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Abstract. The classifications of bacterial 165 BRNA sequences developed aver the real and trans-
formed frequency dictionaries have been studied. T'wo sequences are considered to be close, when
their frequency dictionaries are close in Euclidean metrics. A procedure to translorm a dicticnary
18 proposed that makes clear some features of the information pattern of a symbol sequence. A
comparative study of classifications developed over real lrequency dictionaries vs. the translormed
ones has been carried cul. A correlation between information patterns of nucleotide sequences
and taxonomy of the bearer of the sequence was found. The sites with high information value are
found Lo be the main factors of the difference belween the classes in a classification. The classifi-
cation of nucleotide sequences developed over real frequency dictionaries of thickness 3 reveals the
best correlation to a gender of bacteria. A set of sequences of the same gender is included entirely
inte onc class, as a rule, and exclusions occur rarcly. A hierarchical classification yields one or
Lwo taxonomy groups on each leve] of classilication. An unexpectedly often, or unexpectedly rare
occurrence of some sites within a sequence makes a basic difference between the structure patterns
of the classes yielded; a number of those siles is not to large. Further investigations are necessary
in order to campare the sites revealed with these determined duc to other methodology.

1. Introduction

A study of the rclation between the structure of symbol sequences (5} and their
meaning encrypted in the interlocation of symbols is a key problem for molecu-
lar biology, biophysics and many other flelds of science. Usually, researchers meet
no problem in understating the function of sequences studied; at least, they may
discuss it and elaborate a common opinion on that subject. A struciure is much
more complicated matter to understand. When studying nucleotide sequences, one
often talks about the intron-exon struciure [1], or about the structure determined
by operons, etc. [2]. Further, we should understand the structure of a sequence as
its frequency dictlonary, either a real one [3- 6], or a reconstrucled one [7,8], or
a transformed one [8]. Such understanding of the structure of a sequence enables
a researcher to introduce easily the idea ol a closeness of two (or several) struc-
tures. Namely, two {or several) sequences are considered to be close to each other,
when their frequency dictionaries are close. The real frequency dictionary W, (ol
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thickness g) is defined as the list of all strings of length ¢ occurring in the giv-
en sequence accompanied by the frequency of their occurrence [3-6]. It has been
shown that sufficiently large family of nucleotide sequences can be classified into
groups, according to the closeness of their frequency dictionaries. All the sequences
within a group are close with respect to the Euclidean distance between their fre-
quency dictionaries. We have observed a correlation between the function encoded
and the classification of sequences developed over their frequency dictionaries for
the Ce-dependent peptides; also, such correlation has been observed for the clas-
sification menticned and the taxonomy of the organisms bearing those sequences
[9l.

The sequence of frequency dictionaries Wy, Wy,..., W,, corresponding to the
same text yields a relation, namely all the foregoing dictionaries can be obtained
from the succeeding ones by a simple summation. In other words, a thinner dictio-
nary could always be obtained from a thicker one. An inverse slatement does not
hold true. An exact reconstruction of a thicker dictionary from a given one does
not always exist, in general. The exact reconstruction of Wy over W, for k > ¢ is
possible il and only if all the words in W, have unique continuation. Otherwise, the
single-valued reconstruction is impossible: each [requency dictionary W, of smaller
thickness yields a set of thicker frequency dictionaries. One could nevertheless seek
for the most probable continuation Wy of a given dictionary of smaller thickness
W,. Namely, to get the most probable dictionary W;(g) one must select from all
possible continuations of the given dictionary W, the one with the least determi-
nacy, i.e. the one which yiclds the maximal entropy. The exact solution of this
extreme problem resembles the well-known Kirkwood approximation in statistical
physics. If a reconstructed frequency dictionary Wi(g) coincides exactly with the
original one W, then it means that the entire information carried by the origi-
nal text is contained in the dictionary W,. Differences between the reconstructed

dictionary Wk(q) and the real one Wy show additional information contributed by
k-tuples, in comparison to g-tuples, & > g.

