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Recovering data gaps through neural network methods
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Abstract. A new method is presented to recover the lost data in geophysical time series.
It is clear that gaps in data are a substantial problem in obtaining correct outcomes about
phenomenon in time series processing. Moreover, using the data with irregular coarse
steps results in the loss of prime information during analysis. We suggest an approach to
solving these problems, that is based on the idea of modeling the data with the help of
small-dimension manifolds, and it is implemented with the help of a neural network. We use
this approach on real data and show its proper use for analyzing time series of cosmogenic
isotopes. In addition, multifractal analysis was applied to the recovered 14C concentration
in the Earth’s atmosphere.

1. Introduction

It is well known that the dynamics of most global pro-
cesses under investigation have a long time range. So, to
study them properly requires good data sets. Data here are
represented by means of historical time series of cosmogenic
isotopes 14C and 10Be, and a number of natural characteris-
tics such as Wolf numbers, AA index, and other indexes are
associated with them. Here, the term “good data samples”
denotes long range, equidistant, solid data without gaps, but
because of imperfection of astronomical tools that were used
by researchers over the years, the inadequacy of these time
series for strict scientific investigation is typical.
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Since the recovery itself serves not only to restore impor-
tant lost information but also to process data gained as well,
we suppose the multifractal analysis and time series process-
ing are useful for demonstrating that statement. So, to fur-
ther clarify such problems influence on the whole application
area of time series analysis, let us consider the details.

The goal of time series analysis is to ascertain and de-
scribe the nature of sources that produce signals. As a
rule, the information consisting in a time series frequently
contains different processes with different scales of coher-
ence. In many cases, correlation structure of the time series
specifies the resulting property of stochastic self-similarity,
that is, invariance under the group of affine transformations
X → arX, t → rt, where ar is a random variable [Veneziano,
1999]. The values having stochastic self-similarity properties
are often considered as multifractal measures, which are de-
scribed with the help of scaling exponents [Falconer, 1994],
characterizing singularities, and irregular structures. It is
important to study the irregular structures to infer proper-
ties about the underlying physical phenomena [Davis et al.,
1994a]. Until recently, the Fourier transform was the main
mathematical tool for analyzing singularities [MacDonald,
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1989]. The Fourier transform is global and describes the
overall regularity of signals, but it is not well adapted for
finding the location and spatial distribution of singularities.
That was the major motivation for studding the wavelet
transform in applied domains [Davis et al., 1994b]. By de-
composing signals into elementary building blocks, which are
well localized both in space and time, the wavelet transform
can characterize the local regularity of signals.

Real records are contaminated with noise, which is rarely
additive, Gaussian, or white. Often, noisy data are gener-
ated by nonlinear chaotic processes, which can produce time
series having periodic, quasi periodic, and chaotic patterns
[Abarbanel et al., 1993].

All of these factors lead to complex, nonlinear, and non-
stationary cosmogenic time series. The investigation of such
data is not trivial. For time series that arise from chaotic
systems of low dimension, there are certain quantities, for
example, the dimension of the attractor or the Lyapunov
exponents that can be obtained using up-to-date topology
tools [Sauer et al., 1991]. The values are especially inter-
esting because they characterize intuitively useful concepts,
for example, the number of active degrees of freedom or the
rate of divergence of nearby trajectories for underlying phys-
ical systems. Algorithms for estimating these quantities are
available. If we cannot assume the existence of underlying
low dimension dynamics, we can use the Wold decomposi-
tion [Anderson, 1971] time series. The Wold theorem states
that any (linear or nonlinear) stationary zero-mean process
can be decomposed into the sum of two non-correlated com-
ponents: deterministic and nondeterministic. It follows from
the theorem that any stationary process can be modeled as
an autoregressive moving-average (ARMA models).

However, almost all methods of time series analysis, whe-
ther traditional linear or nonlinear, must assume some kind
of stationarity. Testing the nonstationarity of time series is
a difficult task [Schreiber, 1997], and a number of statistical
tests of the stationarity have been proposed in the literature.
If it is absent, one could expect that the differentiation of
time series can remove nonstationarity in the mean. Another
way is to divide data into segments over which the process
is essentially stationary and then use the wavelet scale spec-
trum to estimate the parameters of the time series [Bacry
et al., 1993]. Thus, investigators now have a few tools for
analyzing complex data. Nevertheless, to apply these tech-
niques one should have enough long, equidistant time series;
however, such cosmogenic data do not exist.

