:
Numerical integration, discretization.

• Discretization on homogenous, reflexive manifolds.

• Riesz configurations, Asymptotic equidistribution for
s extremal points.

• Point energies, Mesh norm and Separation for Riesz
points on d rectifiable sets.

• Markov Chains on Data, Diffusion Distances and
Embeddings onto Spheres.

• Density Invariance on Spheres.
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Learning data on compact sets- background and
motivation

In this talk, I will be interested in the following two tasks:

Task 1 [DC]: Learning mathematical methods
in order to study meaningful descriptions of data
sets or a finite number of given discrete objects

Task 2 [CD]: Learning mathematical methods
in order to study complicated structure by way
of discretization into a finite number of discrete
objects

These two questions, as it turns out, are connected
mathematically in more ways than you can possibly imag-
ine. Id like to devote this talk to discussing some of my
interests in these two tasks.

The [DC] Problem

Nowdays, we are constantly flooded with information of
all sorts and forms and a common denominator of data
analysis in many emerging fields of current interest are
large amounts of observations that have high dimension-
ality.
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EXAMPLE

Suppose that a source produces a high dimensional
data set

X := {x1, ..., xn} , n ≥ 1

that we wish to analyse. Typically, in a given problem
of this kind, one is often faced with a finite data set or
a set of finite objects in a measure space with absolutely
continuous density µ′.

Examples:

• Each member of X could be the fames of a movie
produced by a digital camera.

• Pixels of a hyperspectral image in a computer vision
problem, say face recognition.

• Objects from a statistical, computer science or ma-
chine learning model which needs to be clustered.
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Indeed, the problem of finding mathematical methods
in order to study meaningful structures and descriptions
of data sets for learning tasks is an exploding area of
research with applications as diverse as critical infras-
tructure, complex networks, clustering, imaging neural
and sensor networks, wireless communications, financial
marketing and dynamic programming

The list is endless and exponentially exploding............
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When dealing with these types of sets X, high di-
mensionality is often an obstacle for any efficient pro-
cessing of the data. Indeed, many classical data pro-
cessing algorithms have a computational complexity that
grows exponentially with the dimension (the so called
”curse of dimension”).

On the other hand, the source of the data may only
enjoy a limited number of degrees of freedom. In this
case, the high dimensional representation of the data is
a natural function of the source and so the data has ac-
tually a low intrinsic dimensionalty.

That is, there is a high (local or global) correlation
between many of the variables that describe the members
of X.
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In addition,

Challenges

(1) The members of X may be nonlinear and so there is
a need to learn these nonlinearities.

(2) The members of X may be sampled from a fixed
source M but at different rates and so we are inter-
ested in the underlying geometry of the source M

and not on the the distribution of the points.

(3) The data may be noisy.
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Towards the [DC] problem on compact sets: sen-
sor networks, G invariant kernels and invariance.

The first task performed by any data processing system is
data acquisition or sampling in which measurements are
collected through a number of sensors. Sensor networks
are dense, wireless networks of small, low cost sensors
nodes which collect and disseminate environmental data
locally.

In particular, wireless sensors as deployed frequently
by the US army using UAV’s on dense terrain on the
surface of the earth may have a large spectrum on
intensity values.

9



Let us formalize this idea mathematically as follows:

Defn I will call a source M admissible, if M is a
d ≥ 1 dimensional, homogeneous space of a compact, re-
flexive Lie group G embeddded in some Euclidean space
of fixed dimension d + r for some r > 0.

Typically, M is an orbit of a compact group G. Our
investigation serves two main purposes; to uncover the
essential geometry involved and to provide a wider range
of interdisciplinary applications.
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A natural example to keep in mind is Sd, the d dimen-
sional sphere realized as a subset of Rd+1 which is the
orbit of any unit vector under the action of SO(d + 1),
the group of d + 1 dimensional orthogonal matrices of
determinant 1.
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Suppose we have also a kernel k : M × M → [0,∞)
which is positive definite and G invariant (k(gx, gy) =
k(x, y), x, y ∈ M, g ∈ G).

k will relate members of M .
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Theorem [DLS] Let M be an admissible source.
Then k is zonal, ie it depends only on distances be-
tween points in Rd+r.

