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Scattering rates~moments of collision integral! are treated as independent variables, and as an alternative to
moments of the distribution function, to describe the rarefied gas near local equilibrium. A version of the
entropy maximum principle is used to derive the Grad-like description in terms of a finite number of scattering
rates. The equations are compared to the Grad moment system in the heat nonconductive case. Estimations for
hard spheres demonstrate, in particular, some 10% excess of the viscosity coefficient resulting from the
scattering rate description, as compared to the Grad moment estimation.@S1063-651X~96!51310-3#

PACS number~s!: 05.60.1w, 05.70.Ln, 51.10.1y, 51.20.1d

The classical Grad moment method@1# provides an ap-
proximate solution to the Boltzmann equation, and leads to a
closed system of equations where hydrodynamic variables
r, u, andP ~density, mean flux, and pressure! are coupled to
a finite set of nonhydrodynamic variables. The latter are usu-
ally the stress tensors and the heat fluxq constituting ten-
and thirteen-moment Grad systems. The Grad method was
originally introduced for diluted gases to describe regimes
beyond the normal solutions@2#, but later it was used, in
particular, as a prototype of certain phenomenological
schemes in nonequilibrium thermodynamics@3#. Recently
the Grad equations were used to obtain examples of exact
summation of gradient expansions arising in the kinetic
theory @4#.

However, the moments do not constitute the unique sys-
tem of nonhydrodynamic variables, and the exact dynamics
might be equally expressed in terms of other infinite sets of
variables~possibly, of a nonmoment nature!. Moreover, as
long as one shortens the description to only a finite subset of
variables, the advantage of the moment description above
other systems is not obvious.

In this Rapid Communication we consider another system
of nonhydrodynamic variables,scattering rates Mw( f ):

Mi1i2i3
w ~ f !5E m i1i2i3

Qw~ f !dv;

m i1i2i3
5mv1

i1v2
i2v3

i3 , ~1!

which, by definition, are the moments of the Boltzmann col-
lision integralQw( f ):

Qw~ f !5E w~v8,v18 ,v,v1!$ f ~v8! f ~v18!

2 f ~v! f ~v1!%dv8dv18dv1 .

Herew is the probability density of a change of the ve-
locities, (v,v1)→(v8,v18), of the two particles after their en-
counter, andw is defined by a model of pair interactions. The

description in terms of the scattering ratesMw ~1! is alterna-
tive to the usually treated description in terms of the mo-
mentsM : Mi1i2i3

( f )5*m i1i2i3
f dv.

A reason to consider scattering rates instead of the mo-
ments is thatMw ~1! reflect features of the interactions be-
cause of thew incorporated in their definition, while the
moments do not. For this reason we can expect that, in gen-
eral, a description with afinitenumber of scattering rates will
be more informative than a description provided by the same
number of their moment counterparts.

To come to the Grad-like equations in terms of the scat-
tering rates, we have to complete the following two steps:

~i! To derive a hierarchy of transport equations forr, u,
P, andMi1i2i3

w in a neighborhood of the local Maxwell states

f 0(r,u,P).
~ii ! To truncate this hierarchy, and to come to a closed set

of equations with respect tor, u, P, and a finite number of
scattering rates.

In the step~i!, we derive a description with an infinite
number of variables, which is formally equivalent both to the
Boltzmann equation near the local equilibrium, and to the
description with an infinite number of moments. The ap-
proximation comes into play in the step~ii ! where we reduce
the description to a finite number of variables. The difference
between the moment and the alternative description occurs at
this point.

The program~i! and ~ii ! is similar to what is done in the
Grad method@1#, with the only exception~and this is impor-
tant! that we should always use scattering rates as indepen-
dent variables and not to expand them into series in mo-
ments. Consequently, we will use a method of a closure in
the step~ii ! that does not refer to the moment expansions.
Major steps of the computation will be presented below.