Besides the short length of historical time series, another
substantial problem remains: how to obtain correct results
about phenomenon in a time series if there are no fragments
of data, as is typical for cosmogenic isotope data. Non-
equidistant data distorts even ordinary statistic character-
istics. Traditional methods of filling gaps are not highly
effective for nonstationary and nonlinear time series [Little
and Rubin, 1987]. When a great number of data are missed
and when their location is random, there is no solution to
this problem. We suggest some approaches for solving the
problems of recovering missed data in time series based on
neuromathematical methods.

The structure of this paper is as follows. In Section 2 we
give a full description of the proposed method and, moreover,

we state the conception of the model construction using this
method. In Section 3, we discuss our results after applying
such models to 14C, 10Be isotope, and Wolf index data recov-
ery; we also define multifractal analysis and its application
to 14C isotope data recovery. The summary is found in the
conclusion.

2. Recovering Missing Data by
Neuromathematical Methods

In this section, we discuss a new neural non-linear ap-
proach to the problem of gap recovery [Gorban et al., 1998;
Rossiev, 1998]. The method is founded on Anzatz reasoning,
and it only one allows to obtain plausible values of missed
data. However, the testing of time series with artificial holes
has shown a good result. So, a method of modeling data
with gaps by using a sequence of curves has been developed.
The method is a generalization of iterative construction of
singular expansion of matrices with gaps [Hastie and Stuet-
zle, 1988; Kramer, 1991].

2.1. The Model

The idea of modeling data with the help of manifolds of
small dimension was conceived a long time ago. The most
widespread, oldest, and feasible implementation for model-
ing data without gaps is the classical method of principal
components. The method calls for modeling the data by
their orthogonal projections over “principal components” —
eigen vectors of the correlation matrix with corresponding
largest eigen values. Another algebraic interpretation of the
principal component method is a singular expansion of the
data table. Generally, to present data with sufficient accu-
racy requires relatively few principal components. Imagine
a table of data A = {aij}; its rows correspond to objects,
and its columns correspond to features. Then, let a por-
tion of information in the table be missing. Let us look
at the object x whose features are represented in a vector
form (x1, x2, ..., xn). There may be k gaps in the vector x,
that is, some components of x are lost. We suppose that
this vector is represented as a k dimensional linear manifold
Lk, parallel to k coordinate axes corresponding to the miss-
ing data. Under a priori restrictions on the missing values
instead of Lk, we use a rectangular parallelepiped. A man-
ifold M of a given small dimension (in most cases a curve)
approximating the data in the best way and satisfying cer-
tain regular conditions is sought. For the complete vectors
of data, an accuracy of approximation is determined as a
regular distance from a point to a set (the lower bound of
the distances to the points of the set). For the incomplete
data, the lower bound of the distances between the points
of M and Lx (or, accordingly, Pk) may be used. From the
data closest to them, points of M are subtracted. We obtain
a residue, and the process is repeated until the residues are
close enough to zero. Proximity of the linear manifold Lk, or
parallelepiped Pk, to zero means that the distance from zero
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Figure 1. Geometrical interpretation of the linear model (a) and the quasilinear model (b).

to the point of Lk (accordingly, Pk), which is closest to it is
small. Desired approximation can be constructed recursively
[Gorban et al., 2000; Rossiev, 1998] for three models: linear,
quasilinear, or essentially non-linear (self-organizing curves
(SOC)). We illustrate the idea using an example of a linear
model. Let there be a rectangular table A = {aij}, the cells
of which are filled with real numbers or with some symbol
@ denoting absence of data. The problem is to approximate
A with a matrix P1 in a form of xiyj + bj , by means of the
least squares method

Φ =
∑
i,j

(aij − xiyj − bj)
2 → min (1)

where aij 6= @. If there are any two known vectors, then
the third one will be calculated through explicit formulas.
As a result, for the given matrix A, we will find the best
approximation, that is the matrix P1. Further on, we look
for a matrix, P2, that is the best approximation of A − P1

and so on, while the norm of A is not sufficiently close to
zero. Thus, the initial matrix A is presented in the form of a
sum of matrices of rank 1, that is, A = P1+P2+. . .+Pq. The
Q factorial recovering of the gaps consists in their definition
through the sum of matrices Pq. For incomplete data after
a number of iterations, we get a system of factors that we
will use for recovery. Further, we again construct a system
of factors with the help of already recovered data and so on.