We call k a G invariant kernel.
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Examples on M

(1) Freud/heat kernels[FK], k(x, y) = exp(−||x−y||s), s >

0

(2) Riesz kernels[RK], k(x, y) = 1
||x−y||s , x 6= y, s > 0

(1) Vision, bioinformatics; (2) Electrostatic problems.
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Question Given an admissible kernel k, does it have
the property that one can separate the distribution of
data points X with given density from the geometry of
the underlying manifold M from which X is sampled.

Yes for [RK] on Sd but...............
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Towards the [CD] problem on rectifiable sets
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Distribution of points on Spheres: A Motivational
Journey

The problem of uniformly distributing points on spheres
is an interesting and difficult problem.

In one dimension the problem is easily reduced to uni-
formly distributing n ≥ 1 points on a circle and equidis-
tant points or the vertices of the regular n-gon provide
an obvious answer.

Carl Friedrich Gauss (1777-1855): Famous Disqvis-
tiones arithmaticae
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For d ≥ 2 the problem becomes much more difficult; in
fact, there are numerous criteria for uniformity, resulting
in different optimal configurations.
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On the one hand it is of some interest on its own to
describe a “well distributed” point set of cardinality n

and even to define suitable notions of what “well dis-
tributed” should mean. On the other hand, as we shall
show, numerical integration procedures on the sphere re-
quire node sets which are spread evenly with respect to
separation and mesh norm.
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Discretization of manifolds: Riesz Points and Good
Distribution

Lets look at [−1, 1]. How to discretize this set? Well an
obvious choice would be N equally spaced points:

x∗k,n = −1 +
2k

n− 1
, n ≥ 2, k = 0, ..., n− 1.

These points also enjoy the property of best packing

mini6=j|x∗i,n − x∗j,n| = maxX⊂[−1,1]mini6=j|xj,n − xi,n|

• Runge: Equally spaced points or any asymptotically
uniformly distributed point set can be problematic
for interpolation by polynomials or for quadrature.

• interpolation operators grow geometrically with n

• Zeroes of classical Jacobi polynomials with ±1 do a
better job: Norm O(logn)

Now what is so special about zeros of Jacobi polyno-
mials versus equidistant points?

Lets move to the sphere.
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Errors of Numerical integration

Here and throughout, we will henceforth denote by
< . > the usual inner product on Rd+1 and µ will denote
d dimensional area measure on Sd.

A set of points Xn on Sd, is said to be asymptotically
equidistributed if for every spherical cap C ⊆ Sd,

lim
n→∞

#{1 ≤ j ≤ n : xj ∈ C}
n

= µ(C).

i.e., each intersection of the sphere and half space gets
an equal portion of points. By duality, it follows that
this is equivalent to

lim
n→∞

Rn(f, µ) = 0

for every continuous function f on Sd.

|Rn(f, µ)| :=

∣∣∣∣∣
∫

Sd

f(x)dµ(x)− 1

n

n∑
j=1

f(xj)

∣∣∣∣∣ .
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A natural measure for the quality of the distribution
of a point cloud X on the sphere Sd is the spherical
cap discrepancy

Dn,d = sup
C⊆Sd

∣∣∣∣∣∣∣
1

n

n∑
k=1

xk∈C

χC(xk)− µ(C)

∣∣∣∣∣∣∣ ,
where the supremum ranges over all spherical caps C ⊆
Sd (intersections of balls and Sd) and where χC denotes
the indicator function of C. The discrepancy simply
measures the maximal deviation between the discrete
point distribution X and the normalized surface mea-
sure.