From that point of view, the difference between the real frequency dictionary Wy
and the most probable continuation Wy (g) are of the greatest interest. To measure
these differences, one introduces a new object, so-called transformed dictionary,
where each word is assigned tke ratio of its real frequency and the frequency
obtained in a reconstruction from the thinner one. Such a value shows how much
the real frequency of a word differs [rom the expected one. This transformation of
the frequency dictionary allows one to explain some peculiarities of the information
structure of nucleotide sequences (NS).

The study of correlations between the structure and the function of nucleotide
sequence requires the determination of some other relations among them (e.g., a
classification). A set of genes always allows at least two independent classifications
of zuch a type: one over the taxonomy of gene hearer, and another over the function
of these genes. This paper is aimed to study the relation between the structure of
NS (that is assumed to be a frequency dictionary, either real one, or transformed),
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and the taxonomy of the gene bearer. Thus, only the pair structure vs. lazonomy is
studied here, rather than the tripod pattern structure - lazonomy - (biochemical)
function. Since the structural variations may result both from differences in the
[unctions enceded, and from the differences in taxonomy of the genc’s bearer, we
have chosen for our investigation those nucleotide sequence which determine the
same function in various organisms.

Currently, a huge amount of genetic data is available that allows to carry out
a comparative investigation described above. We have used 165 RNA of bacteria
of various species. All sequences of this type realise the same funetian, not only in
bacteria. but in other organisms with higher taxonomy position.

2. Frequency Dictlonary

To each sequenced gene there corresponds a symbol sequence of the same length
(i.e., number of nucleotides) N, a genetic text over a [our-letter alphabet. Any
continuous subsequence of length g of the genetic text is called a word. We assign
to each word its frequency, that is the number of its coples within the genetic text
divided by the total number of words within the text; such list of all g-letter words
occurring within the text together with their frequencies is called the frequency
dictionary W, [3-8].

If n is the cardinality of the alphabet, then total number of words of length ¢
is n?. Obviously, not every word of length g is likely to cccur in a text, especially
when ¢ is large enough. Let us complete the frequency dictionary of a given text
to the entire one (i.e., the one which contains all the words of length ¢} adding the
words with zero frequency. Then every frequency dictionary can be represented as a
point F(f1, f2.- .-, fae) in a nf-dimensional space with the coordinates representing
the frequencies of the corresponding words, 0 < f; < 1, j = 1,2,...,n% Then,
a set of gencs vields a set of points in n?-dimensional space, according to such
representation.

3. Transformation of Frequency Dictionary

Let us consider a set of frequency dictionaries (ol various thickness) correspond-
ing to the same genetic toxt: Wy, Wy, ... W, ..., Wx. Then the question arises
what part of the information contained in the original text is represented by the
dictionary of thickness g. It is well-known that for some specific thickness d=, all
the words within a dictionary occur in a single copy [3,4]. Hence, for g > d* all
words in W, have a unique continuation, and any dictionary Wi (including the
original text} can be unambiguously reconstructed from W,, as ¢ becomes greater
than d* [4,6]. Thus, any frequency dictionary W, with g > d* contains the entire
information about the original text.

Any thinner frequency dictionary is obtained from a given one W, by summa-
tion, and a part of the information about the text is lost when ¢ < d*. It makes an
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inverse transformation (from a given dictionary to a thicker one) ambiguous. For
every [requency dictionary W, with ¢ < d* there exists a set of different frequency
dictionaries W} of the same thickness £ > ¢, and any of them may be considered
as a continuation of the original dictionary. We should select the dictionary Wi (g)
which is the most probable continuation of Wy; let us call such a dictionary the
reconstructed one. The method of reconstruction of a dictionary is based on the
maximum entropy principle {7, 8].
The entropy of a frequency dictionary W, is defined as