Geometrical interpretation of a linear model is shown in
Figure 1a, for A ⊂ R2. We considered our example in R3

space, so our data point x is presented as (x1, x2, x3). Imag-
ine there is a point and that two of its coordinates are lost
(we have only x3 coordinate), so a plane, Lk, corresponds
to it. The plane Lk is modeled by the vector y that is an
inclined line approximating known data in a best manner;
vector x is a set of projections of initial data on y (≡ M).
The lost coordinate now is substituted by the intersection
Lk ∩M .

Quasilinear models [Gorban et al., 2000; Rossiev, 1998]
are based on the algorithm of linear model construction de-
scribed above. First, we construct a linear model, then the
vector-function f(t) (a cubic spline or a polynomial) that

minimizes the functional:

Φ =
∑
i,j

(aij − f(
∑

k

aikyk))2 + α

+∞∫
−∞

(f
′′
(t))2dt (2)

where α > 0 is a smoothing parameter.
So, first we are looking for the projection of data vec-

tor a on a manifold of small dimension y: Pr(a) = ty + b,
t = (a, y), then we find a point on the curve f(t). For incom-
plete data, the closest point t(a) is taken on the manifold.
And after that, we take the corresponding point on the curve
f(t) for t = t(a). After construction of f(t), the matrix A is
substituted by the matrix of deviations from the model (Fig-
ure 1b). The process is repeated several times, and at the
end the initial table, A is represented in a form of Q factorial
model: aij

∼=
∑

i,j
fi(tj).

The third model is based on the Kohonen self-organizing
maps theory or, more exactly, on the paradigm of self-
organizing curves. These curves are defined by a set of
points (a kernel) situated on a curve (at the first approach
this curve is a polygonal one), on which a set of data point
(taxon) must be mapped. Under fixed decomposition of the
data set on taxons, the SOC is constructed uniquely. Under
fixed location of kernels, taxons are easily constructed, too,
with the help of minimizing of some functional, which con-
sists of three addends: a measure of the best approximation,
a measure of connectedness, and a measure of nonlinearity
[Gorban et al., 2000]. Successive searching; kernels→ taxons
→ kernels →... leads to the convergence of the algorithm.
The computational process is implemented on the neural
conveyor Famaster 2 made by Gorban’s team at the Insti-
tute of Computational Mathematics of the Siberian Division
of the Russian Academy of Sciences.

3. Results

We carried out the experiments with different time se-
ries. The results of some experiments are shown in Fig-
ure 2. About 50% of the points in the annual Wolf num-
ber time series were delete. For gap recovery, we used the
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Figure 2. A fragment of the annual Wolf index time series, SOC; number of nodes is 10.

SOC model. Strings of the initial data table were F. Takens
m dimensional delay vectors [Sauer et al., 1991]. The time
delay equals 1, and the embedding dimension equals 6. The
strings look as follows: akj = xk, xk+1, ..., xk+5. The em-

Table 1. A Fragment of the Real and Recovered Values for
Ten-Year 14C and Annual 10Be Time Series

14C 10Be
Real Recov. Real Recov.