22



Extremal configurations

We study numerical integration and discrepancy esti-
mates for configurations Xn on Sd which minimize an
energy functional with general kernel k. Important ex-
amples of such points are s ≥ 0 extremal configurations,
i.e., points which minimize energies for the Riesz ker-
nel kR, |x − y|−s, 0 < s ≤ d and logarithmic kernel
−log|x− y|, s = 0.
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Set

E(kR, X) =
n∑

i,j=1
i6=j

kR(< xi, xj >)

where < . > denotes inner product in Rd+1 and define

EkR
(Sd, n) = min

X∈Sd
EkR

(Sd, X).
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A point set, Xn for which the minimal energy EkR
(Sd, n)

is attained, is called a kR-minimal energy point set. It
is clear, that any rotation of a point set of minimal en-
ergy again gives a point set of minimal energy; thus such
point sets are not unique. Moreover∫

Sd

∫
Sd

kR(< x, y >)dν(x)dν(y)

is minimized by the normalized surface measure µd on
Sd amoungst all Borel probability measures ν on Sd.

Heuristically, then one expects that a point distribu-
tion Xn of minimal gR energy gives a discrete approxima-
tion to the surface measure in the sense that the integral
with respect to the surface measure is approximated by
a discrete sum over the points.
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For the circle, S1, it is known that minimal energy
point sets correspond to the nth roots of unity.
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Back to [−1, 1]:

• s = 0: Counting measures of Fekete polynomials (in
this case zeroes of Jacobi polynomials with ±1) con-
verge weakly to the arcsine distribution which mini-
mizes the energy integral∫ ∫

log
1

|x− t|
dν(x)dν(t)

over all Borel probability measures ν supported on
[−1, 1].

• 0 < s < 1: cs

(1−x2)(1−s)/2 : Global effects

• s ≥ 1: Uniform distribution, s = ∞, best packing,
e qually spaced points-local effects.
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Back to the Sphere Sd:

3 cases to consider: 0 < s < d, s = d, s > d:

The measure: d dimensional area measure for all 3
cases.

We expect the counting measures to converge weakly
for all 3 cases.

As we move from s < d to s > d we expect the tran-
sition from global to local effects to take place.

28



Discretization of measure: Numerical Integra-
tion

Consider: ∫
Sd

fdµ

for continuous f : Rd+1 → R

Approximate by

1

n

n∑
i=1

f(xi)

Let

µn :=
1

n

n∑
i=1

δxi
.

Thus we approximate:∫
Sd

f(dµ− dµn).
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Asymptotic equidistribution for 0 < s ≤ d ex-
tremal points

Theorem: DG- Let d ≥ 2 and 0 < s < d. Then
0 < s < d extremal configurations are asymptotically
equidistributed.

This is mainly because the energy integral given by∫
Sd

∫
Sd

kR(< x, y >) dν(x) dν(y)

is finite in this case with value

Γ((d + 1)/2)Γ(d− s)

Γ(d− s/2))Γ(d− s + 1)
.
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For s ≥ d, the integral diverges for every measure ν

which means that the nearest neighbor interactions are
dominating.

Theorem DG: kR energy and discrepancy Let
kR be given, d ≥ 2, f a polynomial of degree at most
N ≥ 1 on Sd and 0 < δ ≤ δ0. Then

|R(f, X)| ≤ ‖f‖2

(
1
n2EkR

(Sd, X)− a0(δ) + 1
nkR(1− δ)

min1≤k≤N
ak(δ)
Z(d,k)

)1/2

with Z(d, k) = 2k+d−1
k+d−1

(
k+d−1
d−1

)
counting the linearly inde-

pendent spherical harmonics of degree k on Sd. More-
over, if q = q(d) is the smallest integer satisfying 2q ≥
d + 3, then uniformly for any m ≥ 1 and 0 < δ < δ0,
there exist positive constants C and C1 independent of
n and X with

Dn(X) ≤ C

C1

m
+

(
1
n2EkR

(Sd, X)− a0(δ) + 1
nkR(1− δ)

min1≤k≤N
ak(δ)
Z(d,k)

)1/2
 .
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Numerical Integration and Zonal Kernels on Com-
pact Homogeneous, Reflexive Sets M

An important motivation for extending the work of Damelin-
Grabner relates to being able to discretize (or do quadra-
ture) on tori or other compact sets using energies other
than those given by Riesz kernels for example.