Sy = =D filnf;. (1)
i=1

A reconstruction of the dictionary Wy(g) must be provided with no additional
information, hence the reconstructed dictionary must yield the maximal possible
value of the entropy. The extreme problem S,.; —+ max with the bound condition

for dictionaries W, « Wq+s(q) has a unique solution

Fiy igfinigys o Fiquptiges

Fit dgigirdgrs = for ¢ > 1, and (2)

Jigeig Fizuigrr -+ Figepriqpes
Jovigee = oy oo figy, for g=1, (3)

here 41 .. 142441 .- - fg4s 18 the word of length ¢+ s and index i corresponds fo a
nucleotide. The expressions (2) and (3) look similar to the well-known Kirkwood
approximation for some problems of statistical physics [13].

The formulae (2) and (3} coincide with well-known expressions for transition
probabilities in a symbol sequence obtained as a realization of a. Markov random
process, for s = 1 (there are some specific differences for s > 1). It should be
stressed, that the formulae (2) and (3) for the reconstructed dictionary are inde-
pendent of any peculiar structure of a sequence. These formulae present the most
likelihood hypothesis on the frequency dictionary of thickness ¢ + s, resulting via
reconstruction from a dictionary of thickness ¢. One should consider the original
symbol sequence to be Markovian if and only if the expressions for real (but not
for the reconstructed ones) frequencies would be valid in the limiting case of an
infinitely long original sequence.

Let us now consider dictionaries reconstructed from a one symbol thinner dic-
tionary. The formulae for the reconstructed frequencies of W,(g — 1) are:

fi1...ig = m .
fig._,ilz_l

The reconstructed frequencies will be denoted by f.
The dictionary Wy is the most probable continuation of the dictionary W,_;.

(4)

A comparison of the reconstructed dictionary F/ATZ; with the original one W, of the
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same thickness ¢, allows one to mark explicitly the peculiarities of the information
strizcture of nucleotide sequences, since the maximal differences between the real
and reconstructed frequencies, for the dictionaries of a given thickness, are the
most “unexpected” events in a transition from the dictionary of thickness ¢ — 1 to
the one of thickness ¢.

Let us transform the frequency dictionary of a nucleotide sequence in the fol-
lowing manner: for each length ¢ of words, starting from ¢ = 2, build the dictio-
nary W, (g — 1) reconstructed from the preceding one. As before, each nucleotide
sequence is represented with a point P(p;, pa, ..., pee) in a né-dimensional space,
where the coordinates of the point are the ratios of the real and the reconstructed
frequencies: p; = f;/f;, for f; #0,and p; = 1for f; = 0,7 =1,2,...,n% The
values p; show how much the real frequencies differ from the expected ones. If
p; = 1 for some word within the genetic text, then the information value of this
word is not high: its most probable expected frequency almost coincides to the
real one. The words whose frequency ratios p; differ from the real one significantly
present the most valuable sites of a given length within the nucleotide sequence
studied. We take the threshold value to be 15-20% in our study. It should be
stressed that the length of a site is rather essential, since any low-valued site of
length ¢ may be incorporated into a high-valued site of length ¢+ 1, which in turn
may be incorporated into a longer site of low information value. To compare vari-
ous nucleotide sequences, one should consider the differences between p; observed
for different sequences rather than the deviations of this value from 1 (that latter
might occur simultaneously). The difference mentioned above becomes significant
when it reaches the level of 15 to 20% as it will be shown later on.

4. Algorithms of Automatic Classification

The implementation of classification of objects requires the definition of a proxim-
ity measure among them. For symbol sequences, such a measure can be introduced
in several different ways {2, 14]. Here we have used the following one:

Given the length ¢ of words, any genetic texts can be represented as a point
in n?-dimensional space, corresponding to the frequency dictionary of thickness ¢
(either real or the transformed one). Two sequences would be considered close, if
the corresponding points in nf-dimensional space are close. The distance between
two points in this space is taken to be the Euclidean metrics. The study of the
distribution of points in nf-dimensioral space allows one to split the original set
of sequences into a number of classes, where the sequences are close to each other
within a class.

