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2Outline

• Definition

• The classics (k-means, PCA, MDS)

• The first nonlinear methods (SOM, ANN, HS principal curves)

• Solving some of the problems (polygonal principal curves,
LLE, ISOMAP)

• The remaining challenges



3The definition

• Learn a compact representation y of data x that preserves
important information

• compactness usually means dimensionality reduction: |y| � |x|

• important information: whatever is needed for performing a given task

• usually a trade-off



4The definition

• Positive side effects

• filtering noise

• find the underlying hidden causes that “explain” the data

• visualization

• sometimes the goal, sometimes “just happens”, but not necessarily
the same problems



5The coding view

• x −→
encoder

y −→
decoder

x̂

•more general than manifold learning

•manifold is not explicit but can be traced or interpolated

• we often want “good” representation, not only efficient cod-
ing



6The geometric view
Data points

Principal curve



7The geometric view
Data points

Principal curve

• encoding is based on a projection to a subspace

• decoding is a simple “reading out” of the coordinates

• the goal is to find or form the subspace

• information preservation can be measured by

• the expected distance of a point and its projection to the subspace

• topology preservation



8The classics

• K-means

• Principal Component Analysis

•Multidimensional Scaling

• a lot of direct applications, but also sources of inspiration



9The classics

• K-means

• singular manifold: find the nearest k points
Data points

Principal curve



10The classics

• Principal Component Analysis

• linear manifold: find the nearest linear subspace
Data points

Principal curve



11The classics

•Multidimensional Scaling

• distance preserving manifold: find the linear subspace that preserves
pairwise distances the best

x1

x2

x3

y1

y2

xi xj

yi

yj

dij

δij

source space target space



12Why go nonlinear?



13The first nonlinear methods

• Self-Organizing Maps and Generative Topographic Mapping

• Autoassociative Neural Networks

• Hastie-Stuetzle (HS) principal curves



14The first nonlinear methods

• Self-Organizing Maps
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15The first nonlinear methods

• Autoassociative Neural Networks
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16The first nonlinear methods

• HS principal curves
Data points
Generating curve
Banfield-Raftery curve
Hastie-Stuetzle curve



17Challenge #1: The estimation bias

• “Cutting turns”
Data points

Generating curve

Hastie-Stuetzle curve



18Challenge #1: The estimation bias

• “Cutting turns”
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19Challenge #1: The estimation bias

• Solution: project on line segments

Data points

Principal curve



20Challenge #1: The estimation bias

• Solution: project on line segments
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21The polygonal line algorithm
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22Principal Curves

• HS (theory is flawed, algorithm is slow and non-robust, high
estimation bias)

• Polygonal line algorithm and length constraint

• Regularized principal manifolds, principal curves with bounded
turn, k-segments algorithm, elastic principal graphs and man-
ifolds, local principal curves



23Challenge #2: The warping

• “Bad” initialization, local minima
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24Challenge #2: The warping

• “Bad” initialization, local minima
Data points

Principal curve



25Challenge #2: The warping

• Solution: “one shot” methods

• Local Linear Embedding, ISOMAP, Kernel PCA, and other spectral
methods

• non-geometric (implicit manifolds)

• handle complex structures but break down with noise

• relatively slow



26Local Linear Embeddingconstraints: first, that

reconstructed only from

enforcing Wij 5 0 if WXj does

not belong to the set of neighbors of WXi;

second, that the rows of the weight matrix

sum to one: SjWij 5 1. The optimal weights
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27Local Linear Embedding
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.



28Local Linear Embedding



29ISOMAP

• Problem: the geodesic distance (distance on the manifold)
is much longer than the euclidien distance

approximate dimensionality, when known. Note the
dimensionality, in contrast to Isomap.



30ISOMAP

• Solution: construct the neighborhood graph, and find the
shortest path between each pair of points.

with added dimensions. Arrows mark the true or
tendency of PCA and MDS to overestimate the



31ISOMAP

• Solution: use multidimensional scaling to map the data

from PCA and MDS: a noniterative, polyno-

mial time procedure with a guarantee of glob-

al optimality; for intrinsically Euclidean man-



32ISOMAP
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34Challenges

•More or less solved

• nonlinearity

• complex structures (on which “global” methods fail)

• noise



35Challenges

• Unsolved

• noise combined with high curvature or complex structures

• noise combined with relatively high intrinsic dimensionality – data
sparseness – curse of dimensionality

• non-smooth manifolds

• proposed solution: non-local manifold learning, hierarchical models