We are interested in the error of integration for contin-
uous functions f , when the function is given on a point
cloud X ⊂ M of cardinality n ≥ 1. The error in inte-
gration is

R(f, X) =

∫
M

f(y)dµ(y)− 1

n

∑
x∈X

f(x).

Here, M carries a unique normalized surface (G-invariant)
measure which we call µ.
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Harmonic analysis on M requires the construction of
polynomials on the manifold. If Πj is the space of all
polynomials of total degree j in the ambient space Rd+r

then Pj := Πj|M is the space of degree j polynomials on
M . We can also construct sets of harmonic polynomials
Hj := Pj

⋂
P⊥

j−1, where the orthogonality is with respect
to the inner product (·, ·). We will be interested in zonal
kernels whose integrals exist on M . The archetype for
such kernels is the Riesz kernel

kR(x, y) = ‖x− y‖−s, s > 0, x, y ∈ M,

where ‖ · ‖ is the Euclidean norm in Rd+r. We have:

33



Theorem DLS For a zonal kernel k and probability
measure ν, the energy integral∫

M

∫
M

k(x, y)dν(x)dν(y)

is uniquely minimised by the normalised surface measure
µ on M .
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Associated with a discrete measure supported in a fi-
nite point set X ⊂ M we have the discrete energy defined
formally as

Eκ(X) =
1

n2

∑
y,z∈X, y 6=z

κ(y, z).

This allows us to state:

Theorem DLS1 There exists a sequence of zonal ker-
nels kα converging to the δ distribution (the distribution
for which all Fourier coefficients are unity) as α → 0
and satisfying that for any α < α0 for some fixed α0, (1)
κα is positive definite and (2) κα(x, y) ≤ κ(x, y) for all
x, y ∈ M .

Theorems DLS-DLS1, form the basis for an extension
of Theorem DG.
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[CD] problem and energies on d rectifiable sets

The following work is due to Damelin and Maymeskul
for Riesz kernels kR.

We say that a set A belongs to the class Ad if, for some
d
′ ≥ d, A ⊂ Rd′,

(1) Hd(A) > 0 and

(2) A is a finite union of bi-Lipschitz images of compact
sets in Rd, that is

A =
m⋃

i=1

φ (Ki) ,

where each Ki ⊂ Rd is compact and φi : Ki → Rd′ is
bi-Lipschitz on Ki, i = 1, . . . ,m.

Here and in what follows, Hd(·) denotes d-dimensional
Hausdorff measure in Rd′.

36



Examples

(i) Compact sets A in Rd with Hd(A) > 0: with d′ = d,
these sets are bi-Lipschitz images of themselves un-
der the identity map. (One can also consider these
sets embedded in Rd′ for d′ > d.) For example,
balls, d-dimensional cubes and parallelepipeds, d-
dimensional Cantor sets having positive d dimen-
sional Hausdorf measure.

(ii) d-dimensional spheres in Rd+1 (more generally, el-
lipsoids), since a closed hemisphere is a bi-Lipschitz
image of a d-dimensional ball under a stereographic
projection.

(iii) Quasismooth (chord-arc) curves in Rd′. These are
Jordan curves A ⊂ Rd′ satisfying the following con-
dition: there exists a constant C such that, for any
two points x, y ∈ A, the length of the (shortest)
subarc of A with endpoints x and y is bounded by
C|x − y|. In this case, the bi-Lipschitz mapping is
given by a natural parametrization of the curve.
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Theorem DM4 Separation λ and Point Energies.

(a) Let A = Sd be the d sphere. For d ≥ 2 and s < d−1,

λ(Xn, s) ≥ cN−1/(s+1).