Automatic classification algorithms have been used to perform the task men-
tioned above. We have used a dynamic kern method in our investigation [12,15].
In brief, it looks as follows. Consider a set {F'}, i = 1,2,...,M of M points
that should be split into several classes. Let the initial number of classes and the
initial distribution over these classes be given. First, for each class k, the ceatre
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CE(eh, .., k) Is calculated according to
1 o) g
k Ls
DD TR A (5)
=1

where l; is the number of elements in the k-th class. Then, for each point of the
original set F* the distance

df = p(C* FYy,  i=1,2,..,M (6)

1

is calculated and the classification of each point is re-determined. A point is
assumed (o belong Lo the class which yields the least distance (6). As soon as
all the paints arc processed, the group centers are re-calculated. This procedure —
the calculation of centers and the rearrangement of points - is run until no point
is moved further from one class to another.

If all the classes obtained are disjoint, the classification is done; otherwise, two
closest classes can be merged into one, and the entire procedure must be run again.
Two classes are presumed to be different if the distance between their centers
exceeds the maximal average radius of the classes to be distinguished. The average
radius of the k-th class is defined as

. 1 -
RY = szf, (7)

with d% determined according to (6), and ¢ runs the indices of points belonging to
the k-th class.

The number of classes to be distinguished by a classification procedure is
unknown ¢ priori. Initially, the set of points should be split into sufficiently large
number of classes. Due to the consecutive merges, the maximal possible number of
classes is found, that still satisfy the separation condition. The algorithm imple-
mented here is entirely similar to the cluster analysis provided by Cohonen neural
networks [15].

5. Results and Discussion

We have studied 1730 different bacterial 165 RNA sequences [17]. Tab. 1 shows the
taxonomy composition of the set fo nucleotide sequences considered. It is evident,
that the taxae are rather diverse buf inhomogeneous with respect to the number
of sequences within the same taxa.

5.1, TRANSFORMED FREQUENCY DICTIONARY

For each entity from the set of 165 RNA sequences the transformed frequency
dictionary of thickness 3 has been obtained. The specilic distribution densities of
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| N ‘ Taxa Number of NS

1 | Chloflexaccae/Deinococcaceae group 29
2 | Cyanobacteria {

3 | Cytophagales 117
4 Fibrobacter 13
5 | Firmicutes; Actinomycetes 335
6 | Firmicutes; Low G+C gramm-positive bactcria 485
7 i Protecbacteria; o subdivision 262
8 | Protcobacteria; 3 subdivision 63
9 | Proteobacteria; § subdivision 47
10 | Proteobacteria; & subdivision 43
11 | Protenbacteria; 7 subdivision 216
12 § Spirochaetales; Leptospiraceae 14
13 | Spirochactales; Spirochaetaceae 35
14 | Others 56

Tab. 1. Taxonomy composition of the nucleotide sequences of 165 RNA studied.

the values of the transformed frequencies are shown in Fig. 1. Obviously, the total
number of such distributions is 64, according to the number of possible triplets.
The distribution density of the triplets TAT, CCT, AAA, and GAA take the
marginal positions (extreme left, extreme right, extrame upper, and extreme down,
respectively), while the distribution densities of the triplets T, CAA, and ACC
are the most typical for the set of nuclectide sequences studied.

Now consider what is the distributlion of the transformed frequencies within the
dictionary (ol thickness 3) of the same taxa. To do so, we develop the frequency
dictionary averaged over all sequences listed in Tab. 1. The density distribution
of the transformed frequencies averaged over these 13 taxon groups is shown in
'ig. 2. The numbers on the vertical axis show how many triplets from 64 have
the transformed frequency in the given range. Each narrow bar corresponds to a
single taxa. To compare with, the similar data are shown in Fig. 3, presenting the
real frequencies of the same taxae. It is evident that the transformed dictionaries
possess higher information value due to a wider expanded distribution pattern on
the one hand, and due to the fact that they present obvious differences among the
taxae, on the other.