67.90 71.00 1.00 1.04
85.10 85.50 0.61 0.63
89.30 89.52 0.90 0.83
86.70 87.94 0.57 0.59
89.30 89.70 1.11 1.09
92.40 92.37 0.85 0.85
89.70 90.54 0.57 0.64
83.40 83.89 0.82 0.85
87.70 87.40 1.25 1.21
87.10 86.57 1.19 1.18
86.20 86.44 1.26 1.32
77.20 77.03 0.82 0.80
76.10 76.32 0.95 0.91
71.40 72.97 0.62 0.74
77.50 77.04 1.01 0.96
78.60 76.63 0.72 0.70
78.30 78.21 1.34 1.30
79.00 80.34 1.40 1.30
76.00 76.04 0.85 1.17
77.30 75.60 1.29 1.28

bedding dimension was estimated with the help of the False
Nearest Neighbours’ (FNN) method [Abarbanel et al., 1993].
Thus, deleting a point in a time series implied deleting the
whole diagonal corresponding to that point. As you can see,
the neural conveyor even recovered the peaks of cycles well.
Figure 3 shows a fragment of the cosmogenic isotope 14C
time series. The whole time series ranges from 5995 BC to
1945 AD. We give only the results recovering 30% of deleted
points of the fragment from 5995 BC to 10 AD. And the last
time series used in our experiment was 10Be (1428–1999 AD,
annual data), and about 10% of points were deleted (Fig-
ure 4). Some results of recovery (in numerical form) are
provided in Table 1. The construction of the initial table
by F. Takens (unlike the arbitrary method of construction
mentioned in Gorban et al. [2000]; Rossiev [1998] essentially
changes the situation. Really, a lost value of y component
of the vector on Figure 1a induces a gap of x component in
the next (by F. Takens) vector. The intersection of two lines
recovers a missed value. In the multidimensional case, the
problem is reduced to the search of a transverse intersection
of hyperplanes [Sauer et al., 1991]. Thus, the method of gap
recovery takes on a formal context.

3.1. Multifractal Spectrum of 14C Time Series

After applying the recovery procedure to the time series,
we had an equidistant and complete one, so it became possi-
ble to use more refined tools to implement our investigations.

We used an approach in which time series is considered
as multifractal random measures. Remember [Barreira et
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Figure 3. A fragment of the 14C time series, quasilinear model; number of nodes is 8.

Figure 4. A fragment of the 10Be time series, quasilinear model; number of nodes is 6.
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Figure 5. Multifractal spectrum of annual 14C data, after recovery by a quasilinear model.

al. 1997] that multifractal spectrum of singularities of Borel
finite measure µ on a compact set X is a function f(α) de-
fined by a pair (g, G). Here, g : X → [−∞, +∞] is a func-
tion, which determines the level sets: g : Kg

α = {x ∈ X :
g(x) = α} and produces a multifractal decomposition X:

X =
⋃

−∞≤α≤+∞

Kg
α

Let G be a real function, which is defined on Zi ⊂ X such
that G(Z1) < G(Z2) if Z1 ⊂ Z2. Then multifractal spec-
trum is f(α) = G(Kg

α). Let g be determined as pointwise
dimension dµ of measure µ at all points x ∈ X for which the
limit

g ≡ dµ(x) = lim
r→0

(log µ(B(x, r))/ log(r))

exists, where µ(B(x, r)) is a “mass” of measure in the ball
of radius r centered at x. Since we have chosen g = dµ,
we can omit the subscript from further references to Kg

α.
Then Kα = {x : dµ(x) = α}, where the exponent is a
local density of µ. The singular distribution µ can then
be characterized by Hausdorff dimension of Kα, that is,
f(α) = G(Kα) = dimH(Kα). If µ is self-similar in some
sense, f(α) is a well-behaved concave function of f(α) [Fal-
coner, 1994]. To estimate f(α), we applied the method of
the partition sum [Riedi, 1997]. For analysis, annual 14C
time series (1510–1954) was used. Initial time series had a
fragment, where known data values were given in a period
of 2 years (1890.5–1910.5), and there were some real data
gaps (1911–1912, 1914, 1946). With the help of the method

suggested above, this time series was recovered and became
equidistant. Thus, the time series is applicable for multi-
fractal analysis. In Figure 5, a f(α)-spectrum of this time
series is shown. It shows that 14C records have multifractal
properties in a large range of scales (1–2.2).

4. Conclusion

Our experiments have shown that the neural method for
gap recovery in a time series is quite eligible for analyzing
cosmogenic isotopes. This method allows equidistant time
series to be obtained, which can be researched by using the
modern tools of non-linear analysis.
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