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Outline ’

e Definition

e The classics (k-means, PCA, MDS)

e The first nonlinear methods (SOM, ANN, HS principal curves)

e Solving some of the problems (polygonal principal curves,
LLE, ISOMAP)

e The remaining challenges



The definition ’

e Learn a compact representation y of data x that preserves
important information

e compactness usually means dimensionality reduction: |y| < [x|

e important information: whatever is needed for performing a given task

e usually a trade-off



The definition )

e Positive side effects

e filtering noise
e find the underlying hidden causes that “explain” the data
e visualization

e sometimes the goal, sometimes “just happens”, but not necessarily
the same problems



The coding view ;

X — Yy — X
encoder decoder

e more general than manifold learning
e manifold is not explicit but can be traced or interpolated

e we often want “good” representation, not only efficient cod-
ing



The geometric view




The geometric view

e encoding is based on a projection to a subspace

e decoding is a simple “reading out” of the coordinates

e the goal is to find or form the subspace

e information preservation can be measured by

e the expected distance of a point and its projection to the subspace

e topology preservation



The classics

e K-means

e Principal Component Analysis

e Multidimensional Scaling

e a lot of direct applications, but also sources of inspiration



The classics

e K-means

e singular manifold: find the nearest k points

%\%

L




The classics

e Principal Component Analysis

e linear manifold: find the nearest linear subspace
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The classics

e Multidimensional Scaling

e distance preserving manifold: find the linear subspace that preserves
pairwise distances the best

source space target space




Why go nonlinear?
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The first nonlinear methods

e Self-Organizing Maps and Generative Topographic Mapping

e Autoassociative Neural Networks

e Hastie-Stuetzle (HS) principal curves
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The first nonlinear methods

e Self-Organizing Maps
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The first nonlinear methods

e Autoassociative Neural Networks
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The first nonlinear methods

e HS principal curves
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Challenge #1: The estimation bias

e “Cutting turns”

Data points
=== (Generating curve
o= Hastie-Stuetzle curve
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Challenge #1: The estimation bias

e “Cutting turns”




Challenge #1: The estimation bias

e Solution: project on line segments
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Challenge #1: The estimation bias

e Solution: project on line segments

Data points
=== (Generating curve
e Principal curve
o= Hastie-Stuetzle curve




The polygonal line algorithm
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Principal Curves

e HS (theory is flawed, algorithm is slow and non-robust, high
estimation bias)

e Polygonal line algorithm and length constraint

e Regularized principal manifolds, principal curves with bounded
turn, k-segments algorithm, elastic principal graphs and man-
ifolds, local principal curves



Challenge #2: The warping

e “Bad” initialization, local minima
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Challenge #2: The warping

e “Bad” initialization, local minima
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Challenge #2: The warping

e Solution: “one shot” methods

e Local Linear Embedding, ISOMAP, Kernel PCA, and other spectral
methods

e non-geometric (implicit manifolds)
e handle complex structures but break down with noise

e relatively slow



Local Linear Embedding
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Local Linear Embedding
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Local Linear Embedding
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ISOMAP N

e Problem: the geodesic distance (distance on the manifold)
IS much longer than the euclidien distance




ISOMAP ¥

e Solution: construct the neighborhood graph, and find the
shortest path between each pair of points.




ISOMAP

e Solution: use multidimensional scaling to map the data
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ISOMAP
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Bottom loop articulation
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Challenges

e More or less solved

e nonlinearity
e complex structures (on which “global” methods fail)

e Noise
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Challenges

e Unsolved

e noise combined with high curvature or complex structures

e noise combined with relatively high intrinsic dimensionality — data
sparseness — curse of dimensionality

e Non-smooth manifolds

e proposed solution: non-local manifold learning, hierarchical models