Family Firmicules Actinomyceles is the most abundant in the original set of
sequences (335 entities). Tab. 2 shows the sites of length 3 of high information value
and their transformed frequencies averaged over the family. The table consists of
Lwo parts: the leftmost one presents the triplets with occurrence frequency higher
than predicted p; > 1, and the rightmost one presents those with the frequency
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‘ Real frequency

is greater '

Real frequency is lower than (

than expected expected

| Triplet | £/7 | | Triplet i
cCeT 1,355 CCA 0,641
AGC 1,338 TAT 0,67
TAA 1,302 AAA 0,709
CTT 1,282 TAG 0,762
TCA 1,194 TCT 0,771
TAC 1,189 TTT 0,784
GAT 1,177 GAC 0,81

Tab. 2. The sites of lenglh 3 with high information value, averaged over Firmicules;
Actinomycetes taxae.

Real

[requency is

greater

Real frequency is lower than

Zero frequency, with non-

than cxpected expected vero expeclted
| 4-tupple | fif | I 4-tuple ‘ i | ‘ 4-tuple n

ATAT 2,035 CAAA 0,6 GTAT 487
TATC 1,918 TTCA 0,595 CATA 346
TTGT 1,874 G'T'TA 0,687 ATTT 321
ATAC 1,838 cacr 0,568 ACTT 203
ACTC 1,833 TAAG 0,561 TATA 273
ACAC 1,757 AGAG 0,56 ATAG 271
TTAT 1,729 TACT 0,555 1ICA 227
ATTA 1,698 TTAC 0,55 TTTA 138
CACA 1,678 GACA 0,516 CoTC 129
GCGA 1,66 ACAG 0,505 ATAA 125
AGTC 1,657 TGAT 0,483 AAAT 124
CATG 1,653 CGAG 0,482 CCAT im
ATCA 1,633 AAAT 0,461 ATCT 92
CGAA 1,629 TTTA 0,452 TACT 89
CGCA 1,579 TTCT 0,43 TCTA 66
AGAT 1,365 CCTC 0,422 COGA 18]
Trec 1,559 GGCA 0,418 TCTT 57
TCCA 1,505 CCGA 0,385 TGAT 535

Tab. 3. The sites of length 4 with high information value, averaged over Firmicutes;
Aclinomycefes taxae.
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Fig. 1. The densities of the transformed frequencies of triplets. Vertical axis shows the value
of the transformed frequencies and the horizontal one shows the density of the latter for a given
triplet. obtained for the cntire set of all nucleotide sequences under investigalion. The charis for
TAT, AAA, GAA and CCT triplets take the marginal positions, while the charts for TTT, CAA,
and AGC triplets seems Lo be the most typical for the set of sequences studied.

under the predicted p; < 1. Tab. 3 shows the sites of length 4 with high information
value. This table consists of three parts, and the first one and the second one are
similar to those of Tab. 2, while the third part shows 4-tuples which do not oecur
in the real dictionary, while their expectancy is above zero (f; = 0; f? # 0). In
this Table, n denotes the number of copies predicted for a given 4-tuple according
to the entire set of entities analysed. A comparison of these two tables shows
explicitly that the sites of high information value of various lengths may or may
not be incorporated into a similar type of longer sites. And viee versa: the 4-symbol
long sites with high information value may or may not include highly information-
valued triplets. One can observe a significant non-monotonicity in the succession
of information valued sites, as their length grows up.

5.2, CLASSIFICATION

The zet of 165 RNA has been split into classes with the help of the dynamic
kern method. The classification has been elaborated both over Lhe real frequency
dictionaries, and over the transformed dictionaries. The classifications obtained
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30

Fig. 2. The density of the transformed frequencies. The horizontal axis shows Lhe value of Lhe
transformed frequency, and the vertical one shows a number of triplets (of 641 totally available)
with the given transformed frequency. Each narrow bar in the chart corresponds to the frequency
dictionary averaged over the entire body of sequences within one of 13 isolated taxonomy groups

{as of Tab. 1).

differ, as it has been expected. Nevertheless, both classifications yield a reasonable
correlation with the taxonomy classification of the gene bearer.