To complete the step~i!, we representf as f 0(11w),
where f 0 is the local Maxwellian, and we linearize the scat-
tering rates~1! with respect tow:

DMi1i2i3
w ~w!5E Dm i1i2i3

w f 0wdv;

Dm i1i2i3
w 5Lw~m i1i2i3

!. ~2!

HereLw is the usual linearized collision integral, divided
by f 0. ThoughDMw are linear inw, they are not moments
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because their microscopic densities,Dmw, are not velocity
polynomials for a general case ofw.

It is not difficult to derive the corresponding hierarchy of
transport equations for variablesDMi1i2i3

w , r, u, andP ~we

will further refer to this hierarchy as the alternative chain!:
one has to calculate the time derivative of the scattering rates
~1! due to the Boltzmann equation, in the linear approxima-
tion ~2!, and to complete the system with the five known
balance equations for the hydrodynamic moments~scattering
rates of the hydrodynamic moments are equal to zero due to
conservation laws!. The structure of the alternative chain is
quite similar to that of the usual moment transport chain,
and for this reason we do not reproduce it here~details of
calculations can be found in@5#!. One should only keep in
mind that the stress tensor and the heat flux vector in the
balance equations foru andP are not independent variables
anymore, and they are expressed in terms ofDMi1i2i3

w , r,

u, andP.
To truncate the alternative chain@step~ii !#, we have, first,

to choose a finite set of ‘‘essential’’ scattering rates~2!, and
second, to obtain the distribution functions that depend para-
metrically only onr, u, P, and on the chosen set of scatter-
ing rates. We will restrict our consideration to a single non-
hydrodynamic variable,s i j

w , which is the counterpart of the
stress tensors i j . This choice corresponds to the polynomial
mv iv j in the expressions~1! and~2!, and the resulting equa-
tions will be alternative to the ten-moment Grad system@6#.
For a spherically symmetric interaction, the expression for
s i j
w may be written as

s i j
w~w!5E Dm i j

w f 0wdv;

Dm i j
w5Lw~mv iv j !5

P

h0
w~T!

Sw~c2!$cicj2
1
3d i j c

2%. ~3!

Hereh0
w(T) is the first Sonine polynomial approximation

of the Chapman-Enskog viscosity coefficient~VC! @2#, and,
as usual,c5Am/2kT(v2u). The scalar dimensionless func-
tion Sw depends only onc2, and its form depends on the
choice of interactionw.

Next, we find the functions f * (r,u,P,s i j
w)

5 f 0(r,u,P)@11w* (r,u,P,s i j
w)# which maximize the Bolt-

zmann entropyS( f ) in a neighborhood off 0 ~the quadratic
approximation to the entropy is valid within the accuracy of
our consideration!, for fixed values ofs i j

w . That is,w* is a
solution to the following conditional variational problem:

DS~w!52
kB
2 E f 0w

2dv→ max,

~ i!E Dm i j
w f 0wdv5s i j

w ; ~ ii !E $1,v,v2% f 0wdv50. ~4!

The second~homogeneous! condition in Eq.~4! reflects that
a deviationw from the statef 0 is due only to nonhydrody-
namic degrees of freedom, and it is straightforwardly satis-
fied for Dm i j

w ~3!.
Notice, that if we turn to the usual moment description,

then condition~i! in Eq. ~4! would fix the stress tensors i j

instead of its scattering counterparts i j
w Then the resulting

function f * (r,u,P,s i j ) will be exactly the ten-moment Grad
approximation. It can be shown that a choice of any finite set
of higher moments as the constraint~i! in Eq. ~4! results in
the corresponding Grad approximation. In that sense our
method of constructingf * is a direct generalization of the
Grad method onto the alternative description.