(b) Let A = Sd be the d sphere. For d ≥ 3 and s ≤ d−2.
Then

λ(Xn, s) ≥ cN−1/(s+2)

which is sharp in s for s = d− 2.

(c) For any 0 < s < d− 1, there exists

lim
n→∞

max1≤j≤n Ej,s(S
d, n)

min1≤j≤n Ej,s(Sd, n)
= 1.
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Markov Chains on Data, Diffusion Distances and
Embeddings onto Spheres

Let X = {x1, x2, ..., xn} be a data set in a metric space
of high dimension.

We construct a graph (X, k) where:

• To each point xi corresponds a node.

• Every two nodes are connected by an edge with a
non negative weight/kernel k(x, y).
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The quantity k(x, y) should reflect the degree of simi-
larity or interaction between and x and y. The choice of
the weight/kernel is crucial and application-driven.

Over the past 5 years, new techniques have emerged
for manifold learning

• Isomap [Tenenbaum-DeSilva-Langford 00]

• L.L.E. [Roweis-Saul 01]

• Laplacian eigenmaps [Belkin-Niyogi 01]

• Hessian eigenmaps [Donoho-Grimes 03]

• Diffusion metrics [Coiffman-Lavon-04]

They all aim at finding coordinates on data sets by
computing the eigenfunctions of a psd matrix.
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Markov Chain on Data

Define the degree of a node x as

d(x) :=
∑
z∈X

k(x, z).

Form the n× n matrix P with entries

p(x, y) :=
k(x, y)

d(x)
.

Because ∑
y∈X

p(x, y) = 1, p(x, y) ≥ 0

P is the transition matrix of a Markov chain on the
graph of the data and I −P (following Chung-97) is the
normalized graph Laplacian.
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Time parameter t

pt(x, y) is the probability of transition from x to y in
time t ≥ 1 steps. Therefore, it is close to 1 if y is easily
reachable from x in t steps. This happens if there are
many paths connecting these two points

t defines the granularity of the analysis. Increasing
the value of t is a way to integrate the local geometric
information of the data.

In what follows, we will interested in defining a metric
on the data set so that points are close in the metric if
they are HIGHLY CONNECTED on the graph (X, k).
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The metric will be be defined by way of an embedding
Ψt of the data set X onto a sphere Sd of fixed dimension
d ≥ 1 realized as a subset of the Euclidean space Rd+1.
Here t is fixed.

In what follows k(x, y) = k(y, x) and will be a function
of distances between points x and y in X.
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Diffusion distance:

• The diffusion metric measures proximity in terms of
connectivity in the graph.

• It is useful to detect clusters

• Robust to noise unlike geodesic distance
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Density Invariant Diffusion maps

Consider a perturbed kernel kR:

kδ,R(x, y) := |x−y|−s, 0 < s ≤ d, d ≥ 1, |x−y| ≥ δ, x, y ∈ Sd

and 0 otherwise.

Suppose that the data set X is sampled from Sd with
density µ′.

Question For each fixed δ, does kδ,R have the prop-
erty that one can separate the distribution of data points
X with given density µ′ from the geometry of the under-
lying submanifold M from which X is sampled.
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Fix δ > 0 and set for a scale ε > 0

kδ,ε,R(x, y) =
εkδ,R(x, y)

lδ(x)lδ(y)
, x, y ∈ Sd

where
lδ(y) =

∑
x∈X

kδ,ε,R(x, y), y ∈ Sd.

If n is the cardinality of X, form the n×n matrix Pδ,ε

with entries
kδ,ε,R(x, y)

lδ(x)
, x, y ∈ X

Pδ,ε is the transition matrix of a Markov chain on the
graph of the data and I − Pδ,ε (following Chung-97) is
the normalized graph Laplacian.
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Theorem D For any fixed δ > 0, there exists a fixed
operator ∆δ with compact support on Sd so that

ε(I − Pδ) → ∆, n →∞, ε → 0+.
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Many open problems: All preprints and related papers
can be found on

http://math.georgiasouthern.edu/∼ damelin

Thankyou for your attention
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