The classifications were perlormed for the dictionaries of thickness 3, since a
reliable method implication is possible anly when the number of objects to be
classified exceeds significantly the dimension of space. Besides, 1he diclionary of
thickness 3 represents more structural entities of a nucleotide sequence {in com-
parison to the dictionaries of thickness 2 and also to thickness 1); at least one
structure is presented completely in the dictionary of the thickness 3, that is the
genelic code structure.

The classification ol the set of 165 RNA sequences performed on the real [re-
quency dictionaries is shown in Fig. 4. The original set of sequences is split into
two clagses. The vertical axis on the diagram presents the taxae, and the horizon-
tal axis presents the number of sequences from the given taxon that belong to a
class. A separation of each taxon group into these two classes is shown in grey and
black colour. Nen-randomness of such a split is evident. Moreover, even though
the sequences of some genders occupy both classes, a signilicant irregularity of
their distribution among two classes is obvious. A correlation between the statis-
tical structure of nucleotide sequence and the taxonomy of its hearer is evident.
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Fig. 3. The density of the real frequencies {cf. Fig. 2).

Nonctheless, a similar diagram for a higher taxon level shows significantly more
uniformity in the occupation of both classes by the genes from the same taxon
group. This effect may follow from the well-known fact that of higher taxanomic
tevels of prokaryote seems to be rather artificial [16].

The nucleotide sequences of some organisms, and especially prokaryotes show a
significant preference in the occurrence of some peculiar nucleotides whose effect on
the enzyme structure encoded by those nucleotide sequences is quite poor. Then the
correlation between the classification over the real {requency dictionaries and the
taxonomy follows from the diversity of nucleotide composition of these sequences.
Here the classification over the transformed frequency dictionaries seems to be
more useful, both from the point of view of methodology of detection and isolation
of the structures in nucleotide sequences, and the classification per se of the specific
group of sequences to be studied.

A hicrarchic classification of the original set of 165 RNA based on the trans-
formed dictionaries s shown in Fig. 5. One can obviously see thal some specific
taxonomy units are separated on each level of the classification. In spite of a rather
moderatle number of the units separated, they contain almost all sequences of this
peculiar taxonomy group from the original sel of 165 RNA sequences.

et us consider the results of a classification performed on the transformed
dictionaries on each hierarchy level in more detail, drawing special attention to
the features that differentiate between the sequences from separate classes. As one
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Fig. 4. The classification of the sel of baclerial 165 RNA over the real [requency dictionaries
of thickness 3. Horizontal axis shows the number of sequences, and the vertical one shows the
taxonomy group. The number of sequences belonging lo the first class is shown in black, while
number of the sequences belonging to the second class is shown in grey.

can see in Fig. 5, the original set of sequences has split into three classes on the
first level of classification:
I Chloroflexaceae/Deinococeaceae group; Deinococcaceae;
[l Spirochaetales; Spirochaelaceae; Borrelia,
IIT Al 1 (all the other sequences).
Fig. 6 shows which specific triplets determine the diflerence between the classes.