The Lagrange multipliers method gives straightforwardly
the solution to the problem~4!. After the alternative chain is
closed with the functionsf * (r,u,P,s i j

w), the step~ii ! is com-
pleted, and we arrive at a set of equations with respect to the
variables r, u, P, and s i j

w . Switching to the variable
z i j5n21s i j

w , we have

] tn1] i~nui !50; ~5a!

r~] tuk1ui] iuk!1]kP1] i H h0
w~T!n

2r wP
z ikJ 50; ~5b!

3

2
~] tP1ui] iP!1

5

2
P] iui1H h0

w~T!n

2r wP
z ikJ ] iuk50;

~5c!

] tz ik1]s~usz ik!1H zks]sui1z is]suk2
2

3
d ikz rs]sur J

1H gw2
2bw

rw J z ik]sus2
P2

h0
w~T!n

S ] iuk1]kui

2
2

3
d ik]susD2

awP

rwh0
w~T!

z ik50. ~5d!

Here] t5]/]t,] i5]/]xi , summation in two repeated indices
is assumed, and the coefficientsr w, bw, andaw are defined
with the aid of the functionSw ~3! as follows:

r w5
8

15Ap
E
0

`

e2c2c6@Sw~c2!#2dc; ~6!

bw5
8

15Ap
E
0

`

e2c2c6Sw~c2!
dSw~c2!

d~c2!
dc;

aw5
8

15Ap
E
0

`

e2c2c6Sw~c2!Rw~c2!dc.

The functionRw(c2) in the last expression is defined due to
the action of the operatorLw on the functionSw(c2)(cicj2
1
3 d i j c

2):

P

h0
wR

w~c2!S cicj2 1

3
d i j c

2D5LwFSw~c2!S cicj2 1

3
d i j c

2D G .
~7!

Finally, the parametergw in Eq. ~5! reflects the temperature
dependence of the VC:

gw5
2

3 F12
T

h0
w~T!

S dh0
w~T!

dT D G .
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The set of ten equations~5! is alternative to the ten-moment
Grad equations.

The first observation to be made is that for Maxwellian
molecules we have SMM[1, and h0

MM}T; thus
gMM5bMM50, r MM5aMM5 1

2, and Eq.~5! becomes the
ten-moment Grad system under a simple change of variables
lz i j5s i j , wherel is the proportionality coefficient in the
temperature dependence ofh0

MM .
These properties~the functionSw is a constant, and the

VC is proportional toT) are true only for Maxwellian mol-
ecules. For all other interactions, the functionSw is not iden-
tical to 1, and the VCh0

w(T) is not proportional toT. Thus,
the shortened alternative description is not equivalent indeed
to the Grad moment description. In particular, for hard
spheres, the exact expression for the functionSHS ~3! reads

SHS5
5A2
16 E

0

1

exp~2c2t2!~12t4!@c2~12t2!12#dt,

h0
HS}AT. ~8!

Thus,gHS5 1
3, andbHS/r HS'0.07, and the equation for

the functionz ik ~5d! contains a nonlinear term,

uHSz ik]sus , ~9!

where uHS'0.19. This term is missed in the Grad ten-
moment equation.

Finally, let us evaluate the VC which results from the
alternative description~5!. Following Grad’s arguments@1#,
we see that, if the relaxation ofz ik is fast compared to the
hydrodynamic variables, then the two last terms in the equa-
tion for z ik ~5! become dominant, and the equation foru
casts into the standard Navier-Stokes form with an effective
VC heff

w :

heff
w 5

1

2awh0
w . ~10!

For Maxwellian molecules, we easily derive that the co-
efficientaw in Eq. ~10! is equal to1

2. Thus, as one expects,
the effective VC~10! is equal to the Grad value, which, in
turn, is equal to the exact value in the frames of the
Chapman-Enskog method for this model.