The values of the transformed frequencies are shown on the vertical axis; dashed
line represents the group (I), dotted iine represents the group (11), and solid line
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16SRNA (1730)
irochactal ALL1 Chloroflexaceas/Deinococcaceae
Spirochactales; {1680) gr.; Deinococcaceae

Spirochastaceae; Borrelia

| ALL 2 (1356) | | Fermicutes; Actinomycetes (324) |
| Fibrobacteria(12) | | ALL 3 (1344) ]
Fermicutes, Low G+C g.p.bact. Proteobacteria; Proteobacteria;
Proteobacteria; B-subdivision, o~ subdivision; a-subdivision
3-subdivision; e-subdivision; Rickettsiales {193)
v-subdivision (32)

Fig. 5. Hierarchy classification of the set of bacterial 163 RNA over the transformed frequency
dictionaries of thickness 3. The figure shows four levels of the classification.
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Fig. 6.  The largest deviations of the transformed frequencies which dctermine the difference
among three groups at the first level of classification shown in Fig. 5. The solid line corresponds
to the group Afi 1, the dashed line corresponds to the group Chloroficzaceac/Deinococcaceae;
[Deinococcaceas and the dotted line corresponds to the group Spirechaetales; Spirochaetaceae;
Borrefia. ''he horizontal axis shows the number of triplets enumerated lexicographically and
ordered in the increasing value of the transformed [requency in the group Al 1. The vertical axis
shows the value of the transformed frequencies; small deviations are smoocthed.
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represents the group (I11). The horizontal axis shows the number of triplets ordered
in the growth value of the iransformed frequency within the group (III}. All the
triplets are enumerated in the lexicographic order. The slight differences between
the groups are diminished. Tab. 4 corresponds to Fig. 6. It contains the coordi-
nates of classes (and the triplets relevant to them) that yield the maximal difference
between the classes. The transformed frequency dictionary represents the impact
of non-randomness in the distribution of nucleotides within sequences. This is why
we have also calculated the values of the centre coordinates determined for the
real frequency dictionaries, as well. Tab. 5 shows these data for the same triplets.
A comparison of these two tables makes it clear that the main factors underlying
the difference belween the classes may be the same for real and translormed dic-
tionarics, and they may differ significantly. There is no evident correlation of the
clagsification based on the real dictionary vs. the latter performed on the trans-
formed ones.

A classification performed on the transformed dictionaries yielded a rather
abundant group of sequences Al 1 (see Fig. 5); this allowed us to develop the
next level of classification and the group hasg been in turn split into several classes.
It should be said that the classes obtained failed to satisfy the separation con-
dition. Nevertheless, in the separation of this group into two classes the family
Firmicules Aclinomycetes becomes isolated, which is rather an interesting fact by
itself. The absence of a split satisfying the separation condition can result from
scveral reasons. Probably, the most important for that is the taxonomy diversity
of the nucleotide sequences observed within this group, that makes a variation of
information characteristics rather smootl, thus hiding the separation into explicit
classes.

The third level of classification yielded a split ol the group of nucleotide sequences
into two classes, with the family Fibrobacteria concentrated in one of them. Tab. 6
{similar to Tab. 4} presents the main faclors of the difference of the structures.
Tab. 7 (similar to the Tab. 5) shows the coordinates of the centre of these classes
calculated for the real dictionaries, in order to provide a comparison.

The classes obtained at the fourth level of the classification failed to satisfy the
scparation condition, and we show them just to finalise the implemented classifi-
cation. The split into three classes here is optimal, in the following sense: the best
relation between the average radii of the claszes oblained is achieved in this case.
Besides, it is rather interesting to trace the sequences of some taxonomy group
into the same class.

6. Conclusion

We have studied relations between the structure of a nucleotide sequence and the
taxonomy of its bearer. An extended group of 165 RNA has been studied to answer
this question. The proximity of structures was understood as the proximity of
frequency dictionaries, either real or transformed ones, in Euclidean metrics. From
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i | TAT | CAT | GTC | TCT | TTG | ATA | TCG | TTA | CCA | ATC |

‘ Chioroflezuceas/Deinococcas 0,109 ‘ 1,296 ‘ 0,998 ‘ 1,06 ‘ 0,71 ‘ 0,686 ‘ 0,916 i 1,418 I 0,852 ‘ 1,028 ‘
Cene gT; DEEROCOCLTICEHE'
Sp””""’“‘“”ﬂ . 0,978 | 0,746 | 1,42 | 1,189 | 0,958 | 1,099 | 0,788 | 1,224 | 0,545 } 0,737
Spirochaetaceae; Borrelia

| a1 | 06 | 09895 | 1019|0819 | 099 | 0859 | 1,088 | L14 | 0808 | 1,019 |

| | TAT CAT | GTC TCT TTG ATA TCG TTA CCA ATC |
t Chloroflezaceae/
Petnococcaceae
gr.;

Deinococcacene

z
0,0008 | 0,0087 | 0,0132 | 0,0073 | 0,0075 | 0,0047 | 0,0110 | 0,0089 | 0.0134 | 0,0072

Spirochaetales;
Spirochoetaceae;
Borrelia

0,0173 | 0,0077 | 0,0173 | 0,0125 | 0,0141 | 0,0237 | 0,0090

0,0187 | 0,0052 | 0,0081

| All 1 1 0,0059 \ 0,0102 | 0,0140 \ 0,0078 \ 0,0144 | 0,0098 | 0,0140 | 0,0117 \ 0,0102 | 0,009% |

Tab. 5 Real frequencics corresponding to the main factors determining the difference among 3
classes.

| CAA | TAA | CTA | CAT | CTG | TTC | GTA | TCT | TAC |

|
] All 3 i 0,973 ] 1,23 | 0,945 | 1,001 | 0,998 | 0,948 | 1,048 | 0,836 | 1,144 |
|

Fibrobacteria | 1,337 | 0,898 | 0,67 | 0,756 | 1,229 | 1,169 | 1,268 | 0,617 | 1,362 |

Tab. 6. The main factors behind the difference between two classes.

| ‘ CAA i TAA | CTA ‘ CAT | CTG E TTC \ GTA | Ter ‘ TAC l

| Aits | 0,0153 | 0,0182 | 0,0121 | 0,0106 | 0,0173 | 0,0082 [ 0,0173 | 0,0080 | 0,0139 |

| Fibrobacteria | 0,0221 | 0,01 | 0,006 | 0,0091 | 0,0183 | 0,009 | 0,018 | 0,0043

0,0129 |

Tab. 7. Real frequencies corresponding to the main factors delermining the difference between 2
classes.
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the point of view of the molecular aspects of the selection theory, the most visible
thing here is that the classification performed on the real frequency dictionaries
of thickness 3 correlates best of all to the generae. A gender is included entirely
either into the first class, or into the sccond one, and the exclusions are rarely
met. An association of nucleotide sequences into the taxonomy groups of family
range or higher results in a significant decay of the correlation of the taxonomy
and the classification implemented over the statistical properties of the relevant
sequences.

A translormation of the [requency dictionary of a nucleotide sequence, i.e. the
usage of the reconstructed frequency dictionary in order to detect a non-random
component in a distribution of k-tuples, allows one to compare the nucleotide
sequernces over their information characteristics. Aulomatic classification of a set
of nucleotide sequences over their transformed dictionarics yields the classes of
proximal sequences. In the case of 165 RNA studied, the classes obtained contain
the sequences of speciflic taxonomy,

A classification of sequences performed on the real frequency diclionaries dif-
fers basically from that performed on the transformed ones. A classification over
the real frequency dictionaries represent mainly the difference in nucleotide com-
position of the sequences. A decomposition of the original sct of sequences into
two classes with a good correlation between the class occupation and the tax-
onomy of the bearer of a sequence proves this idea clearly. A classification over
the transformed dictionaries isolates one or two groups of sequences of the same
taxonomy, on each level of the classification. The difference in structure among
the classes obtained manifests itsell in a rare or, contrary, frequent (in comparison
to the expected one) occurrence of some words within a sequence; a number of
these words is not too large (see Tables 4 to 7). The sites determined according to
their information characteristics do not necessarily coincide with other structure
entities determined by other methods [10, 11]. [t is rather important to carry out a
comparative study of the sites determined by the information characteristics with
those determined by other methods.
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