For all interactions that are different from the Maxwellian
molecules, the VCheff

w ~10! is not equal toh0
w For hard

spheres, in particular, a computation of the VC~10! requires
information about the functionRHS ~7!. This is achieved
upon a substitution of the functionSHS ~8! into Eq. ~7!. Fur-
ther, we have to compute the action of the operatorLHS on
the functionSHS(cicj2

1
3d i j c

2), which is rather complicated.
However, the VCheff

HS can be relatively easily estimated by

using a functionSa
HS5(1/A2)(11 1

7 c
2), instead of the func-

tionSHS, in Eq.~7!. Indeed, the functionSa
HS is tangent to the

functionSHS at c250, and is its majorant~see Fig. 1!. Sub-
stituting Sa

HS into Eq. ~7!, and computing the action of the
collision integral, we find the approximationRa

HS ; thereafter
we evaluate the integralaHS ~6!, and finally come to the
following expression:

heff
HS>

75 264

67 237
h0
HS'1.12h0

HS. ~11!

Thus, for hard spheres, the description in terms of scatter-
ing rates results in the VC of more than 10% higher than in
the Grad moment description.

A discussion of the results concerns the following two
items.

~i! Having two descriptions that are not equivalent which
were obtained within one method, we may ask, which is
more relevant? A simple test is to compare characteristic
times of an approach to hydrodynamic regime. We have
tG;h0

HS/P for ten-moment description, andta;heff
HS/P for

alternative description. Asta.tG , we see that scattering
rate decays slower than the corresponding moment; hence, at
least for rigid spheres, alternative description is more rel-
evant. For Maxwellian molecules both the descriptions are,
of course, equivalent.

~ii ! The VC heff
HS ~11! has the same temperature depen-

dence ash0
HS , and also the same dependence on a scaling

parameter~a diameter of the sphere!. In @7#, ‘‘sizes’’ of mol-
ecules are presented, assuming that a molecule is represented
with an equivalent sphere and VC is estimated ash0

HS . Since
our estimation of VC differs only by a dimensionless factor
from h0

HS , it is straightforward to conclude that effective
sizes of molecules will be reduced by the factorb, where

b5Ah0
HS/heff

HS'0.94.

Further, it is well known that sizes of molecules estimated
via viscosity in@7# disagree with the estimation via the virial

FIG. 1. Approximations for hard spheres: bold line, function
SHS; solid line, approximationSa

HS ; dotted line, Grad moment ap-
proximation.

TABLE I. Second virial coefficient for hard spheres.

Bexpt B0 Beff

Argon 8.4 60.9 50.5
Helium 10.8 21.9 18.2
Nitrogen 168 66.5 55.2
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expansion of the equation of state. In particular, in@8# the
measured second virial coefficientBexp was compared with
the calculatedB0, in which the diameter of the sphere was
taken from the viscosity data. The reduction of the diameter
by factorb givesBeff5b3B0. The valuesBexp andB0 @8# are
compared withBeff in Table I for three gases atT5500 K.
The results for argon and helium are better forBeff , while for
nitrogenBeff is worse thanB0. However, bothB0 andBeff are
far from the experimental values.

Hard spheres is, of course, an oversimplified model of
interaction, and the comparison presented does not allow for
a decision betweenh0

HS andheff
HS Nevertheless, this simple

example illustrates to what extent the correction to the VC
can affect a comparison with experiment. Indeed, as is well
known, the first-order Sonine polynomial computation for
the Lennard-Jones~LJ! potential gives a very good fit of the
temperature dependence of the VC for all noble gases@9#,
subject to a proper choice of the two unknown scaling pa-

rameters of the LJ potential@10#. We may expect that a di-
mensionless correction of the VC for the LJ potential might
be of the same order as above for rigid spheres. However, the
functional character of the temperature dependence will not
be affected, and a fit will be obtained subject to a different
choice of the molecular parameters of the LJ potential.

There remains, however, a general question how the esti-
mation of the VC~10! responds to the exact value@2,11#.
Since the analysis performed above does not immediately
appeal to the exact Chapman-Enskog expressions just men-
tioned, this question remains open for a further work.
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